
Journal of Information Processing Vol.27 650–657 (Sep. 2019)

[DOI: 10.2197/ipsjjip.27.650]

Regular Paper

Large-scale Certificate Management
on Multi-tenant Web Servers

RyosukeMatsumoto1,a) Kenji Rikitake2,3 Kentaro Kuribayashi2

Received: November 8, 2018, Accepted: June 11, 2019

Abstract: For large-scale certificate management of multi-tenant web servers, preloading numerous certificates for
managing numerous hosts under the single server process results in increasing the required memory usage because
of the respective page table entry manipulation, which might be a poor resource efficiency and a reduced capacity.
To resolve this issue, we propose a method for dynamic loading of certificates bound to the hostnames found during
the SSL/TLS handshake sequences without preloading, provided that the Server Name Indication (SNI) extension is
available. We implemented the function of choosing the respective certificates with the ngx mruby module, which
extends web server functions using mruby with a small memory footprint while maintaining the execution speed. The
proposed method was evaluated by a web hosting service employing the authors.

Keywords: web Server, TLS, operation technology, multi-tenant, large-scale, nginx, mruby

1. Introduction

Because RFC adoption of HTTP/2 protocol is required on
HTTPS [1] and because ongoing SSL/TLS support by Google [6]
is gaining popularity, supporting HTTPS has become an urgent
task of web hosting companies. Although the cost of operators
and service users is high for HTTPS, the price of server cer-
tificates and the cost of infrastructure for HTTPS execution are
also high [12]. However, free Domain-validated (DV) certificates
such as Let’s Encrypt [7] are beginning to be provided; support-
ing HTTPS becomes inexpensive.

In a web hosting service based on the multi-tenant architec-
ture [11], a single server process group must manage numerous
hosts [21] to provide service at a low price by reducing the hard-
ware cost and operation cost by accommodating hosts with high
integration. The term single-server process group means that a
server process is shared by numerous hosts, not with a process
activated for each host on the highly integrated multi-tenant ar-
chitecture. The number of server processes is independent of the
number of hosts; rather it depends on the web server implemen-
tation, which might initiate hundreds of server processes at the
startup.

To communicate with HTTPS, the existing web server soft-
ware must load the secret key paired with the server certificate
for each host at the server process startup [26]. However, the
highly integrated multi-tenant architecture does not take advan-
tage of reduced hardware costs and operation costs with the ex-

1 SAKURA Research Center, SAKURA Internet Inc., Fukuoka 810–0042,
Japan

2 Pepabo Research and Development Institute, GMO Pepabo, Inc.,
Shibuya, Tokyo 150–0031, Japan

3 Kenji Rikitake Professional Engineer’s Office, Toyonaka, Osaka 560–
0043, Japan

a) r-matsumoto@sakura.ad.jp

isting mechanism because, if hosts are accommodated in a high
degree of integration, starting the server process by reading nu-
merous server certificates and secret keys takes much time. Also,
the memory usage of the server process increases depending on
the number of hosts.

As described in this paper, we propose a large-scale certificate
management method that reduces the memory consumption of
the web server process effectively and efficiently by dynamically
acquiring a corresponding server certificate and secret key data
for each request in a highly integrated multi-tenant web server.

The proposed method does not preload a server certificate and
a secret key at the web server process startup, but rather dy-
namically loads the server certificate and the secret key from a
database for each request based on the requested hostname or IP
address/port during the SSL/TLS handshake.

We implemented the new feature of ngx mruby [20], which can
accommodate the loading phase of certificates. ngx mruby [20]
is a fast and memory-efficient web server extension mechanism
scripting with mruby [13] for nginx [14]. Server certificates and
secret keys are stored in Redis [23], which is a kind of KVS [8].
The certificate and the secret key corresponding to a hostname
are acquired using the mruby code.

The implementation of the proposed method is practical be-
cause ngx mruby can readily control nginx internals without
changing the nginx source code, which is widely used as a web
server to terminate HTTPS. The implementation of ngx mruby
ver. 1.16.0 was published as OSS *1 in February 2016.

The remainder of the paper is organized as described below.
First, we summarize the tasks for constantly using HTTPS in a
highly integrated multi-tenant web server as described in Sec-
tion 2. We describe the architecture and implementation of the

*1 https://github.com/matsumotory/ngx mruby/releases/tag/v1.16.0

c© 2019 Information Processing Society of Japan 650



Journal of Information Processing Vol.27 650–657 (Sep. 2019)

proposed method in Section 3. In Section 4, we quantitatively
validate the problems of the existing method and evaluate the ef-
ficiency of the proposed method. In Section 5, we evaluate the
proposed method in a production of hosting service of our em-
ployer for one month. Section 6 concludes the paper.

