
Journal of Information Processing Vol.28 258–266 (Apr. 2020)

[DOI: 10.2197/ipsjjip.28.258]

Regular Paper

A Parameterized Harmony Model
for Automatic Music Completion

ChristophM. Wilk1,a) Shigeki Sagayama2,b)

Received: July 7, 2019, Accepted: January 16, 2020

Abstract: In this paper, we propose harmony generation according to user input parameters based on fundamen-
tal harmonic properties as a new approach to the problem of automatic music completion (the automatic generation
of music pieces from any incomplete fragments of music), which we have proposed as a generalization of conven-
tional music information problems such as automatic melody generation and harmonization. The goal is enabling
possibly inexperienced users to turn partial musical ideas into complete pieces for quick exploration of musical possi-
bilities. Therefore, the focus lies on response to intuitive modes of input, allowing the user to intentionally shape the
generated music. To that end, parameterized harmony generation utilizes fundamental musical principles which are
understandable by both user and computer, instead of conventional probabilistic models (which imply imitation of a
style or data corpus) or restrictive rule-based models. We apply this approach to the automatic completion of four-part
chorales, using the harmonic concepts of active tones, cadences and key modulation. We implemented a system that
jointly optimizes harmony and voicing considering both user input and music theory. Our system was evaluated by
a professional composer and in a subjective evaluation experiment. We also invite the reader to use our system at
http://160.16.202.131/automatic music completion.

Keywords: automatic music completion, algorithmic composition, harmony, key modulation, voicing

1. Introduction

Algorithmic composition is a popular application of artificial
intelligence in music since the 1950s [1], and many algorithms
have been proposed over the years [2], [3], [4]. However, many
of these algorithms autonomously compose music, effectively re-
placing a human composer. On the contrary, our goal is to sup-
port human creativity, make music composition more accessi-
ble to users without extensive musical knowledge, and to pro-
vide tools to efficiently explore musical ideas such as melodic
or harmonic motifs. This implies that it is important to mean-
ingfully process user input. Several existing systems do this,
but with significant limits to the type of input. A popular prob-
lem is constrained melody generation. Possible modes of in-
put include lyrics and harmony progressions [5], abstract param-
eters [6], complete melodies to generate a countermelody [7], or
melody fragments to interpolate [8] or transform [9]. The inverse
problem of melody harmonization is also popular and usually
processes a single, complete melody as input [10], [11], [12].

However, automatic music completion aims to go further, and
simultaneously provide as many modes of input as possible, while
not necessarily requiring any, i.e., an ideal system could process
any amount of input in multiple domains (pitch, rhythm, voice,
harmony, etc.), however incomplete, and automatically generate
all missing parts in all domains. In this paper, we apply this ap-

1 Graduate School of Advanced Mathematical Sciences, Meiji University,
Nakano, Tokyo 164–8525, Japan

2 The University of Tokyo, Bunkyo, Tokyo 113–8654, Japan
a) wilk@meiji.ac.jp
b) sagayama@74.alumni.u-tokyo.ac.jp

proach to four-part chorales. We allow users to freely input notes
in all four voices and also constrain harmony directly, and indi-
rectly using the parameters proposed in this paper. An exemplary
result is shown in Fig. 1. We chose four-part chorales, because
they are a well-studied and complex discipline of classical music,
with strict guidelines that facilitate the evaluation of our algo-
rithm, but the principle of automatic music completion is applica-
ble to any music genre. The FlowComposer [13] is a system with
a similar goal to ours, and generates single melodies with asso-
ciated harmony progressions while processing constraints in both
domains. While not their focus, the algorithms DeepBach [14]
and Coconet [15] can process note input in multiple voices to
generate chorales, but do not provide the user with the means
to influence the harmony, nor to deviate from the style of Bach.

In this paper, we make a case for parameterized generation of
harmony progressions. Conventional approaches are usually ei-
ther based on rule sets [16], [17], [18] or utilize probabilistic mod-
els, i.e., the algorithm outputs harmonies according to their preva-
lence in data [19], [20], [21] or according to their fitness with re-
spect to penalty functions [22], [23]. However, such algorithms
provide little freedom to influence the harmony generation pro-
cess (sometimes, overall styles can be chosen). Instead, we pro-
pose to model harmony based on fundamental harmonic proper-
ties that allow users to tune the harmony generation throughout
the piece. For example, the harmony could increase in complex-
ity, culminate in a resolution, or modulate into another key wher-
ever the user wants it to. As a first application of this principle,
we present three harmony parameters, which influence how the
harmony develops at every bar in the piece.

c© 2020 Information Processing Society of Japan 258

Journal of Information Processing Vol.28 258–266 (Apr. 2020)

Fig. 1 A result of the automatic music completion system (input notes black, generated notes blue).

2. Automatic Music Completion

2.1 Free User Input & Parameterized Harmony Generation
Our motivation is to provide automatic music composition as-

sistance with as much freedom to input musical ideas as possible,
which is mainly influenced by two factors.
(1) Allowing input of any size: No input at all, an almost

complete melody with a short section missing, or multiple
melody fragments in possibly different voices.

