
Journal of Information Processing Vol.27 603–612 (Sep. 2019)

[DOI: 10.2197/ipsjjip.27.603]

Recommended Paper

Chronological Analysis of Source Code Reuse Impact on
Android Application Security

Hironori Imai1,a) Akira Kanaoka1,b)

Received: December 10, 2018, Accepted: June 11, 2019

Abstract: Application developers consider open discussion forum on software development such as question and an-
swer (Q&A) forums to be very important. There are cases where snippets which are partial source code on such forums
contains vulnerabilities, and application developers divert snippets without knowing it. Previous works were focused
on security-related codes such as a TLS connection, and not on actual vulnerable codes that are used widely. Thus,
a time series investigation on the spread of such codes has not been conducted. In this paper, a method that enables
the chronological analysis of source code reuse is proposed. By determining source code reuse in applications, we
can investigate the context using time information such as the respective publication dates and time, and clarify how
many cases are not source code reuse. An evaluation of the proposed method is achieved using large-scale data which
includes 527,249 snippets of source code and 249,987 applications. The result shows that the appearance rate of ap-
plications having the same code as the snippet has increased after the release of the snippet. Furthermore, experiments
on extracting vulnerable snippets from all snippets show that vulnerable snippets often have a greater impact than the
overall snippet trend.

Keywords: Android, security, code clone

1. Introduction

The latest smartphones have a lot of sensors such as Camera,
LTE, WiFi, NFC, GPS, compass, Bluetooth Low Energy mod-
ule, barometer, three-axis gyro, accelerometer, proximity sensor,
ambient light sensor, microphone, iris sensor, fingerprint sensor,
heart rate sensor, SpO2 sensor, color spectrum, etc. And the im-
provement of living with them is remarkable.

The improvement in the quality of life can be attributed to not
only high-spec smartphones but also the applications that can
effectively handle these specifications. Application developers
make use of various new sensors and OS functions to provide
innovative applications.

Security and privacy have become problematic with applica-
tions. The combination of smartphones equipped with numerous
multifunction sensors and applications that enrich our lives has
led to the continuous accumulation of sensitive, personal infor-
mation of users. Thus appropriate security and privacy in ap-
plications have become very important. As the possibilities of
applications have expanded, so too have issues associated with
security and privacy.

Developers who must make use of new sensors are striving to
acquire new knowledge. They also have to update their knowl-
edge of security and privacy further, which is becoming more
difficult. Recent studies have revealed that poor development of
security and privacy causes serious risk [1], [2], [3]. In such cir-
cumstances, occupying an important position among developers

1 Toho University, Funabashi, Chiba 274–8510, Japan
a) 6518002i@st.toho-u.ac.jp
b) akira.kanaoka@is.sci.toho-u.ac.jp

is an open forum on software development, i.e., a question and
answer (Q&A) forum. StackOverflow is a representative service
of such Q&A forum.

There are cases where a snippet, which is partial source code,
described in StackOverflow contains vulnerabilities, and software
developers divert snippets without knowing it. Acer et al. per-
formed experiments on the occurrence of such incidents and the
developer’s attitude and highlighted the threat [4]. Fischer et al.
further focused on the snippets of a specific security function
called security-related code, and proposed a detection method [5].
They showed that snippets have been diverted to applications,
and such snippets often contain insecure code in security-related
parts.

Findings by Acer et al. have shed light on new threats. It is
surprising that Fischer et al. found out how much insecure code
exists and how much it is actually reused in the real world. How-
ever, the target was focused on security-related codes such as a
TLS connection, not on actual and widely-used vulnerable codes.
Thus, they have not investigated the spread from chronological
viewpoint. Therefore, in this paper, we raise the following re-
search questions.
Research Questions
• Are applications that are identified as code reuse really ap-

plications that the developer reused snippets?
• Among code reuse cases, does reusedvulnerable code have

any special features?

The preliminary version of this paper was published at Multimedia, Dis-
tributed, Cooperative, and Mobile Symposium (DICOMO 2018), July
2018. The paper was recommended to be submitted to Journal of Infor-
mation Processing (JIP) by the chief examiner of SIGCSEC.

c© 2019 Information Processing Society of Japan 603

Journal of Information Processing Vol.27 603–612 (Sep. 2019)

In order to respond to these research questions, a method that
enables the chronological analysis of code reuse from snippets
is proposed. In determining code reuse from snippets in appli-
cations, we can investigate the context using time information
such as the respective publication dates and time, and clarify how
many cases are not code reuse. Firstly, an inclusion detection
method which detects snippet inclusion in an application is pro-
posed. Secondly, an impact index of code reuse which can con-
duct chronological analysis is proposed.

The effect was evaluated experimentally using the proposed
method. Snippets were collected from StackOverflow and ap-
plications were collected from the Androzoo dataset. Inclusion
detection and chronological analysis were performed from those
data, and their characteristics were evaluated. In the experiment,
527,249 snippets and 249,987 applications were used and ana-
lyzed. In addition, vulnerable snippets were extracted from the
collected snippets and the impact of vulnerable snippets was an-
alyzed. The result of the chronological analysis showed that the
appearance rate of applications with the same code as the snippet
increases after the release of the snippet. Experiments extracting
vulnerable snippets from all snippets show that vulnerable snip-
pets often affected more than the overall snippet trend.