2. Related Works

A web hosting service [17] is a typical application service of a
highly integrated multi-tenant architecture. The web hosting ser-
vice shares server resources among multiple hosts and provides
an HTTP server function for each hostname. In the web host-
ing service, the function that is identified using a Fully Qualified
Domain Name (FQDN) and serves the corresponding content is
called a host. As described in this paper, we designate a multi-
tenant architecture that can accommodate tens of thousands of
hosts as a highly integrated multi-tenant architecture [18].

The highly integrated multi-tenant architecture adopts the vir-
tual host method [27], which processes multiple hosts by a sin-
gle server process group. Popular web server software such as
Apache httpd [24] and nginx can handle multiple hosts by a sin-
gle server process group using the virtual host method such as the
VirtualHost configuration of Apache httpd.

In the existing server certificate management of web servers,
the web server loads the certificate associated with each hostname
into memory at a web server process startup [26]. The web server
reads out the certificate corresponding to an IP address/port or a
hostname from memory at each SSL/TLS handshake and starts
the HTTPS session. This method can perform processes at a high
speed during the SSL/TLS handshake because the certificate is
loaded to the memory in advance.

A highly integrated multi-tenant architecture must make the
configuration and adopt the process model independently from
the number of hosts with the virtual host method because the ar-
chitecture manages numerous hosts. In operation in a production
environment, a single server process might accommodate more
than several tens of thousands of hosts.

The existing method [9], [22] must load numerous certificates
and secret keys into memory at the server process startup. In
the system configuration of a reverse proxy for the TLS termina-
tion, the system must first perform TLS communication on the
reverse proxy to the hostnames of all hosts accommodated in nu-
merous hosting servers. The reverse proxy must manage configu-
rations and certificates on hundreds of thousands of hostnames. In
that case, as the number of server certificates increases, the load-
ing time necessary for configurations and certificates data at the
server process startup greatly increases. In addition, the memory
usage of the server process increases greatly. These increasing
resources might lead to important difficulties.

The existing method must describe all configurations of the
certificate associated with each host. The number of lines of the
web server configuration files also increases greatly. Those con-
figuration files reduce the readability, which makes server man-
agement difficult.

There is an existing method of dynamically describing the set-
ting of a large number of virtual hosts [2], but it is not possible
to reduce the number of reading certificates. Also, there is an

existing method to reduce the number of certificates with a wild
card certificate [3], but it can not be applied to a large number of
individual domains.

For example, if using nginx as the web server and setting up
hundreds of thousands of virtual hosts and loading certificates
and secret keys associated with each host, then the number of
nginx configuration lines will be about 2 million lines. It takes
about 40 s to start the server process, such as reloading the server
process for a new configuration. We describe the details of this
startup time in Section 4.1.

The web server using these existing methods is inefficient be-
cause it reads all certificates of web sites that are not yet accessed
at startup.

3. Proposed Method

3.1 Large-scale Certificate Management
Our proposed method meets the following three requirements,

which are fundamentally important for the highly integrated
multi-tenant architecture: maximization of balance between com-
puter resource, performance efficiency, and efficiency of the sys-
tem operation cost while solving the problem described in Sec-
tion 2:
( 1 ) To support the Server Name Indication (SNI) extension to

accommodate hosts
( 2 ) To avoid loading all web server certificates for faster startup

of the server processes
( 3 ) To ensure that the memory usage of the web server process

is independent of the number of hosts, by dynamically load-
ing the associated server certificates during each SSL/TLS
handshake

SNI [4] in requirement ( 1 ) is an extended specification of
SSL/TLS. Serving multiple HTTPS servers by a small num-
ber of IP addresses is crucially important to provide service at a
low price under the cost constraint of the highly integrated multi-
tenant architecture. SNI allows the selective use of the server cer-
tificate in the hostname because SNI tells the unencrypted host-
name to the server during the SSL/TLS handshake. SNI is com-
monly used to accommodate numerous hosts virtually with a sin-
gle server process group and a single IP address in the highly
integrated multi-tenant architecture.