(2) Providing multiple modes of input, e.g., pitch, harmony,
rhythm, structure, or tuning parameters that allow a user to
intuitively influence the automatic generation process.

The harmony model proposed in this paper addresses the second
factor by providing the user with tuning parameters that deter-
mine what kind of harmony progression will be generated. While
this model is applied to chorales in this paper, it is based on funda-
mental musical principles, and therefore also applicable to other
music genres.

The GUI of our system allows users to freely input notes for
four voices in piano roll format. For example, a user might think
of an interesting melodic motif and insert it such that it moves
through different voices (e.g., in succession from bass to soprano
as in famous fugues). Our system can then compute the missing
notes to turn the creative idea of the user into something com-
plete. Furthermore, the presented harmony parameterization pro-
vides an abstract method to influence how the underlying har-
mony is generated. Using the parameter sliders of the interface,
one can, for example, design a harmonic development that first
increases in harmonic complexity, then modulates and finally re-
solves in the new key. While note input is quite easy for any
user, the parameters are closely linked to musical concepts, and
therefore, knowledge about these concepts is required to use the
parameters to their full potential.

2.2 Optimization Approach
We follow the design principle of generating music pieces that

best fit the user input. Therefore, we chose optimization instead
of random sampling as the fundamental method for automatic
composition. Our four-part chorale model is based on the com-
mon assumption [24], [25] that harmonies are hidden states of
observable voicings (arrangements of notes according to the un-
derlying harmony). Accounting for the mutual dependence of
harmonic and melodic development [26], we jointly optimize the
harmony progression H ≡ (h1, . . . , hN) and the corresponding
voicing sequence V ≡ (v1, . . . , vN) using the following optimiza-

Fig. 2 A graphical representation of our music model. Harmonies hi are
regarded as hidden states of observable voicings vi. In contrast to the
typical hidden Markov model structure, voicings are also dependent
on previous voicings in order to generate smooth voice leading.

tion objective.

H∗,V∗ = arg max
H,V

∏
i

F(vi, hi | vi−1, hi−1, vi−2) (1)

Note, that F does not encode a probability, but instead a weight
that corresponds to how preferable a certain harmony or voicing
is in the given context. For a complete definition of F, we refer
to Eq. (14). However, the dependencies between harmonies and
voicings in F are already illustrated in Fig. 2.

3. Harmony Model

3.1 General Approach
Our model is based on functional harmony, and explicitly

avoids the learning of harmony probabilities from data, because
optimizing according to these probabilities would lead to the gen-
eration of very common, and thus not very interesting harmony
progressions. Instead, we want to enable users to decide what
kind of harmony progression they want by using the parame-
ters discussed in the next section. However, we first restrict the
huge search space by constraining which transitions of functional
harmonies are allowed. We denote the degree of a harmony hi

(i.e., the position of its root in the scale of a musical key) as
di ∈ {I,II,III,IV,V,VI,VII}. To decide which transitions between
functional degrees are acceptable, we use the following binary
weight function FD, which is obtained by analyzing a corpus of
music pieces with functional harmony annotation [27].

FD(di | di−1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if P(di | di−1) > T

0 else
(2)

where T is a threshold that determines which level of prevalence
is high enough for the transition from di−1 to di to be generally
acceptable. High values of T restrict the possible transitions to
more common patterns and speed up computation time, whereas
low values increase the flexibility of the model at the cost of in-
creased computation time and the risk of allowing unorthodox

c© 2020 Information Processing Society of Japan 259

Journal of Information Processing Vol.28 258–266 (Apr. 2020)

harmony progressions. We chose T = 5% for our experiments.
In order to generate consistent harmonic rhythms and prevent

harmonies from continuing for too long, we reduce the weight of
harmony continuation (i.e., FD(di | di−1) for di = di−1) based on
the strength of the current beat bi (in 4/4 time signature). Thus,
the initial weight of a harmony hi depends on its functional degree
di and beat bi as follows.

FH(hi | hi−1, bi)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

FD(di | di−1) if di � di−1

0.75 else, if bi ∈ {2, 4} (weak beat)

0.5 else, if bi = {1, 3} (strong beat)

(3)

These values were chosen heuristically such that usually both one
and two beat long harmonies are generated. Furthermore, the al-
gorithm suppresses 3rd and 4th chord inversions (e.g., by 10−3),
since they should be avoided according to music theory.

3.2 User Input Parameters
The core of our new harmony model are parameters that can be

tuned by the user and vary throughout the music piece. Our goal
is to model harmony based on fundamental principles that can be
understood by both user and computer, and influenced by above
mentioned parameters to intentionally shape the generated har-
mony progressions. Therefore, we designed our model such that
the relative weight of transitions between different harmonies de-
pends only on user input.

