
Journal of Information Processing Vol.28 136–149 (Feb. 2020)

[DOI: 10.2197/ipsjjip.28.136]

Regular Paper

Tool Supported Detection of Omissions by Comparing
Words between Requirements and Design Document

TakehiroWakabayashi1 ShujiMorisaki1 Norimitsu Kasai2 Noritoshi Atsumi3

Shuichiro Yamamoto1

Received: May 28, 2019, Accepted: November 7, 2019

Abstract: This article proposes a tool supported approach to detect omitted requirements that are not implemented
in a corresponding architectural design document using difference sets of words or word senses between a software
requirements specification document and a software architectural design document. First, the proposed approach ex-
tracts sets of single-words, multi-words, and word senses that appear in a requirements specification document but
do not appear in the corresponding design document using a natural language processing tool. Then, an architectural
design document inspector validates whether each of the specified document with the single-words, multi-words, or
word senses are implemented in the corresponding architectural design document using the sets as guides. Evalua-
tion 1 investigated whether omitted requirements can be detected in design documents using the proposed approach.
Evaluation 2 investigated the numbers of words that inspectors need to check for the proposed approach. The result
of Evaluation 1 shows that omitted requirements are detected in all three pairs for real requirements specification doc-
uments and design documents. The result of Evaluation 2 shows that the numbers of words in the difference sets to
those in the requirements specification documents vary from 18 to 83 % for the nine pairs of requirements specification
documents and design documents.

Keywords: quality assurance, activity support (incl. communication support), verification/testing methods and envi-
ronments, natural language analysis

1. Introduction

In embedded software development, a sequential software de-
velopment process such as the waterfall model is widely used due
to the many interfaces and external dependencies [1]. In sequen-
tial software development processes, software inspectors ensure
that the descriptions in the software architectural design docu-
ments satisfy the requirements in the software requirements spec-
ification document. Inspectors validate that each requirement in
the software requirements specification document is implemented
and is specified in the design elements. Those inspections re-
quire a large amount of effort because they are conducted manu-
ally [2], [3].

Porter et.al classified the detected defects in inspection into
omission, commission, and ambiguous types [4]. Investigating
four software developments by using the GQM [5] framework,
Mashiko and Basili demonstrated that an omission-type defect re-
quires a larger effort to correct than a commission-type defect [6].
This is because, when correcting an omission type defect, a large
amount of effort is required to add design elements without losing
consistency with the existing design elements.

To increase the effectiveness and efficiency of inspections, tool

1 Nagoya University, Nagoya, Aichi 464–8601, Japan
2 Communication Systems Center, Information Security Management and

Investigation Department, Security Section, Mitsubishi Electric Co.,
Ltd., Amagasaki, Hyogo 661–8661, Japan

3 Academic Center for Computing and Media Studies, Kyoto University,
Kyoto 606–8501, Japan

supported approaches were proposed [7], [8], [9]. The approaches
support code reviews and inspections by detecting candidates of
source code defects and require pre-defined rules, templates, or
testing code. Defining the specific rules, templates, and testing
code to detect omitted requirements is more difficult than those
to detect other types of defects such as inconsistency and incor-
rect defects because it may require the awareness of the potential
omissions.

Toward a tool supported approach for detecting omitted re-
quirements in architectural design documents, the authors inves-
tigated and identified words that met the following condition (1)
and word senses that met the following condition (2) in five pairs
of requirements specification documents and architectural design
documents [10]:
(1) words that appear in the requirements specification docu-

ment and do not appear in the corresponding architectural
design document; and

(2) word sense of a homonymous word that appears in the re-
quirements specification document and does not appear in
the corresponding architectural design document.

However, the investigation in the article [10] is insufficient for
real-world inspections. First, the architectural design documents
in the investigation in the article were not intermediate versions
that contained defects detected in inspections and testing but pub-
licly available final versions that contained no defects detected in
inspections and testing. Second, the number of words that the
inspector needed to check was not investigated. Third, the ar-

c© 2020 Information Processing Society of Japan 136

Journal of Information Processing Vol.28 136–149 (Feb. 2020)

ticle [10] does not consider multi-words, which help inspectors
find and detect omissions more easily. For example, a multi-word
“administration screen“ helps inspectors identify the omitted de-
scription more than single-words “administration” and “screen”.

This article empirically investigates whether such words can
help an inspector detect omissions in an architectural design doc-
ument and the number of words that an inspector needs to check.
More specifically, the research questions are formulated as fol-
lows:
RQ.1 Can the inspector identify omitted requirements in an ar-

chitectural design document by checking the difference sets
between words in the requirements specification document
and words in the corresponding architectural design docu-
ment?

RQ.2 How many words in the difference set does the inspector
need to check?

The article is organized as follows. In Section 2, we propose an
approach to detect omissions in an architectural design document
by extracting difference sets of words and word senses. Section 3
describes the evaluation settings to investigate whether inspectors
can detect omissions using the proposed approach and the num-
bers of words in the difference sets. The results and discussion are
presented in Sections 4 and 5, respectively. Section 6 introduces
related work. Section 7 concludes the study.

2. Proposed Approach

2.1 Prerequisite
The proposed approach helps inspectors detect requirements

that are not implemented in the corresponding architectural de-
sign document by showing the difference set of words between
the requirements specification document and the architectural de-
sign document. The proposed approach assumes that the docu-
ments are written in natural language. The difference set is ob-
tained by natural language processing to reduce the additional
effort for the proposed approach. The proposed approach obtains
three types of difference sets: difference sets of single-words,
multi-words, and word senses.

As shown in Fig. 1, the proposed approach can be used in a
self-check phase prior to the inspection, in the inspection phase,
and in the final checkup phase after the inspection. In the self-
check phase, authors of the architectural design document check
for omissions in the parts they are responsible for prior to the in-
spection. In the inspection phase, the inspectors check for omis-
sions using the proposed approach as one of their guides. In the
final checkup phase, the inspectors of the independent inspectors
check for omissions using the proposed approach after the inspec-
tion.

The proposed approach assumes that the authors, inspectors,
and independent inspectors have knowledge of the target software
and understand the structure of the documents so that they can lo-
cate and check potential omissions in the software architectural
design document. If the inspector has a little knowledge of the
documents, s/he will try to find by keyword search for the docu-
ment.

The set of differences from the requirements D(R, A) between
the requirements specification document and the corresponding

Fig. 1 Timings when the proposed approach can be used.

architectural design document is defined as:

D(R, A) = {r | r ∈ S (R), r � I(A)}

where r is the requirement, S (R) is the set of requirements spec-
ified in the requirements specification document R, and I(A) is
the set of requirements implemented in the architectural design
document A. The difference sets of words between the require-
ments specification document R and the corresponding architec-
tural design document A are the difference sets of single-words
Δs, multi-words Δm, and word senses Δh defined as follows.
Δs(R, A) = {ws|ws ∈ Ws(R) ∧ ws � Ws(A)}, where ws is a

single-word, Ws(R) is the set of single-words that appear in the
requirements specification document R, and Ws(A) is the set of
single-words that appear in the architectural design document A.

The following is a small example of R, A, and Δs(R, A). The
omitted requirement is the transmission priority. Words “same”,
“time, “defined”, and “priority” help inspectors find omitted re-
quirement in the design document.� �

R: When a transmission request from port α or β arrives,
send data to appropriate network interfaces. If requests from
α and β arrive at the same time, the program first sends α and
then β as defined in the transmission priority.
A: The monitoring program monitors I/O port α and β. If
the program receives a transmission request from port α, the
program sends the data to network interface X. If the pro-
gram receives a transmission request from port β, the pro-
gram sends the data to network interface Y.
Δs(R, A) = {When, arrive, appropriate, at, same, time, first,
then, as, defined, priority}
D(R, A) = {If requests from α and β arrive at the same time,
the program first sends α and then β as defined in the trans-
mission priority.}

� �
Δm(R, A) = {wm|wm ∈ Wm(R) ∧ wm � Wm(A)}, where wm is a

multi-word, Wm(R) is the set of multi-words that appear in the
requirements specification document R, and Wm(A) is the set of
multi-words that appear in the architectural design document A.
A multi-word consists of x single-words occurring within a max-
imum window size of y (with y ≥ x) [11]. Multi-words can be
more specific guides than single-words. For example, a multi-
word “admin screen” is more specific than single-words “admin”
and “screen”.
Δh(R, A) = {(wh,m)|wh ∈ Ws(R) ∧ wh ∈ Ws(A),m ∈

M(R, wh),M(R, wh) ∧ M(A, wh) � ∅, |M(R, wh)| ≥ 2}, where
(wh,m) represents the word sense of a single-word wh, M(R, wh) is
the set of senses of word wh that appears in the requirements spec-
ification document R, and M(A, wh) is the set of senses of word wh

that appears in the architectural design document A. For exam-

c© 2020 Information Processing Society of Japan 137

Journal of Information Processing Vol.28 136–149 (Feb. 2020)

Table 1 Symbols list.