We propose a method by which the server certificate and secret
key of the request are dynamically loaded from data-store such as
a database, a file system, or API, based on the requested hostname
during the SSL/TLS handshake when an HTTPS request comes
to the web server, with SNI in requirement ( 1 ). The dynamic
certificate loading meets the requirement ( 3 ).

Using the proposed method, the startup time of the web server
process does not depend on the number of hosts and memory us-
age, and does not increase, which meets the requirement ( 2 ). The
dynamic certificate loading need not load numerous server certifi-
cates beforehand at the startup. Even if the number of certificates
increases, the proposed method does not cause the difficulty of
taking a long time to reload the server process when a configura-
tion change occurs because the startup speed of the server process
is not slowed by the dynamic certificate loading of each request.
In addition, adding more hosts by changing the configuration re-

c© 2019 Information Processing Society of Japan 651



Journal of Information Processing Vol.27 650–657 (Sep. 2019)

Fig. 1 File-based configuration example of dynamic server certificate
management.

quires no server process reloading because the proposed method
can dynamically analyze the certificate location from the host-
name.

By aggregating data in databases and caches that can commu-
nicate via TCP, Our proposed method ensures the availability and
performance of the service system by increasing the number of
web servers using a scale-out model as the number of HTTPS
requests increases. Our system can readily prepare an HTTPS
environment by linking the databases that store the user data such
as the hostname, certificates, and secret key data, under TLS op-
tions contracts with customers in a production environment.

3.2 Implementation
In our proposed method implementation, we used ngx mruby,

which can extend nginx scripting with mruby and process at high
speed with less memory usage. In addition, the OpenSSL [15]
ver. 1.0.2 or later has a function that calls back an extension func-
tion of the SSL/TLS handshake behavior such as custom load-
ing server certificates and secret keys during the SSL/TLS hand-
shake, SSL CTX set cert cb() [16]. By making this function
executable from ngx mruby, the callback function using mruby
during the SSL/TLS handshake on nginx [19] can be written us-
ing ngx mruby, which enables the server administrator to imple-
ment the dynamic certificate loading algorithm easily for various
systems.

Figure 1 presents an example of dynamically loading the
server certificate by determining the file path from the requested
hostname of each request. By passing the file path to the
certificate method and the certificate key method of the
instance of Nginx::SSL, the server certificate and the secret key
are dynamically loaded during the SSL/TLS handshake.

Figure 2 presents an implementation example of dynami-
cally loading server certificates and secret keys at the SSL/TLS
handshake using ngx mruby. The server certificates are stored
in Key-Value Store (KVS) such as Redis for the requested
hostname of each request. The certificate data and the
certificate key data methods pass data of a certificate and
a private key themselves: not a file.

Figure 3 depicts a design example in operation of produc-
tion. The administrator saves the server certificate and secret key
data in the database. When nginx receives an HTTPS request,
it loads the server certificate and secret key from the database
via ngx mruby scripts and establishes the SSL/TLS session. The

Fig. 2 KVS-based configuration example of dynamic server certificate
management.

Fig. 3 System example of dynamic server certificate management.

proposed method implementation temporarily stores cache data
using KVS such as Redis, which enables high-speed access to
the data to reduce the connection cost to the database for each
request.

In addition, applying a configuration of a new certificate of
other host requires no reloading server process. The proposed
method can dynamically analyze where the certificate is located
from the hostname, like a file path including a hostname or
database with a hostname as key. When adding a new certifi-
cate, if the server administrator registers certificate data in the
database, then the proposed method can apply HTTPS to the ex-
isting site without reloading the server process.

Even if the number of servers is increased for availability or
performance, our proposed method implementation can readily
share server certificate data via a TCP connection with a database
or cache server. The in-memory cache can also be used for mit-
igating performance degradation if the network latency from the
web server to the cache server becomes a performance problem.
The implementation of ngx mruby ver. 1.16.0 has already been
published as OSS as of February 2016 *2.

4. Evaluation and Consideration in the Pro-
duction Environment

To confirm the efficiency of the proposed method, we clarify
the problem of the time of startup (preloading) of the existing
method from the experiment in the existing problem described
in Section 2. Next, we compare the existing method (preload-

*2 https://github.com/matsumotory/ngx mruby/releases/tag/v1.16.0

c© 2019 Information Processing Society of Japan 652



Journal of Information Processing Vol.27 650–657 (Sep. 2019)

Table 1 Experimental environment.