In the following sections, we discuss several quantifiable prop-
erties xout(hi) of generated output harmonies. In order to respond
to user input in the form of the desired property values xin (pa-
rameters), we define the following parameter weight function FP.

FP(xout(hi) | xin) = 2−(xout(hi)−xin)2/σ2
(4)

This weight is the highest if the property xout of the harmony hi

equals exactly the value xin desired by the user, and decreases
with the difference between xout and xin. The tuning parameter
σ determines how strongly the algorithm tries to fulfil the user’s
demands. At a difference of σ between xout and xin, the weight is
reduced to half its maximum value.
3.2.1 Active Tones

In principle, we allow every chord quality (e.g., major, minor,
dominant seventh, etc.) to appear on every functional degree in a
harmony progression. This design choice is made based on the
hypothesis that most (even uncommon) harmonies can be accept-
able if they are properly resolved. In that context, the concept of
active tones or tendency tones is important. These are notes that
induce a desire for resolution in the listener. A famous example
are leading tones, which are notes a semitone below the root note
of a key, and generally exhibit a tendency, i.e., induce a desire to
be resolved towards the root note. Another example are sevenths
of seventh chords. Furthermore, every note not contained in the
scale of a musical key can be classified as an active tone, since
they exhibit the tendency to resolve back into the scale. There-
fore, active tones are a useful property to compare different chord
qualities. For example, a I:maj chord in a major scale contains
no active tones and consequently sounds very stable, whereas a

I:min7 chord in the same scale contains two active tones (the third
and the seventh) and thus sounds less stable, demanding resolu-
tion. To capture this property, we define the following parameter.

aout(hi) = Number of active tones in hi (5)

This means if a user inputs ain = 1, harmonies with one active
tone have the highest weight. In our experiments, we used σ = 1
for active tones in FP (4), i.e., for ain = 1, harmonies with 0 or
2 active tones have half the maximum weight. Since our system
jointly optimizes harmony and voicing, we can ensure that active
tones are properly resolved by suppressing the weights of voic-
ings without resolution by a factor of 10−6 (allowing user input to
ignore this rule, but following it otherwise).
3.2.2 Cadences

The second property relates to harmonic rhythm and resolu-
tion. A few models in previous publications consider harmonic
rhythm, such as the rules of the system Kulitta [21] which con-
sider the length of harmonies, or our own previous harmony
model [28]. However, these models do not guarantee consistent
rhythms (e.g., important harmonies can occur on unimportant
beats) and cannot be explicitly influenced by the user.

We define the next parameter based on the hypothesis that har-
mony progressions evoke an impression of consistent rhythm, if
important cadences (harmonic resolutions) consistently occur on
the same beat in a bar, which is the case in a vast number of exist-
ing music pieces. In many pieces, this dominant beat is the first
beat. However, in short pieces and many of Bach’s chorales, it
can also be the third beat, which is what we adopt for our chorale
model. To define the parameter, we classify several types of ca-
dences based on the strength of their harmonic resolution.
• Authentic cadences, which evoke the strongest feeling of

resolution and consist of a I chord without active tones and
in root position, preceded by a V chord in root position.

• Imperfect cadences, into which we classify all cadences end-
ing in a I chord in root position without active tones. This I
chord can be preceded by inverted V chords, VII chords and
IV chords (plagal cadence).

• Weak cadences, which comprise all movements from V, VII
and IV chords to inverted I chords or VI chords (deceptive
cadence). The I or VI chord can also contain active tones.

Based on these classes, we define a parameter as follows.

cout(hi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 if hi is I of an authentic cadence

2 if hi is I of an imperfect cadence

1 if hi is I or VI of a weak cadence

0 else

(6)

We again use σ = 1 for the weight function FP (4). However, the
user input cin is only considered at the third beat (the dominant
beat) of each bar. On all other beats, cin is set to 0 in order to avoid
cadences that disrupt the harmonic rhythm. On the other hand, if
a cadence occurs, the rhythm weight function FH (3) is inverted,
i.e., FH(hi | hi−1, bi) = 1 for hi = hi−1 and FH(hi | hi−1, bi) = 0.75
for hi � hi−1, in order to obtain longer cadential resolution chords
(I or VI), which strengthen the harmonic rhythm.

c© 2020 Information Processing Society of Japan 260

Journal of Information Processing Vol.28 258–266 (Apr. 2020)

3.2.3 Key Modulation
Key modulation can make harmony progressions significantly

more interesting. However, many previous models either avoid
its complications or use a simplistic approach. Such a common
approach is the use of context-free grammars. While hierarchical
rules for key modulation might be sufficient for analysis [29] or
synthesis based on random sampling with low modulation proba-
bilities [21], these rules do not capture the sequential dependency
of modulations, which can lead to the problem that two neighbor-
ing chords become harmonically very distant after consecutive
applications of the hierarchical modulation rule. Instead, we de-
fine the following modulation rules.
(1) Every chord in a key can be reinterpreted as a subdominant

(II or IV) or dominant chord (V, rarely VII) of a new key.
(2) A consecutive modulation can only occur after a cadence has

properly established the new key (which distinguishes real
modulation from tonicization and modal interchange, both
of which can be captured as active tones).