Symbol Meaning

R requirement specification document
A architectural design document
A′ A which was the versions prior to the testing phase and was revised to correct the defects detected in the testing phase
D(R, A) set of requirements in R, which not implemented in A
Δs(R, A) difference sets of single-words between R and A
Δm(R, A) difference sets of multi-words between R and A
Δh(R, A) difference sets of word senses between R and A
Ws(R) sets of single-words in R
Wm(R) sets of multi-words in R
Wh(R) sets of word senses in R
CF (Δs(R, A)) single-words that are identified by the inspector as obviously irrelevant to omission in Δs(R, A)
CF (Δm(R, A)) multi-words that are identified by the inspector as obviously irrelevant to omission in Δm(R, A)
CF (Δh(R, A)) word senses that are identified by the inspector as obviously irrelevant to omission in Δh(R, A)
Δ′s(R, A) Δs(R, A) - CF (Δs(R, A))
Δ′m(R, A) Δm(R, A) - CF (Δm(R, A))
Δ′h(R, A) Δh(R, A) - CF (Δh(R, A))
Ratios(R, A) ratio of Δs(R, A) to the number of Ws(R)
Ratiom(R, A) ratio of Δm(R, A) to the number of Wm(R)

Fig. 2 Δs(R, A), Δm(R, A),and Δh(R, A).

Fig. 3 Example of a requirement specification document demonstrating
single-word, multi-word, and word sense.

ple, the word “process” in requirements may have the meanings
“program execution unit” and “an activity in software develop-
ment”. In the case that both of the meanings are included in the
requirements, word senses can help detect omissions of either of
the meanings.

Figure 2 shows a Venn diagram of Δs, Δm, and Δh. Fig-
ure 3 shows an example of a document including a single-word,
a multi-word, and a word sense.

Table 1 shows the symbols used in this paper.

2.2 Procedure
2.2.1 Step 1 Checking Omissions with Single-words

Step 1.1: This step extracts the sets of single-words Ws(R) and
Ws(A) from the requirements specification document R and the
corresponding architectural design document A using a morpho-
logical analyzer. The morphological analyzer automatically ex-
tracts words and filters stop words. Stop words such as a, the, and
that have grammatical functions but do not carry any specific in-
formation [12]. After the filter, this step obtains the sets of words
Ws(R) and Ws(A).

Step 1.2: This step obtains the difference set of the single-
words Δs(R, A) from Ws(R) and Ws(A). Then, it obtains the set of
possible omitted single-words Δ′s(R, A) by excluding obviously ir-
relevant words CF(Δs(R, A)) from the difference set Δs(R, A). The
inspector manually excludes the subset CF(Δs(R, A)) from the set
of words Δs(R, A). The subset CF(Δs(R, A)) consists of words that
are identified by the inspector as obviously irrelevant to omis-
sions, such as the names of the development support tools and
the hardware model number, without checking the architectural
design document A. The set of possible omitted single-words
Δ′s(R, A) is defined as: Δ′s(R, A) = {Δs(R, A) ∧ CF(Δs(R, A))}. Fi-
nally, the inspector validates the architectural design document A

with each single-word in the set of possible omitted single-words
Δ′s(R, A). Although the proposed approach does not assume a
specific check procedure, the inspector can use visual checks as
in software inspections and keyword search by selecting similar
keywords to each of the single-words such as selecting “account”
and “user ID” as search keywords for the single-word “identifier”.
2.2.2 Step 2 Checking Omissions with Multi-words

Step 2.1: This step obtains the sets of multi-words Wm(R) and
Wm(A) from the sets Ws(R) and Ws(A) obtained in Step 1.1. Algo-
rithm 1 shows the procedure to obtain the multi-words. In Fig. 4,
Algorithm 1 defines the multi-word’s maximum length mwl = 2,
and the multi-word’s maximum span mws = 1 where mwl is the
maximum number of combination of single-words and mws is the
combination range of the single-words. Algorithm 1 is based on
the algorithm proposed in the article [11].

Step 2.2: This step obtains the difference set of the multi-words
Δm(R, A) from Wm(R) and Wm(A). Then, it obtains the set of pos-

c© 2020 Information Processing Society of Japan 138

Journal of Information Processing Vol.28 136–149 (Feb. 2020)

Fig. 4 Procedure for extracting multi-words.

Algorithm 1 Generating multi-word from single-words *1.
Input:

ts, sequence of tokens in the document collection

mwl, maximum length of multi-word

mws, maximum span of words in multi-word

Output:

f s, a set of k features

Initialize:

hs := empty hashtable

for all tok in ts do

Generate a list of multi-word tokens ending in tok.

This list includes the single-word tok and uses the inputs mws and mwl.

Call this list mlist.

for all mtok in mlist do

if hs contains mtok in hs then

i := value of mtok in hs

increment i by 1

else

i := 1

end if

store i as value of mtok in hs

end for

end for

sk :=keys in hs sorted by decreasing value

output f s

sible omitted multi-words Δ′m(R, A) by excluding obviously irrel-
evant multi-words from the difference set Δm(R, A). The inspec-
tor manually excludes the subset CF(Δm(R, A)) from the set of
multi-words Δm(R, A), and obtains Δ′m(R, A). Finally, the inspec-
tor validates A with each multi-word in the set of possible omitted
multi-words Δ′m(R, A) same as Step 1.2.
2.2.3 Step 3 Checking Omissions with Word Senses

Step 3.1: This step automatically obtains the set of candidate
homonymous words wh(R, A) from the intersection set of single-
words Ws(R)∧Ws(A) using a dictionary. It refers to monolingual

*1 The algorithm is quoted from P.33 in the article [11] except filtering pro-
cessing by word frequency.

dictionary. When a glossary is attached to a document used in
development and defines the meaning of a homonymous word,
the glossary can be used as a dictionary. The set of homony-
mous words wh(R, A) is defined as: wh(R, A) = {(wh,m)|wh ∈
Ws(R) ∧ wh ∈ Ws(A), |Md(wh)| ≥ 2} from the requirements spec-
ification document R and the architectural design document A,
where Md(wh) is a set of word senses of word wh defined in a dic-
tionary d. Note that the homonymous words are extracted only
by the definition of the dictionary. Thus, not all of the candidate
words have two or more word senses in the documents.

Step 3.2: This step obtains the difference set of word senses
Δh(R, A) from wh(R, A). The inspector identifies the word senses
of a homonymous word wh(R, A) in R and A. The inspector man-
ually excludes the subset CF(Δh(R, A)) from set of word senses
Δh(R, A) and obtains Δ′h(R, A). Finally, the inspector validates A

with each word sense in the set of possible omitted word senses
Δ′h(R, A) same as Steps 1.2 and 2.2.

3. Evaluation

3.1 Overview
The evaluation investigates whether the inspector can detect

omissions in architectural design documents using the proposed
approach. This evaluation also investigates the number of words
in the difference sets Δs and Δm. In Evaluation 1, the inspec-
tor was not involved in the software development but had expe-
rience in similar software developments. Word extractors were
implemented using an open source morphological analyzer to au-
tomatically extract single-words, multi-words, and homonymous
words from the documents. Two versions of word extractors with
morphological analyzers were implemented for Japanese and En-
glish documents. Evaluation 1 obtains Δ′s(Rx, A′x), Δ′m(Rx, A′x),
and Δ′h(Rx, A′x), which are the difference sets of the single-words,
multi-words, and word senses between the intermediate version
of the architectural design document A′x and the corresponding
requirements specification document Rx. Evaluation 1 extracts
only multi-words consisting of two single-words (mwl = 2 and
mws = 1). Because the number of extracted multi-words is

c© 2020 Information Processing Society of Japan 139

Journal of Information Processing Vol.28 136–149 (Feb. 2020)

likely enormous if the evaluation obtains multi-words consisting
of three or more single-words, Evaluation 1 only obtains multi-
words consisting of two single-words as a first step. In Evalua-
tions 1.1, 1.2, and 1.3, an inspector manually validates whether
the requirements specified with the single-words in Δ′s(Rx, A′x),
multi-words in Δ′m(Rx, A′x), or word senses in Δ′h(Rx, A′x) are im-
plemented in A′x by visual checks as in software inspections and
keyword search by selecting similar keywords. In Evaluation 1.4,
the inspector investigates whether the single-words in Δ′s(Rx, A′x)
and CF(Δs(Rx, A′x)) are categorized into groups according to their
characteristics. The inspector also investigates the multi-words in
Δ′m(Rx, A′x) and CF(Δm(Rx, A′x)) and the word senses in Δ′h(Rx, A′x)
and CF(Δh(Rx, A′x)).