Specification
CPU Intel Xeon E5-2620 v3 2.40 GHz 24 thread
Memory 32 GBytes
Server NEC Express5800/R120f-2E

Table 2 Result of startup time achieved using the existing method.

item value
real time 42.662 s
system CPU usage time 37.280 s
user CPU usage time 5.387 s
virtual memory size (VSZ) 3,207,592 Kbytes
physical memory size (RSS) 3,175,912 Kbytes

ing) with the proposed method (dynamic loading), which saves
the server certificate and secret key data in Redis and which ac-
quires data from the file and Redis for each SSL/TLS handshake.
Table 1 shows the experiment environment.

4.1 Measurement of Memory Usage and Startup Time of
Existing Methods

In the environment presented in Table 1, we validate the prob-
lem described in Section 2 using nginx ver. 1.11.13. We gener-
ated server certificates and secret keys of 4,096 bit key length for
100,000 hosts by the openssl command for each host configu-
ration of nginx and measured the memory usage and startup time
of nginx server processes.

The master process of nginx initially loads all the server cer-
tificate data and copies the worker process for request processing
using a fork() system call after the initial processing of the mas-
ter process is completed. In this experimental environment, the
number of worker processes is 24, which is the number of log-
ical cores of the CPU using the configuration setting parameter
worker processes auto.

We measured CPU metrics using the Linux time command un-
til all worker processes completed the initialization. We also de-
termined memory usage size of a certain worker process, selected
arbitrarily from whole worker processes using the Linux ps com-
mand: we adopted both fields on virtual memory (VSZ) and phys-
ical memory (RSS). We later discuss a whole memory usage size
comparison of the existing method and the proposed method in
Section 4.2.

Table 2 presents the result. Loading of server certificates de-
pends on the performance per core because a single master pro-
cess uses only one CPU at first. For an era in which CPU usage
efficiency increased by the number of cores, decreasing this pro-
cessing time is difficult. No notable point exists for the usage
time of the user CPU and system CPU.

The memory usage size of a worker process acquired from both
virtual memory (VSZ) and physical memory (RSS) fields from
the ps command is about 3 GBytes. Physical machines in re-
cent days often have large physical memory capacity: the size is
usually over tens or thousands of gigabytes. Therefore, it is no
problem if a process occupies even 3 GBytes or so of memory
space.

4.2 Performance Evaluation of the Proposed Method
We evaluated the performance of the proposed method. We

Fig. 4 Configuration of dynamic loading and preloading.

used nginx, which is linked ngx mruby module as web server
software for evaluation.

We set the nginx configuration of both the existing method
and the proposed method to different ports. Figure 4 shows
ngx mruby configuration. The configuration designed to listen
on port 58085 of the proposed method is a configuration to load
the server certificate and secret key with the requested hostname
as the key during the SSL/TLS handshake. The configuration to
listen on port 58086 of the existing method is a configuration of
preloading server certificates at the startup time of the web server
process. Both configurations fixed the cipher suites on the server
side to prevent the SSL/TLS session cache to maximize the im-
pact during the SSL/TLS handshake.

In the case of configuration to load multiple certificates, the
computational complexity of loading certificates required for the
existing method is O(1) because the method treats the correspon-
dence between a hostname and a certificate as a hash algorithm
in nginx. On the other hand, in the proposed method of reading
the certificate of each HTTPS request, the computational com-
plexity of loading certificates required for the proposed method
for each HTTPS request is O(1) because the method acquires the
certificate from the KVS using the requested hostname as the key.
From the above, we found that it is necessary and sufficient for the
evaluation in this experiment to set one certificate to be read in the
configuration of the existing method and the proposed method.

In general, the ab [25] command is widely used in HTTP

c© 2019 Information Processing Society of Japan 653



Journal of Information Processing Vol.27 650–657 (Sep. 2019)

Table 3 Experimental results obtained using the proposed method.

proposed method existing method
Nsc dynamic loading (req/s) preloading (req/s)
10 171,456.60 171,914.98
100 172,383.84 172,758.28
500 172,714.81 173,631.06
1,000 171,872.24 173,272.53

benchmark experiment in a single thread. In a single thread, when
benchmarking HTTPS, the benchmark command runs out of one
CPU core before using hardware by server software because the
CPU usage of the SSL/TLS handshake is large for the client.

To avoid this difficulty, we used HTTPS benchmark software
wrk [28], which supports multi-threading to compare the perfor-
mance. While changing the number of simultaneous connections,
we sent 5 million requests in all and measured the number of re-
quests per second.