Our contributions in this paper are as follows
• Proposea method that enables the chronological analysis of

code reuse impact
• Understand theimpact of code reusein chronological order

by analyzing with large-scale data
• Demonstrate that vulnerable snippets are more frequently

reused than regular snippets
The structure of this paper is as follows. Related works are

described in Section 2. An overview of the proposed chrono-
logical analysis architecture is explained in Section 3. The two
main parts of the proposal, Inclusion Detection and Code Reuse
Chronological Analysis, are explained in Sections 4 and 5, re-
spectively. Section 6 describes the evaluation and the results.
From the results, Section 7 discusses the limitations of the pro-
posal. Finally, Section 8 concludes.

2. Related Works

2.1 StackOvewflow Impact
Acar et al. investigated the impact of information source on

code security. They found that developers using Stack Overflow
for looking up security-related issues often copy&paste insecure
code [4].

In the study, they first investigated what information sources
are used by developers when dealing with security and privacy
related issues. The results of this study showed that a large num-
ber of developers (74.6%) use StackOverflow and search engines,
while only a small number of developers consult Android’s offi-
cial documents (9.0%) and books (3.0%).

Secondly, they conducted a user study in which participants
were requested to develop a security related code. In this study,
the participants were divided into 4 groups. Restrictions were
placed on each group with regard to the information that they
could refer to while coding, namely StackOverflow, Android’s
official documents, books, and no reference. The results of this

study showed that the group that used StackOverflow tend to pro-
duce functional but insecure code, while the group that referred
to Android’s official documents tend to produce unfunctional but
secure code. Thus, among the 139 snippets (sample codes) used
by the StackOverflow group, 25% were functional code and 17%
were secure code.

From the above experimental results, the following inferences
can be made.
• Official API documentation is not easy to use, but it is safe.

Informal documents such as StackOverflow are easy to use
in many cases, but they include vulnerabilities.

• Although paid books are practical and safe, less number of
developers prefer using books.

• Given the time and economic constraints, it is expected that
developers will use informal documents.

Fischer et al. [5] focused on the source code of a specific se-
curity function called Security-related code and proposed a de-
tection method that detects used source code parts from Android
applications. In addition, they proposed a classification method
based on Expert’s viewpoint for classifying the detected code into
secure/insecure, and further classified it by using machine learn-
ing. Furthermore, they applied PPA (Partial Program Analysis)
to evaluate the matching level between snippets and codes. Fi-
nally, copied&pasted codes are identified using Program Depen-
dency Graphs and Jaccard Similarity. The result also shows that
the snippets used for Android applications often contain insecure
codes.

These studies have been developed as a new field as usability
of cryptographic functions in recent years [6], [7], [8].

2.2 Clone Detection for Java Applications
Clone detection for applications is a field that has been studied

for a long time. It depends on the target language and application.
Keivanloo et al. proposed a clone detection model SeByte fo-

cused onJava bytecode [9]. In SeByte, the features of a Java code
are defined as fingerprints, and clone detection is performed by
extracting and comparing the fingerprints from applications. In
this work, three types of fingerprint dimensions are defined, as
follows.
• Java Type Fingerprints
– Sequential class names on method calls in a bytecode
• Method Call Fingerprints
– Sequential method names on method calls in a bytecode
• Instructions Fingerprints
– Sequential instruction names of Java Virtual Machine In-

struction Set
Fingerprint elements are extracted from the three dimensions

of fingerprints for each method in a bytecode. Then the elements
from each method are combined into one. We call this FD (Fin-
gerprint Data) for an unification of terms. FD matching is per-
formed by comparing the elements of each dimension.

A comparison is performed using Jaccard similarity and each
dimension has a threshold value for Jaccard similarity score to
judge whether it is matched or not. In the original work, the
threshold value of Java Type Fingerprints dimension was 0.16 and
that of Method Call Fingerprints dimension was 0.53.

c© 2019 Information Processing Society of Japan 604

Journal of Information Processing Vol.27 603–612 (Sep. 2019)

By collecting the matching result for each method, SeByte
searches and detects the clone.

Their studies show a high accuracy of clone detection. On the
other hand, the accuracy of clone detection in obfuscated appli-
cations is still unclear, as there is no discussion of obfuscation
which is currently applicable to many Java applications.

Clone detection is a field that has been studied for a long time,
and survey articles are also substantial [10], [11].

3. Chronological Analysis Architecture

The study by Acar et al. [4] and the study by Fischer et al. [5]
found the impact of StackOverflow on application developers
from a security perspective. Their studies show the actual state of
application developers who reuse snippets from StackOverflow.
However, the chronological viewpoint was missing in their study.
Since the chronological viewpoint is missing, there is a possibility
that the detection of source code reuse was miscounted. If a snip-
pet that is used to detect source code reuse from StackOverflow
is a very general code, some applications will be misdetected as
“code reused application” even if the applications were released
before the snippet was published.

Therefore, a novel analysis method which enables chronologi-
cal analysis for snippet reusing is proposed in this paper. In this
section, an overview of the proposed method is provided.

We expand the clone detection technique of SeByte [9] for de-
tecting of the inclusion of a snippet in an application. In the clone
detection using SeByte, firstly Fingerprint Data (FD) is extracted
for each method from bytecodes of an application. Then, clone
detection is performed using Jaccard similarity based on the num-
ber of FD matchings. In the proposed method, improved and
customized FD for an Android application is extracted from both
snippets and Android applications. Then, the number of matches
between FD is counted, and the inclusion detection is performed
based on the number of matches.

Thus, the time information of both snippets and applications
is obtained and used for analyzing the impact of snippet reuse,
along with inclusion detection results.

Figure 1 shows an overview of the proposed analysis. The
detailed method of inclusion detection is described in Section 4,
and the detailed method of chronological analysis is described in
Section 5.