This fundamental principle based on reinterpretation ensures that
modulations are more consistent, because the pivot chords at
which the modulation occurs relate to both the previous and the
following key. It even allows a wider range of modulations than
hierarchical rules, because the root note of the new key does not
have to be a degree of the previous key (only any subdominant or
dominant degree of the new key has to be a degree of the old key).
In addition, since the user can also specify how many active tones
he wants thanks to the first parameter (5), he can influence how
distant the new key can be (without active tones, only common
chord modulation to very close keys is possible). Since modula-
tion to a subdominant chord of the next key is generally smoother
(less abrupt) thanks to the longer preparation of the new tonic, we
define the modulation parameter as follows.

mout(hi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 if hi is part of chain modulation

2 if hi is dominant pivot chord

1 if hi is subdominant pivot chord

0 else

(7)

A chain modulation is a rapid succession of key modulations,
usually by fifth. We again use σ = 1 for the weight function
FP (4). If a modulation already occurred in the current bar, mout

of every harmony in the new key is set to 2, such that chain mod-
ulation is only preferable for min > 2.
3.2.4 Conflicting Parameters

There are some parameters which can have contradictory ef-
fects. For example, an authentic cadence prohibits active tones
in the tonic chord. Thus, if a user inputs high parameter values
for both ain (demanding active tones) and cin (demanding a ca-
dence without active tones), their effects contradict each other.
Therefore, ain is ignored for tonic chords in such cadences, i.e.,
if both parameter values are high, the algorithm will try to gener-
ate an authentic cadence with many active tones in the preceding
chords. Likewise, in order to facilitate modulation in cases where
cin is very low, i.e., a cadence might have not yet occurred in the
current key, thus violating our second modulation rule defined in
Section 3.2.3, cin is ignored for modulation pivot chords.

4. Voicing Model

4.1 General Approach
We begin by restricting the search space using a binary con-

straint function FV and then accounting for melodic context as
discussed in the next sections.

FV (vi | hi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if constraints satisfied

0 else
(8)

The following constraints were chosen based on music theory.
• The notes of each voice have to be within typical choir voice

ranges of two octaves with the highest notes being C6 for
soprano, F5 for alto, A4 for tenor, and E4 for bass.

• The notes of soprano/alto and alto/tenor have to be within
the distance of a tenth from each other. Tenor and bass notes
can be up to two octaves apart.

• Two nonharmonic tones are allowed per voicing. The algo-
rithm considers passing, neighboring, and escape tones.

• Active tones cannot be doubled. On the first beat of a har-
mony only a non-altered fifth can be omitted.

4.2 Correction Factors
In order to generate smooth transitions between voicings, we

need to account for their dependence on the preceding notes
(voicings). To that end, we use what we call correction factors,
which are conditional weights F(a | b) learned from data. For our
experiments, we used a set of 270 Bach chorales [30] for train-
ing. The correction factors have the form F(a | b) = P(a | b)/P(a).
The normalization using P(a) removes unwanted biases towards
a. For example, in case of notes, P(a | b) would introduce a bias
towards notes in the middle of a voice range, because these oc-
cur most often in the data. However, if a user inserts high notes,
we do not want the algorithm to forcibly move the melody back
to the middle of the voice range. We only want the algorithm to
consider whether or not a is preferable in the current context b in
order to generate good voice leading.
4.2.1 Melody Intervals

We first consider how voices move from one note to the next.
Denoting a voice x ∈ {S , A,T, B} (soprano, alto, tenor, bass) in
a voicing vi = (nS

i , n
A
i , n

T
i , n

B
i) comprising the four voices’ notes,

we define the melody interval correction factor FI as follows.

FI(n
x
i , n

x
i−1) =

P(nx
i | nx

i−1)

P(nx
i)

(9)

This factor ensures that unmelodic intervals are unlikely to be
generated, and that the algorithm prefers to move voices in
smaller steps, i.e., writes smoother melodies.
4.2.2 Relative Motion

The second consideration is how pairs of voices move in re-
lation to each other. For the discussion of relative motion, we
introduce the following notation for intervals Ix→y

i−1→i.

Ix→y
i−1→i ≡ nyi − nx

i−1 (10)

The arrow is omitted for identical voices x and positions i. We
define the relative motion correction factor FR as follows.

c© 2020 Information Processing Society of Japan 261

Journal of Information Processing Vol.28 258–266 (Apr. 2020)

FR(nx
i , n
y
i , n

x
i−1, n

y
i−1) =

P(Ix
i−1→i, I

y
i−1→i | Ix→y

i−1)

P(Ix
i−1→i, I

y
i−1→i)

(11)

This factor encourages the generation of contrary motion, and
also reduces the probability of generating forbidden parallel mo-
tion, which is, however, not completely prevented. Therefore,
we additionally suppress consecutive fifths, octaves, seconds and
sevenths by a factor of 10−6.
4.2.3 Melodic Motion

Lastly, we consider the overall motion of melody lines. For the
discussion of melodic motion, we introduce the following nota-
tion for motion types Mx

i−1→i.