We adopted TLSv1.2 of nginx configuration that enables
TLS ver. 1.2. We also adopted ECDHE-RSA-AES128-GCM-
SHA256 [10] among the cipher suites recommended by Mozilla.
The requested content uses index.html of 612 bytes enclosed with
nginx by default.

Table 3 presents the results. Nsc in the table is an acronym
representing the number of simultaneous connections. In the ex-
perimentally obtained results, we observed that almost no per-
formance difference exists between preloading and the dynamic
loading method.

We considered that the process necessary for dynamically load-
ing a certificate is almost negligible because encryption and
compound processing in the SSL/TLS handshake are extensive.
When the number of simultaneous connections is in the thou-
sands, both the existing method and the proposed method are
somewhat degraded in performance, but this result is within the
error range because the difference is also less than 1%.

In the preloading method, a difficulty exists in that the amount
of memory usage increases as the number of hosts increases in the
highly integrated multi-tenant architecture. However, the mem-
ory usage of the proposed method at startup is small because
the dynamic loading method requires no initialization process to
store all SSL/TLS configuration data, such as server certificates,
in memory at startup. Even when compared with nginx not using
TLS, there was no difference in memory usage and startup time.

In HTTPS communication, which requires more CPU process-
ing than HTTP, the proposed method makes it easy to scale out
the server merely by increasing the number of servers because
certificate management is performed via a cache server such as
Redis via TCP. That feature has great operational benefits.

4.3 Evaluation in Production
We applied the proposed method to a hosting service produc-

tion of our employer and evaluated it on the operation in the pro-
duction.

The hosting service adopted the existing method (preloading),
which loads the certificate at the time of startup using Apache
httpd before applying the proposed method.

As the evaluation method, we measured the transition of the
total number of certificates the number of requests processed

Fig. 5 System of dynamic server certificate management.

Table 4 Production server specifications.

Specifications
CPU Intel Xeon CPU E5-2430 v2 2.50 GHz 12 thread
Memory 32 GBytes
Server NEC Express5800/E120e-M

per second, the CPU usage rate, and memory usage for one
month during March 4 through April 4 of 2017 when the existing
preloading method was adopted. We compared the transition with
measured values of the same kind during one month from July 22
through August 22 of the same year after applying the proposed
method (dynamic loading).

We developed a production environment shown in Fig. 5 based
on Fig. 3. In addition, the server hardware adopted for the
preloading method and the dynamic loading method have the
same specifications.

In the experiment of the production environment, Apache httpd
is reloaded in the conventional environment when new hosts are
added, or operational configuration changes occur. In the con-
ventional environment, about 400 sites of the service users’ sites
were compatible with HTTPS in one month. The number of cer-
tificates also increased by 400. On the other hand, in the new
production environment after the replacement using nginx with
the proposed method, the web server did not reload for the addi-
tion of hosts because the addition is processed dynamically. The
web server reloads periodically to release the memory every day.
Also, in the new production environment, the number of certifi-
cate increases in one month was about 10,000.

In this section, we show reference values about how much re-
sources are used in production for companies and engineers con-
sidering using the proposed method, not superiority/inferiority of
each method.

Table 4 presents the server specifications. Figure 6 depicts the
transition of the number of certificates in a month. Figure 6 shows
the transition of the number of web sites supporting HTTPS, that
is, the total number of SSL/TLS certificates in the hosting service
production environment. Figure 7 portrays the transition of the
number of requests processed per second. Figure 8 shows the
transition of CPU utilization of the server. Figure 9 shows the

c© 2019 Information Processing Society of Japan 654



Journal of Information Processing Vol.27 650–657 (Sep. 2019)

Fig. 6 The transition of the number of web sites/certificates supporting
HTTPS in a month.

Fig. 7 HTTPS Requests per second in a month.

Fig. 8 CPU usage in a month.

Fig. 9 Memory usage in a month.

transition of the server memory usage.
Figure 6 shows that the number of certificates increased by

about 400 during one month using the preloading method with
the existing method. In that case, as described in Section 4.1,
Fig. 9 shows that the usage has increased by about 1 GByte. The
dynamic loading method of the proposed method of Fig. 6 shows
that the number of certificates has increased by more than 10,000
in one month. The increase in the number of certificates resulted
from a newly provided free HTTPS certificate service of our em-
ployer. The number of certificates of servers processed using the
dynamic loading method is 10–15 times that of the preloading
method.