Fig. 1 Overview of Chronological Analysis Architecture. The detailed
method of the inclusiondetection is described in Section 4, and the
detailed method of chronologicalanalysis is described in Section 5.

4. Inclusion Detection from Code Snippet

Unlike clone detection which detects whether two applications
are clones, it is necessary to compare snippets that are provided
as source code and Android applications that are provided as ex-
ecution code, in order to evaluate whether the snippet is reused in
the application.

In consideration of such asymmetry, fingerprint extraction
from snippets and fingerprint extraction from an Android appli-
cation are proposed based on SeByte clone detection technique.

4.1 Fingerprint Extraction
From Dalvik bytecodes, Java Type Fingerprints, Method Call

Fingerprints, and Arg Name Fingerprints are extracted as finger-
prints. First two fingerprints are similar to SeByte. Arg Name
Fingerprint is a novel fingerprint which can especially be ex-
tracted fromDalvik bytecodes. It is a sequential argument name,
which is included in Dalvik bytecode but not in Java bytecode.

This extraction is common to Fingerprint extraction from both
snippets and Android applications.

An example of a Dalvik byte code is shown as follows.

Example of Dalvik bytecode� �
virtual methods

.method public add(JLjava/lang/String;)V

.locals 3

.param p1, "l" # J

.param p3, "s" # Ljava/lang/String;

.prologue

.line 3

sget-object v0, Ljava/lang/System;->

out:Ljava/io/PrintStream;

invoke-static {p3}, Ljava/lang/Long;->

parseLong(Ljava/lang/String;)J

move-result-wide v1

add-long/2addr v1, p1

invoke-virtual {v0, v1, v2},

Ljava/io/PrintStream;->print(J)V

.line 4

return-void

.end method
� �

The corresponding fingerprint is shown as follows.

c© 2019 Information Processing Society of Japan 605

Journal of Information Processing Vol.27 603–612 (Sep. 2019)

Example of Extracted Fingerprints� �
javaType: java.lang.Long,java.io.PrintStream

methodCall: parseLong,print

instruction: sget-object,invoke-static,

move-result-wide,add-long/2addr,

invoke-virtual,return-void

argName: l,s

� �
4.2 Pretreatment for Snippets toward Fingerprint Extrac-

tion
To obtain fingerprints from snippets, a snippet is compiled into

Dalvik bytecode, then fingerprints are extracted from the Dalvik
bytecode. Since a snippet cannot be compiled by itself, prepro-
cessing is required for snippets in order to extract fingerprints.
4.2.1 Removing XML Questions and Answers

In StackOverflow, snippets are tagged with ‘<code>’ and
‘</code>’ in their HTML source code. The snippets include not
only a partial source code but also a preference or configuration
file such as XML. Since such snippets are not required to extract
fingerprints, non-Java snippets should be removed beforehand.

Regular expressions are used for XML detection. However,
XML described in the Java source code is also detected. There-
fore, regular expressions for detecting Java source code are also
prepared. A snippet that is detected by XML regular expressions
and not detected by Java source code regular expressions is de-
tected as an XML snippet. Regular expressions for XML detec-
tion are as follows.
/android:\w+?=”.+?”|<\/\S+?>|\/>/

Regular expressions for Java source code detection are as follows.
/\.\w+?\s*?\([ˆ\)]*?\)\s*?;|import\s+?[\w\.]+?\s*?;/

4.2.2 Inserting Java Import Statements
Most of the snippets omit the import sentence; therefore, the

error “cannot find symbol” occurs at compile time, if we compile
the snippet directly. Therefore, the expected import statements
are inserted in snippets to perform compiling successfully.

Since it is difficult to specify the required package from the
snippet contents and errors, candidates of import statements are
prepared in advance and are then inserted at once. The list of
packages described in Android API packages [12] is used for in-
serting the packages.

From the list, 275 packages are used to insert, with the excep-
tion of 11 packages. Since Android SDK in API Level 26 does
not include these packages and there are several packages which
contain the same named class, the following 11 packages are not
used.
• Packages that cannot be referenced from the jar file included

in the Android SDK (API Level 26)
– android.support.text.emoji
– android.support.text.emoji.bundled
– android.support.text.emoji.widget
– android.support.v4.utils
– android.support.v8.renderscript
– android.support.wear
– android.support.wear.widget
– android.support.wear.widget.drawer

• The packages which contains same named class
– java.net
– java.security.cert
– java.sql

4.2.3 Supplementing Class and Method Names
The minimum unit required for compiling is a single class. If

a snippet is not formed as a single class, supplementation of the
class name is necessary. Since the class name does not affect the
result during fingerprint extraction, the declaration of a class with
an appropriate fixed name is prepared and a snippet is put into the
class. Therefore, if a snippet is just a short sentence that is not
formed as a single method, the supplementation of the method is
also necessary. In that case, the declaration of a method with an
appropriate fixed name is also prepared. This method name does
not affect the fingerprint extraction.

4.3 Inclusion Evaluation
In an inclusion evaluation using fingerprints, a similarity evalu-

ation is performed for each dimension. Each similarity evaluation
is performed using the Jaccard similarity coefficient like as in FD
matching in SeByte.