Evaluation 2 counts the number of words in the difference sets
of Δ′s(R, A) and Δ′m(R, A) for nine pairs of requirements speci-
fication documents and architectural design documents. Eval-
uation 2 also investigates correlations between the numbers of
single-words and multi-words in the requirements specification
documents and in the difference sets Δ′s(R, A) and Δ′m(R, A) for
the nine pairs. Investigations on the difference set of the word
senses Δ′h(R, A) are not included in Evaluation 2 because accurate
word senses in six pairs of documents could not be obtained by
the authors.

3.2 Evaluation 1
3.2.1 Materials

The materials for Evaluation 1 consisted of three pairs of re-
quirements specification documents and the corresponding archi-
tectural design documents of three different software systems for
communication network monitoring systems x1, x2 and x3. All
of the systems were developed in a manufacturing company in
Japan. The projects are waterfall-managed projects, which in-
cluded systems integration and the development of controlling
and monitoring software for various network devices. The re-
quirements specification documents Rx1 , Rx2 , and Rx3 were final
versions that were not revised after the requirement inspections.
The corresponding architectural design documents A′x1

, A′x2
, and

A′x3
were the versions prior to the testing phase and were revised

to correct the defects detected in the testing phase. The document
A′′x1

was the version prior to the design inspection. The docu-
ments x2 and x3 prior to the design inspection were not available.
One pair of the three pairs had one additional version of the ar-
chitectural document that was the version prior to the design in-
spection. Three defect lists recorded in the testing phase and one
defect list recorded in the design inspection were used as baseline
and oracles to compare to the omissions detected by the proposed
approach as the following reasons. In case studies, Kitchenham
et al. suggest choosing standard practices in the organization as
a baseline [13]. Some defects detected in the testing phase re-
quired corrections to the architectural design document. Each of
the documents was developed by following the organization stan-
dard development process which has been refined in the organiza-
tion over several decades. All three software systems have been
in operation for five or more years in industry without needing
architectural design defects to be corrected. The proposed ap-
proach was not used in any development activities including the

Table 2 Sizes of the documents Rx, A′′x , and A′x.

Document
Number of
pages

Number of
single-words

Number of
multi-words

Number of
letters

Rx1 186 1318 1889 87112
Rx2 32 503 481 10724
Rx3 56 663 974 26710
A′′x1

134 887 875 29482
A′x1

134 1060 875 45064
A′x2

45 608 826 21468
A′x3

56 606 1036 25767

Fig. 5 Revisions of A′′x and A′x.

design inspections. If the proposed approach detects omission de-
fects, the inspector confirms whether the omission defects were
included in the defect lists recorded in the design inspections and
the testing phase after the evaluation. Table 2 lists the sizes of
the documents. All of the documents were written in Japanese.
Figure 5 shows the versions of the documents.
3.2.2 Procedure

Evaluation 1.1: Evaluation 1.1 obtains the difference sets of
single-words Δ′s(Rx, A′x) by Step 1 of the proposed approach. The
inspector checks for omissions in the architectural design doc-
uments using Δ′s(Rx, A′x) by ensuring that the requirements con-
taining one of the words in Δ′s(Rx, A′x) are implemented in the
corresponding architectural design document. Evaluation 1.1 ex-
tracts single-words from the documents using the Japanese mor-
phological analyzer MeCab [18], which extracts morphemes and
their part of speech. Evaluation 1 regards nouns for single-words
as the following reasons. First, a preliminary evaluation revealed
that nouns characterize architectural design descriptions and that
the number of different words of other parts of speech was smaller
than that of nouns. Different words of other parts of speech were
avoided to reduce ambiguity. Second, it is preferred that the num-
ber of words in Δ′s(Rx, A′x), Δ′m(Rx, A′x), and Δ′h(Rx, A′x) be small
because the inspector’s effort for the evaluation is limited.

Evaluation 1.2: Evaluation 1.2 obtains the difference set of
multi-words Δ′m(Rx, A′x) by Step 2 of the proposed approach. The
inspector checks for omissions in the architectural design doc-
uments using Δ′m(Rx, A′x) by ensuring that the specified require-
ments are implemented in the corresponding architectural design
document.

c© 2020 Information Processing Society of Japan 140

Journal of Information Processing Vol.28 136–149 (Feb. 2020)

Table 3 Number of single-words in Δs(Rx, A′x) and Δ′s(Rx, A′x).

Document

Number of
single-words in
Δs(Rx,A′

x)

Number of
single-words in
CF (Δs(Rx,A′

x))

Number of
excluded
low-frequent
single-words in
Δs(Rx,A′

x)

Number of
single-words in
Δ′

s(Rx,A′
x)

Rx1 , A
′′
x1

753 78 646 29 *3

Rx1 , A
′
x1

699 57 613 29 *3

Rx2 , A
′
x2

215 161 - 54
Rx3 , A

′
x3

314 63 235 16 *3

Table 4 Most frequent single-words in Δ′s(Rx, A′x).

Document Most frequent single-words in Δ′
s(Rx,A′

x)

Rx1 , A
′′
x1

Switching(129), Sheet(111), Modification(88), Direction(81), TX(33)

Rx1 , A
′
x1

Switching(129), Sheet(111), Modification(88), Direction(81), TX(33)

Rx2 , A
′
x2

Flow(12), Scope(6), Beforehand(6), Main(6), Exception(6)

Rx3 , A
′
x3

Case(44), Use(43), Series(17), Adjoining(5), Encapsulation(5)

Table 5 Detected D(Rx, A′x) and single-word triggers in Δ′s(Rx, A′x).

Document Δ′
s(Rx,A′

x) D(Rx,A′
x)

Rx1 , A
′
x1

Switching Switching function between a master device and a slave device.

Rx2 , A
′
x2

Priority In the network connection, the connection priority is set to initiate a session.

Rx3 , A
′
x3

BIT Specific BIT position in an output signal

Evaluation 1.3: Evaluation 1.3 obtains the difference set of
word senses Δ′h(Rx, A′x) by Step 3 of the proposed approach. The
inspector checks for omissions in the architectural design doc-
uments using Δ′h(Rx, A′x) by ensuring that the specified require-
ments are implemented in the corresponding architectural design
document. Evaluation 1.3 uses Japanese WordNet [19] to identify
whether a word has two or more word senses. Japanese WordNet
defines 93,834 words and 158,058 word senses *2.

Evaluation 1.4: Evaluation 1.4 investigates whether single-
words in Δ′s(Rx, A′x) and CF(Δs(Rx, A′x)) are categorized into
Ci(Δs(Rx, A′x)) according to certain features, attributes, or as-
pects. The inspector tries to categorize the single-words. The
inspector also tries to categorize the multi-words in Δ′m(Rx, A′x)
and CF(Δm(Rx, A′x)) and the word senses in Δ′h(Rx, A′x) and
CF(Δh(Rx, A′x)).