The number of requests per second is more than six times, as
shown in Fig. 7. In system replacement in the production environ-
ment, we changed from Apache httpd using the existing method
to nginx using the proposed method using the same hardware.
From the observation result, as shown in Fig. 7, we consider that
the average of the number of requests per second of the existing
method is lower than the proposed method because reloading of
the web server frequently occurs when settings change or due to a
certificate addition. However, as shown by Figs. 8 and 9, the tran-
sition of CPU usage and memory usage is less than in the server
which was processing using the existing preloading method. This
result only shows the indication of the resource usage when us-
ing Apache httpd with the existing method and when using nginx
with the proposed method in production because the difference in
the CPU usage heavily depends on the web server implementa-
tion.

Regarding the difficulty of increasing the memory usage de-
pending on the number of certificates in the preloading method,
as shown by Fig. 9, the proposed method does not markedly in-
crease the memory usage. The memory usage can be reduced
greatly using the proposed method because it is not necessary
to read a certificate of a domain without access by loading only
the certificate corresponding to the domain HTTP requested from
clients.

The memory usage of the existing method using Apache httpd
is increased by about 1 Gbytes against the increase of 400 pairs
of server certificates and secret keys. In Section 4.1, the mem-
ory usage of the existing method using nginx is about 3 Gbytes
for 100,000 pairs of server certificates and secret keys. The result
of Section 4.1 is the memory usage immediately after loading
a certificate of 100,000 domains at startup and activating nginx.
Therefore, nginx itself is not handling an HTTPS request at all.
On the other hand, Apache httpd has already processed many
HTTPS requests with the existing method in production. In addi-
tion to the certificate and secret key data, Apache httpd allocates
memory for a TLS session cache required for processing requests,
Apache httpd configuration and processing data of each HTTPS
request, and other modules data in production. In order to apply
such a configuration change quickly, reload/graceful-restart was
executed every 15 minutes when there is a change. Therefore, the
memory usage per pair of server certificates and secret keys in
Section 4.3 is more than 80 times that in Section 4.1.

It is possible to reload with the graceful restart command by
nginx, the server process online, without failing the request be-

c© 2019 Information Processing Society of Japan 655



Journal of Information Processing Vol.27 650–657 (Sep. 2019)

cause the time required for reloading the configuration of the web
server process is greatly shortened. By decreasing this time, the
proposed method can release the memory usage freely. The mem-
ory usage as a whole can be reduced.

In a highly integrated multi-tenant web server, the reload/
graceful restart function does not operate properly when the num-
ber of certificates becomes enormous. Depending on the web
server implementation, the graceful restart function to reload the
configuration without missing the request normally completes it-
self in seconds. However, by the existing method, when the num-
ber of certificates to be loaded at the time of activation increases,
it takes several tens of seconds of time to reload, or even sev-
eral minutes. Even if graceful restarting, the service is stopped
because of the request timeout.

4.4 Discussion of the Evaluation Result
Figures 6 and 9 show that the number of certificates increases

by about 400 in one month using the preloading method and
that the memory increases by about 1 GByte. The breakdown
of the memory increases the amount per certificate, the configu-
ration of the host, the data of the certificate and the secret key,
and the memory amount used when the web server processes
HTTPS requests. In other words, when trying to process 20,000
server certificates using the preloading method, it is calculated
that 50 GBytes of additional memory are required. The proposed
method can process 20,000 certificates with about 3 GBytes, so
that the resource usage can be improved greatly.

When using the server equipped with 32 GBytes of mem-
ory in Table 4, if the number of certificates reaches 200,000 or
higher in the future, then the existing method would require over
500 GBytes of memory from the viewpoint of the memory usage
described above. In other words, in the existing method, more
than 15 servers with 32 Gbytes of memory installed are required.

However, using the proposed method, Fig. 9 shows that the
memory usage depends only slightly on the number of certifi-
cates. From the viewpoint of memory usage, this result shows
that even if the number of certificates reaches 200,000, even one
server can process it. Using the proposed method, under circum-
stances in which future HTTPS communication becomes com-
monplace, the number of servers can be greatly reduced.

With the existing method, the time for reloading the server
process increases as the number of certificates increases. Con-
sequently, the difficulty arose that the service stoppage time at-
tributable to reloading becomes long when loading a new config-
uration or registering a new certificate.

However, in the proposed method, the proposed method can
reload the process in a short time and can shorten the service
downtime because the certificate is not loaded at the server pro-
cess startup.