Mx
i−1→i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Skip Up if Ix
i−1→i > 2

Step Up if 0 > Ix
i−1→i ≥ 2

Hold if Ix
i−1→i = 0

Step Down if − 2 ≤ Ix
i−1→i < 0

Skip Down if − 2 > Ix
i−1→i

(12)

We define the melodic motion correction factor FM as follows.

FM(nx
i , n

x
i−1, n

x
i−2) =

P(Mx
i−1→i |Mx

i−2→i−1)

P(Mx
i−1→i)

(13)

This factor reduces the probability of consecutive skips to appear
in a generated melody, and lets the algorithm prefer alternating
motion. Since Mx

i−1→i has significantly lower dimensionality than
Ix
i−1→i, we can capture larger melodic contexts without encoun-

tering data sparsity problems. In our experiments, we consider
up to four previous melody notes, i.e., expand the context of FM

to Mx
i−4→i−3. This results in the additional benefit of reducing

the probability of generating consecutive unisons (nx
i = nx

i−1), be-
cause in the training data, voices only rarely stay on the same note
for a longer time (large melodic context).

5. Optimization Algorithm

5.1 Complete Optimization Objective
Combining all elements discussed in the two previous sections,

we obtain the following objective function for Eq. (1).

F(vi, hi | vi−1, hi−1, vi−2)

= FP(aout(hi) | ain) FP(cout(hi) | cin) FP(mout(hi) |min)

FH(hi | hi−1, bi) FV (vi | hi)
∏

x,y∈v | x>y
FR(nx

i , n
y
i , n

x
i−1, n

y
i−1)

∏
x∈v

FI(n
x
i , n

x
i−1) FM(nx

i , n
x
i−1, n

x
i−2) (14)

where x, y ∈ v | x > y denotes all unique pairs of voices in a
voicing.

5.2 Nested Beam Search
The number of possible harmony and note combinations is very

large. We have previously used Dijkstra’s algorithm to explore
the search space [28], which, however, is infeasible for the pre-
sented model. We have improved the computation speed by im-
plementing a beam search algorithm [31], but this still has the
drawback that sometimes certain harmonies become too domi-
nant. For example, in a section with few constraints, almost all

voicing candidates remaining in the beam can belong to a single
harmony. In this case, if the beam search reaches a time step with
input constraints that do not fit this harmony, the algorithm often
cannot find a smooth harmony transition or voice leading.

Therefore, we have implemented a nested beam search algo-
rithm, with a beam width for harmony wh and for voicing wv.
This algorithm retains up to wh different harmony candidates in
the beam at each time step, and up to wv voicing possibilities for
each harmony. Ideal values for these beam widths strongly de-
pend on user input. If set to low numbers, computation speed in-
creases, but the system might be unable to respond well to certain
input constraints, because the beam search can encounter time
steps where no remaining candidate fits the user input. As initial
default values in our experiments, we used wh = 100 and wv = 10.
5.2.1 Harmony Filtering

For beam search to be effective, the number of dead ends, i.e.,
harmonies without possible transition given the constraints of the
next time step, should be minimized. Therefore, we apply a fil-
tering algorithm that searches for dead ends and removes them
from the search space before starting the beam search. It does
this by starting at the last time step N of the piece and remov-
ing all harmony candidates that conflict with input notes at this
time step. The algorithm then continues to the previous time step
N−1 and removes all harmonies that cannot transition to any har-
mony remaining for time step N. From the remaining harmonies
at time step N − 1, it again removes all those that conflict with
input notes at this time step, and then iteratively continues this
procedure until the beginning of the piece is reached.
5.2.2 Dynamic Voice Limits

Considering that small melody steps are much more likely than
large jumps, it is often unnecessary for the beam search to explore
possible voicings including such jumps. However, for certain in-
puts (distant input notes in quick succession), these possibilities
cannot be ignored. Therefore, we implemented dynamic voice
limits, which restrict the search space according to user input.
For each voice x at each time step i, our algorithm searches for
the closest input notes of each voice before and after time step i.
Based on these notes, the highest note n̂x

i and lowest note ňx
i that

are explored at time step i for voice x are computed as follows,
denoting the time steps of the closest notes of voice y before and
after time step i as by and ay, respectively (implying by < i < ay).

n̂x
i =

∑
y∈v

⎛⎜⎜⎜⎜⎜⎜⎝
nyby + d̂xy

i − by
+

nyay + d̂xy

ay − i

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝
∑
y∈v

(
1

i − by
+

1
ay − i

)⎞⎟⎟⎟⎟⎟⎟⎠
−1

(15)