3.3 Results
3.3.1 Evaluation 1.1

Table 3 lists the sizes of Δs(Rx, A′x) and Δ′s(Rx, A′x). The
numbers of single-words in Δs(Rx1 , A

′′
x1

), Δs(Rx1 , A
′
x1

), and
Δs(Rx3 , A

′
x3

) are all larger than 300. Due to the limited inspec-
tor’s amount of effort for the evaluation, low-frequency single-
words in Δs(Rx1 , A

′′
x1

), Δs(Rx1 , A
′
x1

), and Δs(Rx3 , A
′
x3

) were ex-
cluded. Single-words whose appearance frequencies in the re-
quirements specification document were less than five were ex-
cluded from the difference sets Δs(Rx1 , A

′′
x1

), Δs(Rx1 , A
′
x1

), and
Δs(Rx3 , A

′
x3

) before the inspector excluded the sets CF(Rx, A′x).
A total of 29 single-words exist in Δ′s(Rx1 , A

′′
x1

), and 29 single-
words exist in Δ′s(Rx1 , A

′
x1

), 54 single-words exist in Δ′s(Rx2 , A
′
x2

),
and 16 single-words exist in Δ′s(Rx3 , A

′
x3

). Table 4 lists the top

*2 http://compling.hss.ntu.edu.sg/wnja/ (Wn-Ja1.1)
*3 Evaluation 1.1 obtains Δ′s(Rx, A′x) after excluding low-frequency single-

words from Δs(Rx, A′x)

Table 6 Required effort (person-hour) for checking each of the words in
difference set.

Document Δ′(Rx1 ,A′′
x1
) Δ′(Rx1 ,A′

x1
) Δ′(Rx2 ,A′

x2
) Δ′(Rx3 ,A′

x3
)

single-word 7.3* 7.3* 13.5 4.0
multi-word 12.0* 12.0* 8.3 4.5

five most frequent single-words in Δ′s(Rx, A′x). The single-words
are translated into English because the documents are written in
Japanese. In Table 4, the numbers in parentheses indicate the ap-
pearance frequencies of the single-words in Rx. In Evaluation 1.1,
the inspector detected one omitted requirement categorized into
D(Rx, A′x) from each of the three sets of documents (Rx1 , A

′
x1

),
(Rx2 , A

′
x2

), and (Rx3 , A
′
x3

). Table 5 lists D(Rx, A′x) and the single-
words in Δ′s(Rx, A′x) that were the detection triggers omitted re-
quirements contained the single-words. Table 6 shows the re-
quired effort for the inspector for each of the documents. Note
that the evaluations for checking Δs(Rx1, A′′x1) and Δs(Rx1, A′x1) are
the same, because the words in Δs(Rx1, A′′x1) and Δs(Rx1, A′x1) are
the same. The sum of required effort for them is 7.3 person hour.
3.3.2 Evaluation 1.2

Table 7 lists the sizes of Δm(Rx, A′x) and Δ′m(Rx, A′x). In Evalua-
tion 1.2, due to inspector’s effort limitation, low-frequency multi-
words in Δm(Rx1 , A

′′
x1

), Δm(Rx1 , A
′
x1

), and Δm(Rx3 , A
′
x3

) were also
excluded. A total of 54 multi-words existed in Δ′m(Rx1 , A

′′
x1

), 48
multi-words existed in Δ′m(Rx1 , A

′
x1

), 33 multi-words existed in
Δ′m(Rx2 , A

′
x2

), and 18 multi-words existed in Δ′m(Rx3 , A
′
x3

). Ta-
ble 8 lists the top five most frequent multi-words in Δ′m(Rx, A′x).
In Table 8, the multi-words are translated into English, and the
numbers in parentheses indicate the appearance frequencies of
the multi-words. In Evaluation 1.2, the inspector detected one
omitted requirement categorized into D(Rx, A′x) from each of the
three sets of documents (Rx1 , A

′
x1

), (Rx2 , A
′
x2

), and (Rx3 , A
′
x3

). The
requirements D(Rx, A′x) are the same requirements as detected
with the single-words in Δ′s(Rx, A′x). Table 9 shows D(Rx, A′x)

c© 2020 Information Processing Society of Japan 141

Journal of Information Processing Vol.28 136–149 (Feb. 2020)

Table 7 Number of multi-words in Δm(Rx, A′x) and Δ′m(Rx, A′x).

Document

Number of
multi-words in
Δm(Rx,A′

x)

Number of
multi-words in
CF (Δm(Rx,A′

x))

Number of
excluded
low-frequency
multi-words in
Δm(Rx,A′

x)

Number of
multi-words in
Δ′

m(Rx,A′
x)

Rx1 , A
′′
x1

1416 195 1173 48 *4

Rx1 , A
′
x1

1415 195 1172 48 *4

Rx2 , A
′
x2

301 268 - 33
Rx3 , A

′
x3

696 137 541 18 *4

Table 8 Most frequent multi-words in Δ′m(Rx, A′x).

Document Most frequent multi-words in Δ′m(Rx, A′x)

Rx1 , A′′x1
Execute permission(82), Monitoring screen(39), Request signal(39), Status list(34), Configuration screen(34)

Rx1 , A
′
x1

Execute permission(82), Response signal(57), Monitoring screen(39), Request signal(39), Network switching(37)

Rx2 , A′x2
Error reply(9), Reliability(5), Device control(4), Control function(3), Status notification(3)

Rx3 , Ax3 Mutual monitoring(5), Path switching(5), Time configuration(5), Maintenance function(5), Fault monitoring(5)

Table 9 Detected D(Rx, A′x) and multi-word triggers in Δ′m(Rx, A′x).

Document Δ′
m(Rx,A′

x) D(Rx,A′
x)

Rx1 , A
′
x1

Switching function Switching function between a master device and a slave device.

Rx2 , A
′
x2

Connection priority In the network connection, the connection priority is set to initiate a session.

Rx3 , A
′
x3

BIT position Specific BIT position in an output signal

and the multi-words in Δ′m(Rx, A′x) that were their detection trig-
gers. Table 6 shows the required effort for the inspector for each
of the documents. As noted in Section 4.1.1, the evaluations for
checking Δ′m(Rx1, A′′x1) and Δ′m(Rx1, A′x1) are the same, because the
words in Δ′m(Rx1, A′′x1) and Δ′m(Rx1, A′x1) are the same. The sum of
required effort for them is 12 person hour.
3.3.3 Evaluation 1.3

In Evaluation 1.3, the inspector could not identify any single-
word that had multiple senses in Rx. Each of the single-words was
defined as a homonymous word in Japanese WordNet, however,
no single-words had two or more senses in Rx. Table 10 shows
the number of the single-words in wh(Rx, A′x).
3.3.4 Evaluation1.4

In Evaluation 1.4, the inspector categorized single-words in
Δ′s(Rx, A′x) into C1 and C2 and categorized single-words in
CF(Δs(Rx, A′x)) into C3 and C4. The inspector also categorized
the multi-words in Δ′m(Rx, A′x) and CF(Δm(Rx, A′x)) into the same
C1, C2, C3, and C4 categories defined for the single-words. As
mentioned in previous subsection, due to the limitation of the in-
spector’s effort, single-words and multi-words whose appearance
frequencies were less than five in Δs(Rx, A′x) and Δm(Rx, A′x) were
excluded. The categories are shown as follows:

C1: words for functional requirements such as detection, flow,
error response, and bandwidth limitations

C2: words for non-functional requirements such as availability,
security, and redundant architecture

C3: words irrelevant to software design such as CPU, memory,
physical port, and transmit frequency, and

C4: words for the development project such as version, docu-
ment, standard, and normal case.

Tables 11 and 12 list the number of single-words and multi-

*4 Evaluation 1.2 obtains Δ′m(Rx, A′x) after excluding low-frequency multi-
words from Δm(Rx, A′x).

Table 10 Number of words defined as homonymous words in Japanese
WordNet.

Document Number of homonymous words

Rx1 ,A′′x1
173

Rx1 ,A′x1
173

Rx2 ,A′x2
90

Rx3 ,A′x3
120

Table 11 Number of single-words in Δ′s(Rx, A′x) and CF (Δs(Rx, A′x)) in each
category.

Document C1 C2 C3 C4

Rx1 , A
′′
x1

*5 26 3 19 42
Rx1 , A

′
x1

*5 27 2 17 35
Rx2 , A

′
x2

51 3 70 70
Rx3 , A

′
x3

*5 16 0 10 40

Table 12 Number of multi-words in Δ′m(Rx, A′x) and CF (Δm(Rx, A′x)) in each
category.