J(s1, s2) =
|s1
⋂

s2|
|s1
⋃

s2| (1)

where s1 is the fingerprint element of a method in a snippet and
s2 is the fingerprint element of a method in an application. The
value of similarity J(s1, s2) is obtained from the number of com-
mon fingerprint elements between a method in a snippet and a
method in an application (|s1

⋂
s2|) and the number of all finger-

print elements in both the method in a snippet and the method
in an application excluding duplicates(|s1

⋃
s2|). The detection

threshold is set to 0.16 for Java Type Fingerprints dimension and
0.53 for Method Call Fingerprints dimension, which are the same
as in the study by Keivanloo et al. Since Arg Name Fingerprints
is a novel fingerprint type dimension and the number of this type
is low, the detection threshold of Arg Name Fingerprints is set
to 1.0 for avoiding false negatives. If two or more of the three
similarity evaluations exceed the threshold value, the snippet is
determined to be included in the application.

5. Code Reuse Chronological Series Analysis

Inclusion detection allows us to find whether a snippet is in-
cluded in an application. However,the actual impact of snippet
reuse is not accurately measured just by investigating the inclu-
sion of snippets. If the chronological viewpoint is missing, there
is a possibility that the detection of code reuse was miscounted.
Previous works had the same problem. In this section, a method
that can perform chronological analysis of the impact of snippets
on the Android market is proposed.

We assume that each snippet and each Android application has
time information. In the case of snippets, it will refer to the time
the snippet was published. When we consider the case of Stack-
Overflow, it corresponds to the date and time the question and/or
the answer was made. In the case of an Android application, it
corresponds to the date and time when the application was pub-
lished or added to the data set.

c© 2019 Information Processing Society of Japan 606

Journal of Information Processing Vol.27 603–612 (Sep. 2019)

Suppose you have performed an inclusion detection on an An-
droid application data set using a snippet a published at time t.
At that time, let Na be the total number of applications judged as
the snippet inclusion, and let Na(t) be the number of applications
that have its time information after time t in Na.

Let N be the total number of applications in the Android appli-
cation whole dataset, and let N(t) be the total number of applica-
tions that have its time information after time t.

At this time, the impact score S a(t) on the data set caused by
publishing the snippet a after time t is defined as

S a(t) =
Na(t)
Na
− N(t)

N
(2)

when the published time of the snippet a is ta.
Here, some time information important for analysis using S a(t)

will be listed. First, let ta be the time when the snippet a was pub-
lished. Next, let tAa, f be the time when the first application Aa, f

determined to include the snippet a was published, and let tAa,l be
the time when the last application Aa,l determined to include the
snippet a was published.

Based on these time information, an analysis of various view-
points can be achieved using S a(t). In this paper, we focus on
ta and analyze mainly on S a(ta). The analysis of S a(t) based on
other time information is discussed in Section 7.4.

Using this impact score S , we can discuss the transversal im-
pact of a Q&A forum on the Android market. A Q&A forum’s
transversal impact T can be defined as

T =
|{a ∈ V |S a(ta) > 0}| − |{a ∈ V |S a(ta) < 0}|

|V | (3)

when V is a set of all snippets in the Q&A forum. T is obtained
from a number of snippets which have a positive impact score
and a number of snippets which have a negative impact score.
Therefore it is a reflection of the positiveness or the negativeness
of snippets. Using this score, we can see the transversal impact
of snippets in Q&A Forum on Android markets.

Next, the impact ratio Ra on the data set caused by publishing
the snippet a is defined as follows.

Ra =
Na(ta)

Na
· N

N(ta)
(4)

If Ra = 1, it means that the snippet a has completely no im-
pact on the Android application market. If Ra < 1, it means that
the snippet a has a negative impact, that is, since its publication,
the expression of that snippet ceased to be used. If Ra > 1, it
means that the snippet a has a positive impact, that is, since its
publication, the expression of that snippet came to be used.

Here, if V(t) is the number of snippets published at time t, the
peak impact of snippets on the Android market after t, P(t) is
expressed as follows.

P(t) =

∑
a∈V(t) Ra

|V(t)| (5)

If Ra has a high absolute value, it means a snippet a has a large
impact on the Android market. P(t) reflects the peak impact of
each snippet in a Q&A Forum on Android markets.

6. Evaluation

In order to verify the effectiveness of the proposed methods, we
first evaluate the capability of inclusion detection in this section.
After that, we collect actual snippets and Android applications,
perform a chronological analysis on them, and analyze the im-
pact of the snippets reuse on the market. In addition, we extract
vulnerable snippets from information on the vulnerability of An-
droid applications caused by the source code, analyze the impact
of vulnerable snippets on the market, and compare it with the
overall impact of all the snippets.

6.1 Inclusion Detection Capability
To measure the inclusion detection capability, we compare the

extraction of FD from data sources that were used in the origi-
nal SeByte work. The datasets used for the experimentation in-
clude EIRC [13] and FreeCol [14]. FreeCol(Server) indicates the
software that has only server-side functions in FreeCol. Also,
FreeCol(Full) indicates the entire software of FreeCol. Evalua-
tion of SeByte was performed by actual bytecode comparison;
however, the proposed inclusion detection,which is an improve-
ment of the FD matching of SeByte, and cannot be directly com-
pared. Therefore, we tried to generate FD by using the source
code and Java application dataset, which SeByte used for byte-
code comparison, and investigated whether it is possible to gen-
erate a similar degree of FD.

Table 1 shows the result. ‘# of FD’ means the number of FD
in each method and ‘# of Class’ indicates the number of classes
obtained. The proposed method and the original SeByte show
asimilar trend when the proposed method generates a larger num-
ber of FDs than the original SeByte. From the result, it is seen
that the proposed inclusion detection has a capability equivalent
to that of the original FD of SeByte.