ňx
i =

∑
y∈v

⎛⎜⎜⎜⎜⎜⎜⎝
nybb
+ ďxy

i − by
+

nyay + ďxy

ay − i

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝
∑
y∈v

(
1

i − by
+

1
ay − i

)⎞⎟⎟⎟⎟⎟⎟⎠
−1

(16)

where d̂xy and ďxy are preferable minimum and maximum dis-
tances between the notes of two voices. In case no input note
for voice y exists before the time step i, the corresponding time
step by is undefined and thus the related terms nyby + d̂xy/i − by,

nyby + ďxy/i − by and 1/i − by are set to 0. The same applies to ay
if no input note in voice y exists after time step i. In case an input

c© 2020 Information Processing Society of Japan 262

Journal of Information Processing Vol.28 258–266 (Apr. 2020)

Fig. 3 Illustration of the dynamic voice limit computation shown in piano
roll format for the alto voice at time step i. The dynamic limits ňA

i
and n̂A

i restrict the search space to the notes within the red rectan-
gle. The illustration displays the exact values of ňA

i and n̂A
i , which

are then rounded down and up, respectively. The shown example as-
sumes that the visible notes (colored blocks) are all input notes, i.e.,
there are no additional input notes outside of the displayed area.

note in voice y exists exactly at time step i, this note is regarded
as both nyby and nyay , with both by and ay set to 1. After comput-
ing the exact values of n̂x

i and ňx
i , they are rounded up and down,

respectively, in order to obtain integer values corresponding to
actual notes. Figure 3 illustrates a simple case, where three sur-
rounding notes are considered. The limits n̂x

i and ňx
i dynamically

restrict the search space to notes in preferable ranges of these in-
put notes, which in almost all cases include the most likely candi-
dates. Due to weighting the input notes by inverse distance from
time step i, the limits are influenced the strongest by the closest
input notes, ensuring that all important note candidates are con-
sidered.

d̂xy and ďxy were set heuristically. If x is a higher voice than
y, d̂xy denotes the maximum preferable distance between the two
voices, and ďxy denotes the minimum preferable distance. For
two neighboring upper voices (S, A, T), we chose d̂xy = 9 (major
sixth) and ďxy = 3 (minor third), and d̂T B = 16 (major tenth) and
ďT B = 5 (fourth) for the low voices. If x is a lower voice than
y, the situation is geometrically reversed, i.e., d̂xy = −ďyx and
ďxy = −d̂yx. For x = y, the distances specify the preferable range
for melody motion, which we set to d̂xx = 7 and ďxx = −7, i.e.,
motion within fifths up and down. For distant voices, the values
in between are summed up, e.g., d̂S T = d̂S A + d̂AT .

6. Evaluation

6.1 Experimental Setup
For the evaluation of our model, we implemented an interface

that can be accessed online. The interface allows note input in

eighth note resolution. However, harmonies can only change in
quarter note resolution. The system computes melody contours,
i.e., consecutive notes with the same pitch are automatically com-
bined into longer notes. The harmony parameters can be set for
each bar. Since objective evaluation of music is difficult, we first
and foremost invite the reader to experiment with the system at
http://160.16.202.131/automatic music completion.

6.2 Music-Theoretic Evaluation
We asked a professional composer to evaluate our system with

respect to music theory. According to his assessment, the gener-
ated chorales were generally quite good and theoretically correct.
In the following, we discuss problems that were still identified.
As examples, we use the results shown in Fig. 1 and Fig. 4, which
were all generated for the same input notes but different parame-
ter values (Fig. 1) and beam widths (Fig. 4).

Harmonic Rhythm: The only problem in Fig. 1 is the continu-
ation of the G# harmony (bar 2, beat 4) across the bar line, which
also results in a problematic accented nonharmonic tone (F#) in
the bass. This can be resolved by adjusting the weights in Eq. (3)
to suppress harmony continuation across bars.

Voice Leading: The system occasionally generates problem-
atic voice leading, e.g., the consecutive fourths in Fig. 4 (top,
bar 1, between beat 3 and 4), unusual nonharmonic tones (C in
the soprano, Fig. 4, top, bar 1, beat 4), or hidden parallel motion.
However, the voice leading can often be improved by increasing
the beam widths of the search algorithm (see Fig. 4, bottom).

Key Modulation: It can be unclear where a key modulation
occurs, and the notes that change between the keys might not be
properly approached by semitone. This confusion can be caused
by active tones that occur during the key modulation, which re-
duce the clarity of the keys. However, Fig. 4 displays a case where
the key modulation is unclear even without active tones. From
the system’s perspective, the key changes from D� major to A�
major in bar 3, beat 3, but the note that changes between these
keys (G� → G) only appears in bar 4. Furthermore, the cadence
in the new key is only plagal, because ain = 0 prevents the V
chord, which contains the leading tone as an active tone. There-
fore, it is unclear where or even if a key modulation has occurred.
This problem cannot be resolved by increasing the beam width
as demonstrated in Fig. 4. It might be resolved by treating notes
that change between keys as active tones, requiring proper reso-
lution. This would enforce that these notes appear, thus clearly
identifying the key modulation. Furthermore, since these notes
would increase the active tone count, the probability of other ac-
tive tones appearing would decrease. Lastly, the plagal cadence
might require special treatment in the context of key modulation.