Document C1 C2 C3 C4

Rx1 , A
′′
x1

*6 48 0 3 132
Rx1 , A

′
x1

*6 45 3 11 133
Rx2 , A

′
x2

25 8 39 198
Rx3 , A

′
x3

*6 18 0 6 105

words, respectively, in the categories. Two or more single-words
in Δs(Rx1 , A

′′
x1

), Δs(Rx1 , A
′
x1

), and Δs(Rx2 , A
′
x2

) were categorized
into each of the categories C1, C2, C3, and C4. Two or more
single-words in Δs(Rx3 , A

′
x3

) were categorized into each of the cat-
egories C1, C3, and C4. Two or more multi-words in Δm(Rx1 , A

′
x1

)
and Δm(Rx2 , A

′
x2

) were categorized into each of the categories C1,
C2, C3, and C4. Two or more multi-words in Δm(Rx1 , A

′′
x1

) and
Δm(Rx3 , A

′
x3

) were categorized into each of the categories C1, C3,

*5 Evaluation 1.4 categorizes Δ′s(Rx, A′x) and CF (Δs(Rx, A′x)) after excluding
low-frequency single-words from Δs(Rx, A′x).

*6 Evaluation 1.4 categorizes Δ′m(Rx, A′x) and CF (Δm(Rx, A′x)) after exclud-
ing low-frequency multi-words from Δm(Rx, A′x).

c© 2020 Information Processing Society of Japan 142

Journal of Information Processing Vol.28 136–149 (Feb. 2020)

Table 13 Categories for single-words in Table 4.

C1 C2 C3 C4

x1 Switching Direction, TX Sheet, Modification
x2 Scope, Beforehand Flow, Main, Exception
x3 Adjoining, Encapsulation Case, Use, Series

Table 14 Categories for multi-words in Table 8.

C1 C2 C3 C4

x1(A′′x1
)

Request signal,
Status list,
Configuration screen

Execute permission,
Monitoring screen Status list

x1(A′x1
)

Request signal,
Execute permission,
Response signal

Monitoring screen,
Network switching

x2

Error reply,
Device control,
Control function,
Status notification

Reliability

x3

Path switching,
Maintenance function,
Fault monitoring

Mutual monitoring,
Time configuration

and C4. Evaluation 1.4 was not conducted for the difference set of
word senses Δh(Rx, A′x) because Evaluation 1.3 found no multiple
word senses in Δh(Rx, A′x).

Omissions of requirements including words categorized into
C1 and C2 lead to omissions in architectural design document.
Omissions of requirements including words in C3 and C4 do not
indicate an omissions in architectural design document. Omitted
words in C3 may appear in another document. Omitted words in
C4 are not used to describe requirements. Omissions of words in
C1 indicate lack or insufficient function definitions. Omissions
of words in C2 indicate lack or insufficient non-functional defini-
tions such as performance and efficiency. If the omitted words are
replaced with other words, omissions of words in C1 and C2 do
not indicate omissions in the architectural design document. As
shown in Table 5 and Table 13, the word “switching” is catego-
rized as C1 and indicates that the omission is in the architectural
design document. The words “TX” and “direction” are catego-
rized as C3. The word TX is included in the requirement defining
an operation mode. The word direction is included in the require-
ment defining direction of communication. These requirements
are implemented in other documents. The words “sheet” and
“modification” are categorized as C4. These words are included
in the update history of the requirement specification document.

Table 13 and Table 14 show categories of the single-words and
multi-words in Tables 4 and 8.

3.4 Evaluation 2
3.4.1 Materials

The materials in Evaluation 2 included six pairs of require-
ments specification documents and the corresponding architec-
tural design documents of systems y1, y2, y3, y4, y5, and y6, as
well as the three pairs of documents used in Evaluation 1. The
pairs of documents Ry1 and Ay1 , Ry2 and Ay2 , Ry3 and Ay3 , and
Ry4 and Ay4 were written in Japanese. The pairs of documents
Ry5 and Ay5 , and Ry6 and Ay6 were written in English. Docu-
ments Ry1 , Ry2 , Ry3 , Ry5 , Ry6 , Ay1 , Ay2 , Ay3 , Ay5 , and Ay6 were

Table 15 Sizes of the documents Ry and Ay.

Document
Number of
pages

Number of
single-words

Number of
multi-words

Number of
letters

Ry1 45 1088 1911 44101
Ry2 12 481 473 8038
Ry3 75 1293 1459 45879
Ry4 5 72 55 1152
Ry5 - 269 145 26910
Ry6 - 87 41 3495
Ay1 38 1273 2383 42490
Ay2 58 851 849 26610
Ay3 136 1285 2497 76039
Ay4 14 206 191 3988
Ay5 - 703 561 89475
Ay6 - 86 26 4654

available online. Documents Ry1 , Ry2 , Ry3 , Ay1 , Ay2 , and Ay3 were
the artifacts of outsourced software development by public orga-
nizations including a public library and a disaster response or-
ganization. Documents Ry4 and Ay4 resulted from an outsourced
software tool development project for academic research. The
pairs Ry5 and Ay5 , and Ry6 and Ay6 were the artifacts of NASA
development projects [14]. These pairs were publicly available as
a software engineering repository dataset online [15], [16], [17].
Table 15 lists the sizes of the documents. Because documents
Ry5 , Ry6 , Ay5 , and Ay6 are only available as plain text files, their
numbers of pages are left blank in Table 15. Table 16 lists the
groups of the materials.
3.4.2 Procedure

Evaluation 2 investigates the ratios of the numbers of single-
words in the difference sets Δs(R, A) and Δm(R, A) to the number
of words in the nine requirements specification documents. The
architectural design documents in six of the pairs were final ver-
sions revised for the correction of defects detected in the inspec-
tions and testing. The ratios of the numbers of single-word are
defined as follows.

Ratios(R, A) =
|Δs(R, A)|
|Ws(R)|

c© 2020 Information Processing Society of Japan 143

Journal of Information Processing Vol.28 136–149 (Feb. 2020)

Table 16 Groups of the materials.

Group Pair of documents Explanation

GA(R, A′) (Rx1 , A′′x1
), (Rx1 , A′x1

),(Rx2 , A′x2
), (Rx3 , A′x3

) The same documents as in Evaluation 1

GB(R, A) (Ry1 , Ay1), (Ry2 , Ay2), (Ry3 , Ay3), (Ry4 , Ay4) Documents y1, y2, and y3 were publicly available. All documents were written in Japanese.

GC(R, A) (Ry5 , Ay5), (Ry6 , Ay6) All documents were publicly available and written in English.

Table 17 Ratios(R, A) in document pairs (Rx, A′x) and (Ry, Ay).

Group Document |Δs(R,A)| |Ws(R)| Ratios(R,A)

GA

Rx1 , A′′x1
753 1318 0.57

Rx1 , A
′
x1

699 1318 0.53
Rx2 , A

′
x2

215 503 0.43
Rx3 , A

′
x3

314 663 0.47

GB

Ry1 , Ay1 414 1088 0.38
Ry2 , Ay2 113 481 0.23
Ry3 , Ay3 747 1293 0.58
Ry4 , Ay4 13 72 0.18

GC
Ry5 , Ay5 78 269 0.29
Ry6 , Ay6 57 87 0.65

Table 18 Ratiom(R, A) in document pairs (Rx, A′x) and (Ry, Ay).

Group Document |Δm(R,A)| |Wm(R)| Ratiom(R,A)

GA

Rx1 , A′′x1
1416 1889 0.75

Rx1 , A
′
x1

1415 1889 0.75
Rx2 , A

′
x2

301 481 0.63
Rx3 , A

′
x3

696 974 0.71

GB

Ry1 , Ay1 1505 1911 0.79
Ry2 , Ay2 227 473 0.48
Ry3 , Ay3 1134 1459 0.78
Ry4 , Ay4 20 55 0.36

GC
Ry5 , Ay5 102 145 0.70
Ry6 , Ay6 34 41 0.83

Ratiom(R, A) =
|Δm(R, A)|
|Wm(R)|

Evaluation 2 also investigates the distributions of the appearance
frequencies of single-words in Rx and Ry. Evaluation 2 extracts
words from group GC(R, A) using the English morphological an-
alyzer TreeTagger [20].