6.2 Collecting of Android Applications
As an Android application, 249,987 APK (Android Applica-

tion Package) files were randomly acquired from the Androzoo
data set [15].

When FD is extracted from all the classes included in an appli-
cation, it includes many FDs extracted from third party packages
added by the import statement in addition to the code created by
the developer him/herself. These are not suitable for analysis.
Therefore, we searched for packages that contain classes contain-
ing application startup activities from AndroidManifest.xml, and
extracted FDs from classes corresponding to those packages. As
a result, the number of Android applications that succeeded in
acquiring FD was 245,717 (98.3%).

6.3 Collecting of Snippets
Snippets were obtained from StackOverflow, which is a pop-

ular Q&A forum. Questions and answers were gathered using
Stack Exchange API, which can obtain StackOverflow informa-
tion. Then, questions that were tagged as ‘android’ and were
browsed by 1,000 or more users were selected, and the answers
from these questions were collected. Finally, snippets were ob-
tained from the gathered questions and answers.

c© 2019 Information Processing Society of Japan 607

Journal of Information Processing Vol.27 603–612 (Sep. 2019)

Table 1 Comparison between Inclusion Detection and FD Matching.

of FD # of Class
Proposed SeByte Proposed SeByte

EIRC 451 198 19 24
FreeCol 4766 708 48 46
FreeCol (full) 116138 1593 288 149

Table 2 Number of sample snippets targeted for experiment.

Category downloaded entries obtained snippets
Question 207,694 250,517
Answer 496,806 398,178

The number of questions, answers, and snippets is shown in
Table 2.

Since snippets may contain vulnerabilities, snippets can be di-
vided into four groups as follows:
• All the questions
• Questions that may contain vulnerabilities
• All the answers
• Answers that may contain vulnerabilities
In order to distinguish vulnerable snippets, vulnerabilities de-

rived from the source code were listed up. The snippets were
examined to find whether they contain these vulnerabilities and
were classified into the above four categories. The vulnerabilities
to be examined were obtained from AndroBugs [16]. The total
number of snippets classified as vulnerable were 5,675 (in Ques-
tions) and 5,278 (in Answers). Detailed vulnerability information
and number of obtained snippets are shown in Table 3.

Vulnerable snippets are extracted by performing string match-
ing with vulnerability strings obtained from AndroBugs.

Apart from AndroBugs, there are other sites that disclose vul-
nerability data; however, none of them include source code data
indicating vulnerabilities, so they are excluded from this survey.
• Ostorlab
• Quixxi
• NVISO
• SandDroid
• QARK
• Mobile App Scanner
Table 4 shows the number of snippets excluding snippets de-

termined as XML, among the snippets acquired from StackOver-
flow. Table 5 shows the number of snippets that succeeded in
compiling and obtaining FD.

The main factors responsible for the failure of snippets that
failed to compile are shown below.
• Non Java source code (fragment of the log)
• Undeclared variables and methods
• Incorrectly abbreviated form of Java syntax that can be un-

derstood by humans
• Comment statements that have not been commented out

6.4 Inclusion Detection Results
This subsection shows the results of inclusion detection in four

categories using the successfully compiled snippets shown in Ta-
ble 5 and 245,717 applications from Androzoo dataset.

In the all question category, 3,453 snippets out of 5,006 snip-
pets (69.0%) are included in applications. In the all answer cate-
gory, 11,065 snippets out of 15,214 snippets (72.7%) are included

Table 3 Candidate vulnerabilities included in snippets.

Type of Vuln. Question Answer
SSL CN2 1 3
SSL X509 60 111
WEBVIEW RCE 217 291
HACKER PREVENT SCREENSHOT CHECK 627 574
COMMAND 1,928 747
SSL CN3 0 2
SSL DEFAULT SCHEME NAME 94 65
WEBVIEW JS ENABLED 430 289
DB DEPRECATED USE1 1 0
MODE WORLD READABLE 0 0
OR MODE WORLD WRITEABLE

EXTERNAL STORAGE 2,222 3,030
SENSITIVE DEVICE ID 95 166

Table 4 Classified snippets.

All Snippets Vulnerable Snippets
Question 202,076 5,675

Answer 325,173 5,278

Table 5 Successfully compiled snippets.

All Snippets Vulnerable Snippets
question 5,006 (2.5%) 183 (3.2%)

answer 15,214 (4.7%) 632 (12.0%)

in applications. In the vulnerable question category, 168 snip-
pets out of 183 snippets (91.8%), are included in applications. In
the vulnerable answer category 563 snippets out of 632 snippets
(89.1%) are included in applications. Compared with the overall
trend, we found that vulnerable snippets have a higher inclusion
rate. Table 6 shows the result.

6.5 Chronological Analysis Results
In this subsection, we show the results of the chronological

analysis on the included snippets obtained in the previous sub-
section.
6.5.1 Transversal Impact

Figure 2 shows a plot of S a(ta) obtained from the time infor-
mation held by those snippets against the included detection re-
sult for all questions category, and indicates the impact score. If
S a(ta) > 0, it means that the snippet has a positive impact on the
Android market. Figures 3, 4, 5 show the results for the cate-
gories of all answer, vulnerable question,and vulnerable answer,
respectively. From the results, we can see that there are many
positive impacts in every category.

Next, the T value of each category is analyzed. The impact
score S a(ta) was obtained for all snippets a ∈ V , then T was
calculated therefrom for each category. Table 7 shows T and re-
lated values in each category. We can see that the snippets have
a positive impact on all categories. Thus, we can see vulnerable
snippets have a T value higher than all snippets. It means vulner-
able snippets have a transversal impact on the Android market in
contrast to other snippets.