6.3 Subjective Evaluation Experiment
In contrast to Section 6.2, the goal of this experiment was to

obtain feedback based on musical intuition instead of theory, and
10 out of 12 participants stated to have little to no knowledge of
music theory. The experiment was conducted online using the
interface mentioned in Section 6.1. Participants were asked to in-
sert some melody notes as well as use the parameters, and then
evaluate the generated music according to the following criteria.

c© 2020 Information Processing Society of Japan 263

Journal of Information Processing Vol.28 258–266 (Apr. 2020)

Fig. 4 Results (input notes black, generated notes blue) for the same user input (notes and harmony pa-
rameters) but different beam widths. Top: Harmony beam width = 30, Voicing beam width = 10.
Bottom: Harmony beam width = 50, Voicing beam width = 20.

Fig. 5 The results of our subjective evaluation experiment, averaged over
12 participants. Generated music was rated with respect to the cri-
teria explained in Section 6.3, where 1 is the worst and 5 the best
rating.

• Harmonic/Melodic Coherence: How intuitively valid the
generated harmonies or melodies are. Anything that con-
tradicts the participants intuition, such as dissonance or un-
expected melody jumps, decreases coherence.

• Harmonic/Melodic Interest: How interesting the generated
harmonies or melodies are.

• Harmonic Response: How well the system responds to the
harmony parameters, and whether the parameters are useful.

• Melodic Response: How well generated melodies go along
with the input melodies.

As can be seen in Fig. 5, we received overall very positive feed-
back. Harmonic coherence was rated the worst, albeit overall still
rated positively. Analysis of the generated music pieces indicates
two possible reasons for the lower rating of harmonic coherence.
One reason is the possible lack of music-theoretic knowledge.
Large values of ain and min can cause frequent occurrence of notes
not contained in the current key, entailing deterioration of key
coherence, which resulted in worse rating by participants who
did not understand the parameters very well. However, based on
feedback of 6 participants who provided comments after trying

varying inputs, even users who did not know the musical con-
cepts behind the parameters could develop an intuition for them.
Thanks to this intuition, key deterioration did not have a bad ef-
fect on rating, because these users could intentionally avoid it. In
general, moderate values of ain and min were reported to make
the harmony more interesting, while high values resulted in less
pleasant results. The second reason for lower harmonic coherence
is the missing consideration of psychoacoustic consonance in our
model. To a certain extent, our parameters influence how conso-
nant a harmony sounds in its context. However, in the key of C
major, for example, our model treats the harmonies D major and
D diminished as equal with respect to the number of active tones,
although the latter would generally be perceived to be less conso-
nant by listeners used to Western tonality [32], which resulted in
worse rating of pieces with multiple diminished chords.

6.4 Quantitative Parameter Analysis
We conducted several experiments to quantitatively investigate

how each parameter affects the generated harmony progressions.
To do so, we generated user input constraints by randomly ex-
tracting short passages spanning two bars from Bach’s chorales
and randomly removing 50% of the notes in these passages. Our
system then regenerated the missing notes based on varying har-
mony parameter values. Two types of experiments were con-
ducted. In the first type, we further removed all notes in the
second bar of the passages, such that the algorithm had more free-
dom to generate harmonies according to the parameter values. In
the second type, the notes in this second bar were not removed,
implying that is was more difficult for the algorithm to follow the
harmony parameters due to stonger constraints. In both types,
this second bar was quantitatively analyzed. For each parame-
ter value, the automatic completion was repeated on 10 different
random passages and results averaged.

c© 2020 Information Processing Society of Japan 264

Journal of Information Processing Vol.28 258–266 (Apr. 2020)

Fig. 6 Effect of the active tone parameter ain (σ = 1). In an empty bar with-
out input notes (third beat of an empty bar in green, average over
whole bar in blue), the correlation with the number of active tones
is quite strong. In the case of 50% input notes (averaged over one
whole bar), the correlation is weaker.

Fig. 7 Effect of the cadence parameter cin. The correlation with cadence
strength (from 0 = no cadence to 3 = authentic cadence, see Sec-
tion 3.2.2) is relatively weak for σ = 1, and with 50% input notes
especially authentic cadences are generated quite rarely.