3.5 Results
Table 17 lists the Ratios(R, A) in the document groups

GA(R, A′), GB(R, A), and GC(R, A).
Table 18 lists the Ratiom(R, A) in the document groups

GA(R, A′), GB(R, A), and GC(R, A). The numbers of multi-words
in Δm(R, A′) and Δm(R, A) are larger than the numbers of single-
words in all pairs of documents in all document groups. In ad-
dition, Ratiom(R, A) are larger than Ratios(R, A) in all document
groups. The Pearson correlation coefficient between Δs(R, A) and
Ws(R) is 0.970 (p = 0.0079), and that between Δm(R, A) and
Wm(R) is 0.997 (p = 0.00018). Figures 6–8 show the distribu-
tions of the appearance frequencies of the single-words in the dif-
ference set Δs(R, A) in the requirements specification document R

for the document groups of GA(R, A′), GB(R, A), and GC(R, A). In
Figs. 6–8, the horizontal axes represent the appearance frequen-
cies of the single-words in the requirements specification doc-
ument R and the vertical axes represent the percentages of the
single-words. The white bars represent distributions of appear-
ance frequencies of the single-words in Ws(R). The percentages
are the numbers of single-words of the corresponding appearance

frequencies indicated horizontal axes to the numbers of single-
words in Ws(R).

4. Discussion

4.1 Research Question 1
Our results indicate that an inspector can indeed detect omis-

sions in an architectural design document by checking the differ-
ence set between words in the requirements specification docu-
ment and words in the corresponding architectural design docu-
ment. Evaluation 1.1 also indicated that an independent inspector
who was not involved in the specific project could detect omis-
sions using the proposed approach.

In Evaluation 1.2, the detected omissions were the same as the
omissions detected in Evaluation 1.1. A discussion with the in-
spector revealed that multi-words could enable inspectors with
less experience to detect omissions that could not be detected
with single-words because multi-words are more specific than
single-words. Future studies will include investigations on detect-
ing omissions with single-words and multi-words with inspectors
with different levels of experience. In addition, future studies will
include reducing the number of multi-words by modifying the al-
gorithm used to extract them.

As shown in Tables 5 and 9, each pair of single-word and multi-
word indicated the same potential requirement omission. For sys-
tem x1, the single-word “switching” and multi-word “switching
function” were omitted. Requirement specification document Rx1

defines a requirement for redundant communication network de-
vices and a switching function using the words “switching func-
tion”. The function switches master and slave communication
network devices in the case of the master device failure. How-
ever, the architectural design document A′x1

does not define pre-
conditions and postconditions of switching and switching behav-
iors. The reason for the insufficient definition is that the designer
did not understand the demand for switching. In Evaluations 1.1
and 1.2, each of the three pairs of the requirement specification
document and the architectural design document has its own dif-
ference sets of single-words and multi-words. If all words in the
requirement specification documents are included in the corre-
sponding architectural design document, the proposed approach
cannot help designers and inspectors detect omissions. In such
cases, incorrect and insufficient definitions can exist in the archi-
tectural design document. To clarify the limitation of the pro-
posed approach, investigating the domains, characteristic of doc-
uments, and criterions for such cases is one of the important fu-
ture studies.

For system x2, the single-word “priority” and multi-word “con-
nection priority” were omitted. Requirement specification doc-
ument Rx2 defines a requirement for the priority of receiving
healthiness information from network monitoring devices in the

c© 2020 Information Processing Society of Japan 144

Journal of Information Processing Vol.28 136–149 (Feb. 2020)

Fig. 6 Distribution of Ws(R) and Δs(R, A) in documents group GA.

Fig. 7 Distribution of Ws(R) and Δs(R, A) in documents group GB.

Fig. 8 Distribution of Ws(R) and Δs(R, A) in documents group GC .

case that two or more devices try to connect the control system.
However, architectural design document A′x2

does not define a
procedure for determining priorities of the network monitoring
devices. The reason for the insufficient definition is that the de-
signer did not presume the two or more connections at the same

time. If this omission is not corrected, network failure detection
may be delayed. If a low-priority monitoring device does not
disconnect the connection to the control system, a high-priority
monitoring device must wait for timeout. The control system may
not receive failure information immediately. Connection priority

c© 2020 Information Processing Society of Japan 145

Journal of Information Processing Vol.28 136–149 (Feb. 2020)

affects effectiveness and reliability quality attributes defined in
ISO 25010. Furthermore, the increase of the monitoring devices
in future system evolutions raises the possibility of multiple con-
nections, the omission of connection priority affects expandabil-
ity quality attributes. If a malicious client connects to the control
system and disconnects the connection, the client may attack the
control system by performing denial-of-service. This may affect
the security quality attribute defined by ISO 25010.

For system x3, the single-word “BIT” and multi-word “BIT
position” were omitted. Requirement specification document Rx3

defines a requirement for defining the bit position representing a
network connection failure data in a network data frame. How-
ever, architectural design document A′x3

does not explicitly define
the position of the bit. The reason for the insufficient definition
is that the designer did not suppose that the bit positions between
sender and receiver can be different depending on sending and
receiving devices. In the case that this omission is not corrected,
the communication network failure data cannot be received. This
may disable detecting communication network failure. If the bit
position is not defined in the architectural design document, it
may have an impact on the effectiveness and the reliability qual-
ity attributes of the system. Furthermore, the omission may affect
expandability because the monitoring devices that have different
encoding procedures may be connected in the future system evo-
lutions.

System y1 is a city public library system. For system y1,
the single-word “compensation” and multi-word “compensation
work” were omitted. Requirement specification document Ry1 de-
fines the printing function for compensation notice. The require-
ments are implemented in another design document rather than in
architectural design document Ay1 . Omitting this requirement af-
fects effectiveness and reliability quality attributes because omit-
ting the requirement may increase unreturned books.

System y2 is a disaster prevention system. The single-word
“restore” was omitted. Requirement specification document Ry2

defines a requirement for defining file backup and restore func-
tions. Architectural design document Ay2 defines the correspond-
ing function using the words “recovery.” Omitting this function
affects the reliability quality attribute. Furthermore, omitting this
function affects security and expandability because this function
may cause data loss, which increases the possibility of malicious
attacks and the system evolution difficulty.

System y3 is a housing history management system. The
single-word “protection” was omitted. Requirement specification
document Ry3 defines security requirements. Architectural design
document Ay3 describes security functions using the words “leak-
age protection,” and “data corruption protection.” Omitting the
security function affects reliability and security quality attributes.

System y4 is an assurance case development system. The
single-word “generation” was omitted. Requirement specifica-
tion document Ry4 defines a requirement defining a function that
generates assurance case properties. Omitting the function af-
fects the reliability and functional correctness quality attributes
because the properties may be insufficient to argue the goal such
as safety in the assurance case.

System y5 is a measurement system. The single-word

“bounds” and multi-word “bounds checking” were omitted. Re-
quirement specification document Ry5 defines a requirement per-
forming bounds checking before accessing memory. Architec-
tural design document Ay5 describes a corresponding function us-
ing the word “the largest free memory block.” Omitting the func-
tion affects the reliability quality attribute because the function
prevents the buffer overflow.

System y6 is an infrared radiation system attached to an earth
observation satellite. The single-word “core” and multi-word
“core metadata” were omitted. Requirement specification doc-
ument Ry6 defines a requirement containing the metadata of the
environmental control subsystem. Architectural design document
Ay6 describes the corresponding function using the words “stan-
dard” and “standard global metadata.” Omitting the requirement
may affect the reliability quality attribute.

In Evaluations 1.1 and 1.2, the inspector checked each word in
the difference sets one by one by keyword search to accurately
evaluate the proposed approach. However, in real situations, in-
spectors do not always need to check each word individually nor
to use keyword search in the case that the inspector has confi-
dence. They can glance at the list of words to detect omissions to
reduce the effort required for the proposed approach.

Evaluation 1.3 could not find words having two or more word
senses among the possible homonymous words extracted by the
proposed approach in all pairs of documents. The proposed ap-
proach uses a dictionary to identify words with two or more word
senses, however, in the documents, only one sense of those de-
fined in the dictionary was used. A more specific dictionary for
software documents may lead to identifying additional homony-
mous words.