In Table 7, questions that may contain vulnerabilities (Vuln Qs
and answers that may contain vulnerabilities (Vuln As) have less
“# of Negatives” compared to all the questions (All Qs) and all the
answers (All As). In All Qs, 759 snippets (21.95%) have negative
S a(ta) values among 3,453 snippets in total. On the other hand,
in Vuln Qs, only 10 of the 168 (5.95%) snippets have negative
S a(ta) values. This shows that vulnerable snippets tend to have

c© 2019 Information Processing Society of Japan 608

Journal of Information Processing Vol.27 603–612 (Sep. 2019)

Table 6 Comparison result between StackOverflow snippets and Androzoo
datasets.

Vuln. Qs Vuln. As All Qs All As
Examined Snippets 183 632 5,006 15,214
Included Snippets 168 563 3,453 11,065
Inclusion Rate 91.8% 89.1% 69.0% 72.4%

Fig. 2 Code reuse impact of snippets (Category: all question).

Fig. 3 Code reuse impact of snippets (Category: all answer).

Fig. 4 Code reuse impact of snippets (Category: vulnerable question).

fewer “# of Negatives”. The fact that S a(ta) is a negative value
indicates that app developers have widely used the snippet before
it was firstly posted to StackOverflow. It would be a snippet about
the more general or basic questions and answers.

On the other hand, vulnerable snippets are a group of vul-
nerabilities caused by the source code provided by AndroBugs
as shown in Table 3. Looking back at these vulnerabilities,
we can see that they are technically limited snippets. For ex-
ample, in EXTERNAL STORAGE, which is the most frequent,
the use of the getExternalStorageDirectorymethod of the an-

droid.os.Environment class is a trigger to detect as a vulnerability.

Fig. 5 Code reuse impact of snippets (Category: vulnerable answer).

Table 7 T values in each category.

All Qs All As Vuln Qs Vuln As
of Positives 2694 8754 158 527
of Negatives 759 2311 10 35
T value 0.560 0.582 0.881 0.875

Table 8 P(t) values.

Avg. Median
All Qs 1.050 1.016
All As 1.135 1.033
Vuln Qs 1.022 1.012
Vuln As 1.082 1.017

Fig. 6 Box plot of P(t) value in each category.

In the next most frequent COMMAND,the use of the exec method
of the java.lang.Runtime class is a trigger to detect as a vulnera-
bility. These technically limited snippets appear when there is a
need for a specific application. It is thought that the “# of Nega-
tives” decreased as the snippet was not widely used when it first
appeared on StackOverflow.
6.5.2 Peak Impact

Peak impact P(t) of each category is also analyzed. Ra was ob-
tained for all snippets and P(t) was calculated for each category.
Table 8 shows the average and median of P(t) in each category.
We can see that the snippets also have a positive impact on all
categories. The box plot of the result is shown in Fig. 6. From the
result, we can see that answers tend to be reused, and vulnerable
snippets tend to have a low peak P(t). Even though the P(t) value
of vulnerable snippets is relatively low, its value is still over 1.

The rate of snippets that have Ra > 1 is 78.09% in all Qs cate-
gory, 81.34% in all As category, 94.64% in vuln. Qs, and 94.28%
in vuln. As, respectively. We can see most of the vulnerable snip-
pets have a positive impact in contract to all the snippets.

c© 2019 Information Processing Society of Japan 609

Journal of Information Processing Vol.27 603–612 (Sep. 2019)

7. Limitation and Discussion

7.1 Increase Success Rate of Snippet Compilation
In the experiments conducted in this study, the rate of success-

fully compiled snippets was found to be low. As described in
Section 6-C, the main factors for the failure of snippets that failed
to compile are as follows.
• Non-Java source code (fragment of the log)
• Undeclared variables and methods
• Incorrectly abbreviated form of Java syntax that can be un-

derstood by humans
• Comment statements that have not been commented out
Here, we discuss the solutions to each of these four problems.

7.1.1 Non-Java Source Code
As already mentioned, snippets may contain data other than

Java code. In the proposed method, XML is detected and re-
moved by pretreatment, but data other than Java code and XML
data exist. Logs form a significant portion of such data. There are
various questions and answers about Android such as the mean-
ings of error logs and access logs. There are many types of no-
tation for logs; therefore, it is difficult to accurately detect and
delete logs. Though snippets are extracted from questions with
‘android’ tag, there may be snippets in other languages. Recently,
it has become possible to develop applications using languages
other than Java. It is considered to be present in the background.

From these facts, it is considered that there is a limit to the
method of considering various cases and eliminating them at the
time of extraction. Conversely, it is possible to consider a method
that can extract only Java code. However, if there are a few rows
of snippets, it will be difficult.
7.1.2 Undeclared Variables and Methods

In the snippets, there are cases where only important parts of
the problem are indicated, and the declaration of variables or in-
stances used therein is not described. Compile errors are ob-
tained when extracting the fingerprint elements, since the pro-
posed method does not correspond to that. As with the import
statement, it is possible to insert variables or instances that can be
expected. Although these insertions affect the results of the fin-
gerprint elements, post-treatment after obtaining the fingerprint
elements is required in this case.
7.1.3 Incorrectly Abbreviated Form of Java Syntax That

Can Be Understood by Humans
It is conceivable to comment out incorrect parts as Java syntax,

but to do this, it is necessary to have a technique for detecting
the abbreviated parts. However, proper detection is considered
difficult.
7.1.4 Comment Statements That Have Not Been Com-

mented Out
In order to comment out a comment part that has not been com-

mented out, it is necessary to have a method for detecting a com-
ment part, as with Section 7.1.3.