Therefore, the service stoppage time can be shortened overall
using the proposed method. It becomes possible to adopt a sys-
tem configuration that is easy to operate.

5. Conclusion

Because RFC adoption of HTTP/2 protocol is required on
HTTPS, the existing sites must support HTTPS. The existing

method takes time to start up because a highly integrated multi-
tenant web server must load numerous server certificates at a
server process startup.

The proposed method dynamically loads the server certificate
and secret key corresponding to the requested hostname using
SNI during the SSL/TLS handshake. It then communicates via
HTTPS. Using the proposed method, the server can commu-
nicate via HTTPS without loading numerous server certificates
at startup. Moreover, the cost of dynamically loading a certifi-
cate is low compared to the cost of CPU usage time from the
whole SSL/TLS handshake. The experimentally obtained results
demonstrate that the performance does not lead to difficulties in
practical use.

As a result of introducing the proposed method to the pro-
duction environment of a hosting service, resource usage can be
greatly reduced compared with that necessary for the existing
method. Also, the proposed method is sufficiently effective to
support the operation of the production environment.

Furthermore, even if the performance becomes insufficient be-
cause of the processing of HTTPS, the proposed method can
readily scale up servers using the scale-out model through a cen-
tralized management of the server certificate data with a reverse
proxy put in front of the HTTPS servers.

We conclude that the proposed method is a promising practi-
cal system design for supporting HTTPS of a highly integrated
multi-tenant architecture.

References

[1] Belshe, M., Thomson, M. and Peon, R.: Hypertext Transfer Protocol
Version 2 (HTTP/2), RFC 7540 (2015).

[2] Bowen, R. and Coar K.: Apache Cookbook. O’Reilly and Associates
(2003).

[3] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R. and
Polk, W.: Internet X.509 Public Key Infrastructure Certificate and Cer-
tificate Revocation List (CRL) Profile, RFC 5280 (2008).

[4] Eastlake, D.: Transport Layer Security (TLS) Extensions: Extension
Definitions, RFC 6066 (2011).

[5] Ferdman, M., Adileh, A., Kocberber, O., Volos, S., Alisafaee, M.,
Jevdjic, D. and Falsafi, B.: Clearing the clouds: A study of emerging
scale-out workloads on modern hardware, ACM SIGPLAN Notices,
Vol.47, No.4, pp.37–48 (2012).

[6] Grigorik, I. and Far, P.: Google I/O 2014 – HTTPS Everywhere, avail-
able from 〈https://www.youtube.com/watch?v=cBhZ6S0PFCY〉.

[7] Internet Security Research Group (ISRG): Let’s Encrypt – Free
SSL/TLS Certificates, available from 〈https://letsencrypt.org/〉.

[8] Han, J., Haihong, E., Le, G. and Du, J.: Survey on NoSQL database,
2011 6th International Conference on Pervasive Computing and Ap-
plications (ICPCA), pp.363–366 (2011).

[9] Let’s Encrypt Community Support: Apache Module mod vhost alias
& LE, available from 〈https://community.letsencrypt.org/t/apache-
module-mod-vhost-alias-le/9476〉.

[10] Mozilla Project: Mozilla wiki Security/Server Side TLS, available
from 〈https://wiki.mozilla.org/Security/Server Side TLS〉.

[11] Mietzner, R., Metzger, A., Leymann, F. and Pohl, K.: Variability
Modeling to Support Customization and Deployment of Multi-tenant-
aware Software as a Service Applications, 2009 ICSE Workshop on
Principles of Engineering Service Oriented Systems, pp.18–25 (2009).

[12] Naylor, D., Finamore, A., Leontiadis, I., Grunenberger, Y., Mellia,
M., Munafò, M. and Steenkiste, P.: The cost of the S in HTTPS, 10th
ACM International on Conference on Emerging Networking Experi-
ments and Technologies (CoNEXT ’14), pp.133–140, ACM (2014).

[13] NPO mruby forum, available from 〈http://forum.mruby.org/〉.
[14] Nginx: Nginx, available from 〈http://nginx.org/ja/〉.
[15] OpenSSL Software Foundation: OpenSSL, available from

〈https://www.openssl.org/〉.
[16] OpenSSL Software Foundation: SSL CTX set client cert cb, SSL

CTX get client cert cb - handle client certificate callback function,
available from 〈https://www.openssl.org/docs/man1.0.2/ssl/SSL

c© 2019 Information Processing Society of Japan 656



Journal of Information Processing Vol.27 650–657 (Sep. 2019)

CTX set client cert cb.html〉.
[17] Prodan, R. and Ostermann, S.: A Survey and Taxonomy of Infrastruc-

ture as a Service and Web Hosting Cloud Providers, 10th IEEE/ACM
International Conference on Grid Computing, pp.17–25 (2009).