In Evaluation 1.4, words categorized into C2 were not found
among single-words and multi-words whose appearance frequen-
cies in the requirements specification documents were more than
or equal to 5 among two pairs of requirements specification docu-
ments and architectural design documents. The inspector catego-
rized all of the sinle-words in Δs(Rx2 , A

′
x2

) and the multi-words in
Δm(Rx2 , A

′
x2

). The percentage of the single-words categorized into
C3 or C4 to the single-words in Δs(Rx2 , A

′
x2

) was 72% and that of
the multi-words to the multi-words in Δm(Rx2 , A

′
x2

) was 82%. By
using the categories as a guide, inspectors can quickly identify
whether a word is categorized into Δ′s(R, A) or CF(Δs(R, A)). In
software maintenance and evolutions, filtering words by tool may
lead to semi-automatic identification. The tool stores the words
that have already been categorized as C1, C2, C3, and C4 in the
prior versions and categorizes words extracted in a subsequent
version into the categories using the stored words.

General reasons for omissions of words that are categorized as
C1 and C2 and not replaced with other words in the corresponding
architectural design document are as follows. First, requirements
including the omitted words are not fully specified. Second, de-
signers and inspectors misunderstand the requirements and define
insufficient design descriptions to cover the requirements. De-
signers and inspectors should focus on detecting omitted require-
ments including words that are categorized as C1 and C2 and re-
placed with other words in an architectural design document. The
target systems in Evaluation 1 are communication network moni-

c© 2020 Information Processing Society of Japan 146

Journal of Information Processing Vol.28 136–149 (Feb. 2020)

toring systems. Words indicating communication network failure
detection and recovery have higher priorities to check because
the risks of omissions of communication network failure detec-
tion are more severe.

Evaluations 1.1 and 1.2 obtained omitted single-words and
multi-words by comparing requirement specification documents
Rx1 , Rx2 , and Rx3 and architectural design documents A′′x1

, A′x1
,

A′x2
, and A′x3

. As shown in Fig. 5, architectural design document
A′′x1

is the version before the design inspection. Architectural de-
sign documents A′x1

, A′x2
, and A′x3

are the versions after correcting
the defects detected in the design inspections. If defects were
detected in subsequent development activities to the design in-
spection such as testing, the architectural design documents were
changed. For example, the requirements, including the word
“switching” in Table 5, are not sufficiently defined in the archi-
tectural design document A′x1

. Evaluation 1 uses the intermedi-
ate versions of architectural design documents A′′x1

, A′x1
, A′x2

, and
A′x3

because the architectural design documents may include cor-
rected defects after design inspections. Therefore, Evaluation 1
can investigate whether the proposed approach can identify the
potentially omitted requirements. Evaluation 2 uses the final ver-
sions of the architectural design documents Ay1 , Ay2 , ... , Ay6 ,
because the intermediate versions of the architectural documents
are not available. Since the architectural design documents are
the versions after testing, they are supposed to include no word
categorized as C1 or C2 without replacement with other words in
the architectural design documents.

4.2 Research Question 2
The number of words that need to be checked when using the

proposed approach depends on the number of words in the re-
quirements specification document. Inspectors can estimate the
number of words in the difference set by measuring the number
of words in the requirements specification document and deciding
whether to use the proposed approach.

Approximately half of the words in the difference sets have the
potential to be excluded by the semi-automatic identification ap-
proach mentioned above, because the percentages of the number
of words in CF(Δs(R, A)) to the numbers of words in the differ-
ence sets were larger than 45%.

The percentages of low appearance frequency single-words in
Δs(R, A) are larger than those of Ws(R). Evaluations 1.1, 1.2, and
1.4 excluded words whose appearance frequency were less than
five from three of the four difference sets. The percentage of the
number of the excluded words were larger than 70%. It is possible
that the inspector can detect omissions in the architectural design
documents by checking the excluded words. Future studies will
include investigations on detecting omissions with low-frequency
words and reducing or prioritizing the words.

4.3 Threats to Validity
Evaluation 1 was conducted in different settings from those of

a real inspection. This might be a threat to the approach’s external
validity. The materials in Evaluation 1 were developed in the past
development. Evaluation 1 was conducted without time restric-
tions. However, all of the architectural design documents were

intermediate versions that were modified to correct detected de-
fects in the design inspection or testing phase. Discussions with
the inspector revealed that inspectors involved in the development
could probably detect defects using the proposed approach and
that the required level of effort could be acceptable in real inspec-
tions under the assumption that the number of words is smaller
than 300. Future studies will include evaluations in real inspec-
tion settings.

Evaluations 1.1 and 1.2 excluded low-frequency words from
the difference sets in two of the three pairs of documents. Ex-
cluding low-frequency words from the difference sets does not
affect the internal validity of the evaluation because the evalua-
tions were conducted with the remaining words. An inspector
might be able to detect additional omissions with the excluded
words. Future studies will include investigations on the exclusion
criteria and comparisons to difference sets without exclusions.

In Evaluations 1.1 and 1.2, each of the three pairs of require-
ment specification document and architectural design document
has its own difference sets of single-words and multi-words. If
all words in the requirement specification documents are included
in the corresponding architectural design document, the proposed
approach cannot help designers and inspectors detect omissions.
In such cases, incorrect and insufficient definitions can exist in
the architectural design document. To clarify the limitation of the
proposed approach, investigating the domains, characteristic of
documents, and criterions for such cases is one of the important
future studies.

In Evaluations 1.1 and 1.2, we gave up obtaining recall metrics
of detected omissions, although F measure (harmonic mean of
precision and recall) could show the effectiveness of the proposed
approach. In Evaluation 1, the recalls can be obtained by calcu-
lating the percentages of the number of detected omissions by the
proposed approach to the number of detected omission defects by
the design inspections, which we set as the baseline. However, in
the defect lists in the target systems, the defect classification did
not include omission, so we need to check whether each of the
defects recorded in the defect lists is an omission defect or not.
The defect lists were recorded in the design inspections and in
the design inspections and the testing phase. The total number of
defects in the defect lists in Evaluation 1 was over 600. The effort
for obtaining the recalls is too large for Evaluation 1. Evaluations
of the proposed approach by F measure is one of the important
future works.

In Evaluation 2, the selection and representativeness of the ma-
terials might be a threat to the approach’s external validity. The
additional materials were five pairs of documents that were avail-
able online and one pair for documents of a research tool for in-
house use. However, the publicly available materials were the
artifacts of public procurement software development projects.
Seven of the pairs of documents written in Japanese contained
standard items defined by standards such as IEEE 830, and the
development activities had been managed by following standards
based on PMBOK [21]. Therefore, the documents are expected
to be representative of documents including such standard items
under development management following such standards.

c© 2020 Information Processing Society of Japan 147

Journal of Information Processing Vol.28 136–149 (Feb. 2020)

5. Related Work

To reduce the effort for manual inspection, several approaches
have been developed to support inspectors in validating software
documents with natural language processing. The tool REquire-
ments TRacing On-target (RETRO) [22] supports inspectors by
indicating traceability links between sentences in a requirements
specification document and the corresponding sentences in an ar-
chitectural design document. This tool extracts requirement sen-
tences from a requirements specification document and design
sentences from the corresponding architectural design document.
Then, it calculates the similarities in every pair of sentences. The
tool suggests candidate traceability links between the requirement
sentences and the design sentences to the developers. The can-
didate traceability links are selected by the highest similarities.
These approaches are different from the proposed approach be-
cause the proposed approach does not identify traceability links
between sentences.

To reduce the effort required by checklist-based source code re-
views, there are several approaches to support maintaining such
checklists. The tool Program Assurance Environment (PAE) [23]
ensures consistency and detects redundancy in checklist items us-
ing natural language processing. The tool Collaborative Software
Inspection (CSI) [24] reduces the effort required by the inspec-
tion coodinator to summarize defects by integrating the defect
lists from individual inspectors. These approaches aim to provide
an integrated software inspection environment, however, they are
different from the proposed approach because they do not analyze
artifacts.

Some approaches automatically detect potential defects from
artifacts [7], [9]. The tool Intelligent Code Inspection in a C Lan-
guage Environment (ICICLE) [7] supports inspectors validating
the source code written in C or C++. This tool detects poten-
tial defects such as coding rule violations by predefined criteria.
These approaches are different from the proposed approach be-
cause they require predefined criteria.

In addition, there are approaches that predict defect-prone lo-
cations using source code metrics as input [8], [25], [26]. These
approaches use prediction models such as logistic regression and
Bayesian models, however, they are different from the proposed
approach because they require source code metrics and use pre-
diction models.