7.2 Adjustment of Type and Weight of Fingerprint Used for
Comparison

In this experiment, the fingerprint used for comparison was de-
termined based on the study by Keivanloo et al. Although Java

bytecode and Dalvik bytecode have high similarity, there is also
information peculiar to Dalvik bytecode such as Arg Name Fin-
gerprint. Therefore, it is expected that finding another available
feature as the fingerprint will increase the accuracy. In addition,
the weighting dimension can also be expected to increase accu-
racy.

7.3 A Snippet That Exists in a Q&A Forum Other than
StackOverflow

There are many Q&A forums for IT engineers other than
StackOverflow. By analyzing sample snippets existing in these
forums, more universal analysis results can be obtained. In ad-
dition, depending on the forum, there are cases where there are
many users from different regions and languages, and by con-
sidering these, it is possible to perform analysis according to the
country and region.

7.4 Further Investigation of Snippet Reuse Using Sa(t)
In this paper, the discussion about the transversal impact of

snippets is almost based on time of a snippet publication ta. How-
ever, we can discuss in depth about the infiltration of each snippet
using this S a(t).

It will take a certain amount of time for a snippet to be widely
used after being published. If we investigate S a(t) value for time
t > ta, we can discuss such delay or timing of a snippet expansion.

Naturally, we know from its definition that S a(ta) = S a(tAa, f).
By looking at the difference between ta and tAa, f , we can discuss
how long it is allowed to post a fix as an answer on StackOver-
flow before a vulnerable snippet is spread. We can also see the
pattern of the epidemic by looking at S a(t) during tAa, f < t < tAa,l .

7.5 Code Obfuscation
At present, many applications are often obfuscated as a coun-

termeasure against reverse engineering. The work of Wermke
et al. is a large-scale survey of the current state of code obfusca-
tion in Android [17]. Their survey shows that 24.9% of the main
package is obfuscated. The study reveals the current situation
where many apps are obfuscated.

If an app is obfuscated, our proposed inclusion detection may
not work correctly. We believe that the trend in the results ob-
tained in this paper does not change, as 75% apps on the Google
Play market are not currently obfuscated. However, a more
precise investigation is needed. The inclusion detection tech-
nique we proposed is a technology based on SeByte proposed by
Keivanloo et al. [9]. In SeByte, the influence of obfuscation on
the clone detection accuracy has not been discussed. We believe
that both our inclusion detection method and the SeByte clone
detection method should discuss the impact of the obfuscation in
the future.

7.6 Other FD Extraction and Inclusion Detection Methods
In the proposed method, in order to extract an FD from a snip-

pet, once the snippet is compiled and converted to bytecode, then
the FD is acquired. However, the acquisition of FD or the in-
clusion detection can be considered other approaches. Here we
introduce two other approaches and discuss their Pros and Cons.

c© 2019 Information Processing Society of Japan 610

Journal of Information Processing Vol.27 603–612 (Sep. 2019)

7.6.1 Direct FD Extration from Snippet
It is also conceivable to obtain the FD from the snippet directly

instead of compiling the snippet once and converting it to byte-
code, and then obtaining the FD. If a compiler is deterministic
about generating bytecode for the part involved in FD extraction,
it is possible to learn in advance the mapping of information be-
tween source code fragment and FD, and create a conversion tool
from source code to FD instead of a compilation. However, at
present, the discussion about whether there is such determinacy
in the compiler of the Android development environment is not
enough as far as the authors know. Therefore, this method was
not adopted in this paper.
7.6.2 Comparing Using Source Codes via Decompiling

A method of executing inclusion detection using source codes
is also conceivable. In this method, inclusion detection is
performed after decompiling the application and obtaining the
source code and compared the source code and snippets to de-
tect inclusion.

This method makes a difference in performance. The differ-
ence is due to the performance of the “FD extraction from byte-
code” and “decompile to get source code” tasks. While extracting
FD from bytecode is a simple task of extracting three parts, the
task of decompiling to get the source code is more complicated.
Therefore, it takes much time, and there are few performance ben-
efits. That point becomes particularly important when it comes to
large-scale analysis. Therefore, this method was not adopted in
this paper.

8. Conclusion

In this research, we proposed a method to investigate how the
code snippets available in Q&A forums such as StackOverflow
affect actual application developers, and compare actual snip-
pets and Android applications. We collect 527,249 snippets and
249,987 applications for experiments. In addition, the impacts of
actual snippets on Android applications are analyzed.

The proposed method is capable of chronological analysis,
which could not be achieved by the previous methods. As a result
of the chronological analysis, it is shown that the appearance rate
of applications having the same code as the snippet has increased
after the release of the snippet. Experiments on extracting vul-
nerable snippets from all snippets show that vulnerable snippets
often have a transversally greater reuse impact than the overall
snippet reuse trend.

References

[1] Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh, D. and
Shmatikov, V.: The Most Dangerous Code in the World: Validating
SSL Certificates in Non-browser Software, Proc. 2012 ACM Confer-
ence on Computer and Communications Security, CCS ’12, pp.38–49,
ACM (online), DOI: 10.1145/2382196.2382204 (2012).

[2] Egele, M., Brumley, D., Fratantonio, Y. and Kruegel, C.: An Em-
pirical Study of Cryptographic Misuse in Android Applications,
Proc. 2013 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’13, pp.73–84, ACM (online), DOI:
10.1145/2508859.2516693 (2013).