[18] Matsumoto, R.: Studies on Highly Integrated Multi-Tenant Archi-
tecture for Web Servers, available from 〈https://dx.doi.org/10.14989/
doctor.k20590〉, Kyoto University, Ph.D. Thesis (2017).

[19] Matsumoto, R.: ngx mruby: Support ssl handshake handler and
dynamic certificate change, available from 〈https://github.com/
matsumotory/ngx mruby/pull/145〉.

[20] Matsumoto, R. and Okabe, Y.: mod mruby: A Fast and Memory-
Efficient Web Server Extension Mechanism Using Scripting Lan-
guage, IPSJ Journal, Vol.55, No.11, pp.2451–2460 (2014).

[21] Matsumoto, R., Kawahara, M. and Matsuoka, T.: Improvement of Se-
curity and Operation Technology for a Highly Scalable and Large-
scale Shared Web Virtual Hosting System, IPSJ Journal, Vol.54, No.3,
pp.1077–1086 (2013).

[22] Reese, W.: Nginx: The high-performance web server and reverse
proxy, Linux J., No.9, pp.1–4 (2008).

[23] Sanfilippo, S. and Noordhuis, P.: Redis, available from
〈https://redis.io/〉.

[24] The Apache Software Foundation: Apache HTTP Server, available
from 〈http://httpd.apache.org/〉.

[25] The Apache Software Foundation: ab – Apache HTTP server
benchmarking tool, available from 〈https://httpd.apache.org/docs/2.4/
programs/ab.html〉.

[26] The Apache Software Foundation: Apache HTTP Server Version
2.4 Apache Module mod ssl, available from 〈http://httpd.apache.org/
docs/current/mod/mod ssl.html〉.

[27] The Apache Software Foundation: Apache Virtual Host documenta-
tion, available from 〈http://httpd.apache.org/docs/2.2/en/vhosts/〉.

[28] Glozer, W.: wrk – A HTTP benchmarking tool, available from
〈https://github.com/wg/wrk〉.

Ryosuke Matsumoto received his Ph.D.
degree in informatics from Kyoto Univer-
sity, Kyoto, Japan, in 2017. From 2015
to 2018, he worked for Pepabo Research
and Development Institute, GMO Pepabo,
Inc., as a chief engineer and a chief re-
searcher. From 2018, he is currently a
senior researcher at SAKURA Research

Center, SAKURA Internet Inc. His research interests include OS,
middleware, Internet operation technology, and security. He is a
member of IEEE, ACM, and IPSJ.

Kenji Rikitake is the Founder of Kenji
Rikitake Professional Engineer’s Office.
He is a Gijyutsushi (Japan’s government-
licensed professional engineer) of Infor-
mation Engineering since 2001, and a
Registered Information Security Special-
ist of Japan since 2018. He received
B.Eng. and M.Eng. degrees from the Uni-

versity of Tokyo in 1988 and 1990, and received a Ph.D. in Infor-
mation Science from Osaka University in 2005. He was a Profes-
sor of Academic Center for Computing and Media Studies and
the Institute for Information Management and Communication
(ACCMS/IIMC) of Kyoto University, from 2010 to 2013. His
research interests include distributed systems, Erlang/OTP, Inter-
net security, and radio engineering. He is ACM Senior Member,
IEICE Senior Member, and a member of IPSJ and IPEJ.

Kentaro Kuribayashi is a director of
GMO Pepabo, Inc., and is in charge of
technology and engineering as CTO. He
is a Registered Information Security Spe-
cialist (RISS) since 2018. He received
a Bachelor’s Degree in Law from Tokyo
Metropolitan University, Japan in 1999.
From 2008, he started his actual career as

a software engineer. In 2015, he launched Pepabo Research and
Development Institute, GMO Pepabo, Inc. and has been the head
of the institute. He is interested in wide range of emerging tech-
nology, especially, information security, blockchain-based archi-
tecture, speech I/O, and so on. He is a member of IPSJ and JSAI.

c© 2019 Information Processing Society of Japan 657