6. Conclusion

This article proposes an approach to detect omitted require-
ments that are not implemented in the corresponding architec-
tural design document using difference sets of words or word
senses between a software requirements specification document
and the corresponding software architectural design document.
First, the proposed approach extracts sets of single-words, multi-
words, and word senses that appear in a software requirements
specification document and do not appear in the corresponding
software architectural design document by using a natural lan-
guage processing tool. Then, an architectural design document
inspector validates whether each of the requirements specified
with single-words, multi-words, or word senses are implemented

in the corresponding architectural design document using the set
as guides.

To investigate the effectiveness and efficiency of the proposed
approach, we conducted two evaluations. Evaluation 1 investi-
gated whether omitted requirements can be detected in architec-
tural design documents using the proposed approach. The result
of Evaluation 1 shows that omitted requirements were detected in
all three pairs of software requirements specification documents
and architectural design documents investigated.

Evaluation 2 investigated the number of words that inspectors
need to check in the proposed approach. The result of Evalua-
tion 2 shows that the percentages of different single-words in the
difference sets to different single-words that appear in the require-
ments specification documents vary from 18 to 65 for the nine
pairs of software requirements specification documents and ar-
chitectural design documents investigated. The result also shows
that the percentages of different multi-words in the difference sets
to the different multi-words that appear in the requirements spec-
ification documents vary from 36 to 83. Pearson correlation co-
efficient between the number of single-words in the difference set
and the number of single-words in the requirements specification
documents is 0.970 (p = 0.0079). Pearson correlation coefficient
between the number of multi-words in the difference set and the
number of multi-words in the requirements specification docu-
ments is 0.997 (p = 0.0018).

Acknowledgments This work was supported by JSPS
KAKENHI Grant Number JP17H00731.

References

[1] Ebert, C. and Jones, C.: Embedded Software: Facts, Figures, and Fu-
ture, IEEE Computer, Vol.42, No.4, pp.42–52 (2009).

[2] Fagan, M.: Design and code inspections to reduce errors in program
development, Software Pioneers, pp.575–607, Springer (2002).

[3] Shull, F., Rus, I. and Basili, V.R.: How perspective-based reading can
improve requirements inspections, Computer, Vol.33, No.7, pp.73–79
(2000).

[4] Porter, A.A., Votta, L.G. and Basil, V.R.: Comparing detection meth-
ods for software requirements inspections: A replicated experiment,
IEEE Trans. Software Engineering, Vol.21, No.6, pp.563–575 (1995).

[5] Basili, V.R.: Software modeling and measurement: The goal/question/
metric paradigm, Technical report (1992).

[6] Mashiko, Y. and Basili, V.R.: Using the GQM paradigm to investi-
gate influential factors for software process improvement, Journal of
Systems and Software, Vol.36, No.1, pp.17–32 (1997).

[7] Brothers, L., Sembugamoorthy, V. and Muller, M.: ICICLE: Group-
ware for code inspection, Proc. 1990 ACM Conference on Computer-
supported Cooperative Work, pp.169–181 (1990).

[8] Wilbur, W.J. and Sirotkin, K.: The automatic identification of stop
words, Journal of information science, Vol.18, No.1, pp.45–55 (1992).

[9] Sembugamoorthy, V. and Brothers, L.: ICICLE: Intelligent code in-
spection in a C language environment, Computer Software and Appli-
cations Conference, COMPSAC 90, Proc. 14th Annual International,
pp.146–154 (1990).

[10] Wakabayashi, T., Morisaki, S., Atsumi, N. and Yamamoto, S.: An
empirical evaluation of detecting omissions by comparing words be-
tween requirement and architectural documents, Proc. 8th Interna-
tional Workshop on Empirical Software Engineering in Practice (IWE-
SEP), pp.12–17 (2017).

[11] Weiss, S.M., Indurkhya, N., Zhang, T. and Damerau, F.: Text mining:
Predictive Methods for Analyzing Unstructured Information, Springer
Science & Business Media (2010).

[12] Runeson, P., Alexandersson, M. and Nyholm, O.: Detection of dupli-
cate defect reports using natural language processing, Proc. 29th In-
ternational Conference on Software Engineering, pp.499–510 (2007).

[13] Kitchenham, B., Pickard, L. and Pfleeger, S.L.: Case Studies for
Method and Tool Evaluation, IEEE Software, Vol.12, No.4, pp.52–62
(1995).

c© 2020 Information Processing Society of Japan 148

Journal of Information Processing Vol.28 136–149 (Feb. 2020)

[14] Hayes, J.H., Sundaram, S.K. and Dekhtyar, A.: Baselines in Require-
ments Tracing, International Workshop on Predictor Models in Soft-
ware Engineering St. Louis (2005).

[15] Shirabad, S.J. and Menzies, T.J.: The PROMISE Repository of Soft-
ware Engineering Databases, School of Information Technology and
Engineering, University of Ottawa, Canada (2005).

[16] MDP Website, CM-1 Project (2005), available from 〈http://mdp.ivv.
nasa.gov/mdp glossary.html#CM1〉.

[17] MODIS Science Data Processing Software Requirements Specifica-
tion Version 2 (1997).

[18] Kudo, T.: Mecab: Yet another part-of-speech and morphological ana-
lyzer (2005), available from 〈http://mecab.sourceforge.net/〉.

[19] Isahara, H., Bond, F., Uchimoto, K., Utiyama, M. and Kanzaki, K.:
Development of the Japanese WordNet (2008).

[20] Schmid, H.: Treetagger— A language independent part-of-speech tag-
ger, Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart,
Vol.43, p.28 (1995).

[21] Pm, I.: A guide to the project management body of knowledge (PM-
BOK guide), Project Management Institute (2000).

[22] Hayes, J.H., Dekhtyar, A. and Sundaram, S.K.: Advancing candidate
link generation for requirements tracing: The study of methods, IEEE
Trans. Software Engineering, Vol.32, No.1, pp.4–19 (2006).

[23] Belli, F. and Crisan, R.: Towards automation of checklist-based code-
reviews, Proc. 7th International Symposium on Software Reliability
Engineering, pp.24–33 (1996).

[24] Mashayekhi, V., Drake, J.M., Tsai, W.-T. and Riedl, J.: Dis-
tributed, collaborative software inspection, IEEE Software, Vol.10,
No.5, pp.66–75 (1993).

[25] Fenton, N.E. and Ohlsson, N.: Quantitative analysis of faults and fail-
ures in a complex software system, IEEE Trans. Software Engineer-
ing, Vol.26, No.8, pp.797–814 (2000).

[26] Menzies, T., Greenwald, J. and Frank, A.: Data mining static code at-
tributes to learn defect predictors, IEEE Trans. Software Engineering,
Vol.33, No.1, pp.2–13 (2007).

Takehiro Wakabayashi is in the Gradu-
ate School of Information Science Nagoya
University, Japan. He obtained his Bach-
elor of Engineering degree from the
Department of Information Engineering,
School of Engineering, Nagoya Univer-
sity, Japan in 2016. His research inter-
ests include empirical software engineer-

ing and software reviews and inspections.

Shuji Morisaki is an associate professor
at Nagoya University, Japan. Previously,
he was a software engineer in the Japanese
software industry. He received his Doc-
tor of Engineering degree from Graduate
School of Information Science, Nara In-
stitute of Science and Technology, Japan
in 2001. His research interests include

empirical software engineering, software reviews and inspec-
tions, and mining software repositories.

Norimitsu Kasai is a system engineer at
Mitsubishi Electronic Corporation. He re-
ceived his Doctor of Engineering degree
from Nara Institute of Science and Tech-
nology, Japan in 2014. His research in-
terests include software / system engineer-
ing, and source code analysis.

Noritoshi Atsumi is a designated assis-
tant professor of Strategy Office, Informa-
tion and Communications, Nagoya Uni-
versity. He received Doctor of Engineer-
ing from Nagoya University in 2007. His
research interests include software reuse,
software development support, software
maintenance and program analysis. He is

a member of JSSST, IEICE, IPSJ, IEEE-CS, ACM.

Shuichiro Yamamoto received his B.S.
in information engineering from Nagoya
institute of Technology in 1977, and his
M.S. in information engineering from
Nagoya University in 1979, and his Doc-
tor of Engineering degree from Nagoya
University in 2000. He is a professor of
Nagoya University. Previously, he was the

first fellow of NTT Data research and development headquarters.
He joined NTT in 1979. He moved NTT Data Corporation in
2002. And he moved Nagoya University in 2009.

c© 2020 Information Processing Society of Japan 149