[3] Reaves, B., Scaife, N., Bates, A., Traynor, P. and Butler, K.R.:
Mo(bile) Money, Mo(bile) Problems: Analysis of Branchless Banking
Applications in the Developing World, 24th USENIX Security Sympo-
sium (USENIX Security 15), pp.17–32, USENIX Association (2015)
(online), available from 〈https://www.usenix.org/conference/

usenixsecurity15/technical-sessions/presentation/reaves〉.
[4] Acar, Y., Backes, M., Fahl, S., Kim, D., Mazurek, M.L. and Stransky,

C.: You Get Where You’re Looking for: The Impact of Information
Sources on Code Security, 2016 IEEE Symposium on Security and
Privacy (SP), pp.289–305 (online), DOI: 10.1109/SP.2016.25 (2016).

[5] Fischer, F., Bẗtinger, K., Xiao, H., Stransky, C., Acar, Y., Backes,
M. and Fahl, S.: Stack Overflow Considered Harmful? The Impact
of Copy Paste on Android Application Security, 2017 IEEE Sym-
posium on Security and Privacy (SP), pp.121–136 (online), DOI:
10.1109/SP.2017.31 (2017).

[6] Acar, Y., Stransky, C., Wermke, D., Mazurek, M.L. and Fahl, S.:
Security Developer Studies with GitHub Users: Exploring a Conve-
nience Sample, Thirteenth Symposium on Usable Privacy and Secu-
rity (SOUPS 2017), pp.81–95, USENIX Association (2017) (online),
available from 〈https://www.usenix.org/conference/soups2017/
technical-sessions/presentation/acar〉.

[7] Acar, Y., Backes, M., Fahl, S., Garfinkel, S., Kim, D., Mazurek, M.L.
and Stransky, C.: Comparing the Usability of Cryptographic APIs,
2017 IEEE Symposium on Security and Privacy (SP), pp.154–171 (on-
line), DOI: 10.1109/SP.2017.52 (2017).

[8] Nguyen, D.C., Wermke, D., Acar, Y., Backes, M., Weir, C. and Fahl,
S.: A Stitch in Time: Supporting Android Developers in WritingSe-
cure Code, Proc. 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’17, pp.1065–1077, ACM (online),
DOI: 10.1145/3133956.3133977 (2017).

[9] Keivanloo, I., Roy, C.K. and Rilling, J.: SeByte: A semantic clone
detection tool for intermediate languages, 2012 20th IEEE Interna-
tional Conference on Program Comprehension (ICPC), pp.247–249
(online), DOI: 10.1109/ICPC.2012.6240495 (2012).

[10] Roy, C.K. and Cordy, J.R.: A survey on software clone detection re-
search, Queen’s School of Computing TR, Vol.541, No.115, pp.64–68
(2007).

[11] Rattan, D., Bhatia, R. and Singh, M.: Software clone detection: A sys-
tematic review, Information and Software Technology, Vol.55, No.7,
pp.1165–1199 (2013).

[12] Developers, A.: Package Index, available from 〈https://developer.
android.com/reference/packages.html〉 (accessed 2017-08-27).

[13] Kohen, J.: Eteria IRC Client, available from 〈http://eirc.sourceforge.
net/〉.

[14] FreeCol - the Colonization of America, available from 〈http://www.
freecol.org/index.html〉.

[15] Allix, K., Bissyandé, T.F., Klein, J. and Traon, Y.L.: AndroZoo: Col-
lecting Millions of Android Apps for the Research Community, 2016
IEEE/ACM 13th Working Conference on Mining Software Repositories
(MSR), pp.468–471 (online), DOI: 10.1109/MSR.2016.056 (2016).

[16] Lin, Y.-C.: AndroBugs (Yu-Cheng Lin), available from 〈https://github.
com/AndroBugs〉 (accessed 2018-03-15).

[17] Wermke, D., Huaman, N., Acar, Y., Reaves, B., Traynor, P. and
Fahl, S.: A Large Scale Investigation of Obfuscation Use in Google
Play, Proc. 34th Annual Computer Security Applications Conference,
ACSAC ’18, pp.222–235, ACM (online), DOI: 10.1145/3274694.
3274726 (2018).

Editor’s Recommendation
The paper successfully unravels the relationship between vul-

nerable snippets on online developer forums and Android appli-
cations. It sheds light on the chronological characteristic of fre-
quently reused but vulnerable codes, and its evaluation technique
to compare source code snippets and Android application bina-
ries is practical and useful. The paper should give a new insight
to readers in this research field, and thus was selected as a recom-
mended paper.

(Chief examiner of SIGCSEC Masayuki Terada)

c© 2019 Information Processing Society of Japan 611

Journal of Information Processing Vol.27 603–612 (Sep. 2019)

Hironori Imai received his B.E degree
from Toho University in 2018. He is cur-
rently a master course student at Gradu-
ate School of Science, Toho University.
He received the Paper Award and the Pre-
sentation Award at the Multimedia, Dis-
tributed, Cooperative, and Mobile Sympo-
sium (DICOMO2018).

Akira Kanaoka received his Ph.D. de-
gree in engineering from University of
Tsukuba, Japan in 2004. He worked at
SECOM Co., Ltd. from 2004 to 2007, and
at University of Tsukuba from 2007 to
2013. He is currently an associate profes-
sor of Department of Information Science,
Faculty of Science, Toho University. His

research interests include usable security and privacy.

c© 2019 Information Processing Society of Japan 612