Active Tones: For analysis of ain, both cin and min were set
to 0. To facilitate the generation of many active tones, more chord
qualities were considered: Diminished seventh, half diminished
seventh, sus4 and suspended seventh chords (in addition to major,
minor, diminished, dominant seventh and minor seventh chords,
which were considered in all other experiments). As can be seen
in Fig. 6, the correlation between parameter value and generated
number of active tones was quite strong, when the analyzed bar
did not have any input notes. If the algorithm is constrained by
input notes, only a limited number of harmonic interpretations of
these notes are possible, and therefore, the harmony parameter
values do not translate into generated active tones as well. For
example, some input notes require interpretation as active tones,
such that active tones are not completely suppressed even for
ain = 0. Furthermore, Bach didn’t use many exotic harmonies,
causing the random passages to prevent the generation of har-
monies with unusually many active tones.

Cadences: Since most cadences require active tones in the
dominant chord, we chose ain = 1.5 and set min to 0 when an-
alyzing cin. Experiments with an empty bar indicated that a value
of σ = 0.5 results in significantly improved correlation between
parameter value and cadence strength, as can be seen in Fig. 7.
Regarding cadences, the input note constraints make it more dif-
ficult for the algorithm to follow parameter values compare to the
active tone parameter. Since cadences require certain patterns of
harmonies, input notes can prohibit such a harmonic interpreta-
tion. In particular, the authentic cadence requires a downward
motion by fifth in the bass, which can be blocked by input notes.
This results in generally lower values of cadence strength and sig-
nificantly higher statistical uncertainty.

Fig. 8 Effect of the modulation parameter min (σ = 1). We distinguish
between subdominant and dominant modulations. The sum of both
types is the total number of modulations within the analyzed bar,
e.g., this sum is 4 at min = 3, meaning that the harmony modulates at
every beat (chain modulation).

Modulation: Modulations also often require active tones,
hence we again chose ain = 1.5 and set cin to 0 when analyzing
min. According to design, with increasing min one expects to first
observe subdominant modulation, then a change towards dom-
inant modulation, followed by an increase of both types (espe-
cially dominant), which can be observed well in case of an empty
bar in Fig. 8. However, input notes make it difficult for the algo-
rithm to follow the parameter values, and the random constraints
based on Bach’s chorales seem to favor harmonic interpretations
with subdominant modulation. The dependence on input can be
seen especially well for min = 3, where multiple random passages
forced the algorithm to continue the same harmony for more than
one beat, breaking the chain modulation (causing an unexpected
decrease of the sum of the orange and magenta curves).

7. Conclusion

In this paper, we proposed a novel model for harmony pro-
gressions in order to tackle the problem of automatic music com-
pletion. It is part of a system that allows users to freely insert
melodic fragments in up to four voices as input constraints, and to
influence the harmony generation using tuning parameters. The
system outputs complete four-part chorales. It received favorable
feedback from a professional composer, and was generally well
received in a subjective evaluation experiment.

The system could be improved by investigating the relation be-
tween parameters, e.g., active tones during key modulation, or the
addition of a parameter for psychoacoustic consonance. Further-
more, the current parameters are closely related to concepts of
music theory and require significant knowledge to display their
full potential. Therefore, an additional layer of abstraction such
as parameters for emotions, and investigation how they relate to
the discussed musical concepts could make the system easier to
use for users with little knowledge of music theory.

Our goal is to apply the principle of automatic music comple-
tion to a wider variety of music. Since the idea is not constrained
to chorales, future research could realize systems that allow users
to create their own jazz or pop songs, or even orchestral pieces.
The focus of such systems is to realize the musical ideas of their
users, making music composition more accessible to beginners as
well as providing useful tools for experienced musicians.

c© 2020 Information Processing Society of Japan 265

Journal of Information Processing Vol.28 258–266 (Apr. 2020)

Acknowledgments We thank Professor Yoshihiro Kanno for
his competent music-theoretical analysis of our generated music.

This work was in part supported by JSPS KAKENHI Grant
Number 17H00749.

References

[1] Hiller, L.A. and Isaacson, L.M.: Experimental music: Composition
with an electronic computer (1959).

[2] Fernández, J.D. and Vico, F.: AI methods in algorithmic composition:
A comprehensive survey, Journal of Artificial Intelligence Research,
Vol.48, pp.513–582 (2013).

[3] Cope, D.: Experiments in musical intelligence, Proc. International
Computer Music Conference (1987).

[4] Quintana, C.S., Arcas, F.M., Molina, D.A., Rodrı́guez, J.D.F. and
Vico, F.J.: Melomics: A case-study of AI in Spain, AI Magazine,
Vol.34, No.3, pp.99–103 (2013).

[5] Fukayama, S., Nakatsuma, K., Sako, S., Nishimoto, T. and Sagayama,
S.: Automatic song composition from the lyrics exploiting prosody of
the Japanese language, Proc. 7th Sound and Music Computing Con-
ference (SMC), pp.299–302 (2010).

[6] Roig, C., Tardón, L.J., Barbancho, I. and Barbancho, A.M.: Auto-
matic melody composition based on a probabilistic model of music
style and harmonic rules, Knowledge-Based Systems, Vol.71, pp.419–
434 (2014).

[7] Biles, J.A. et al.: GenJam: A genetic algorithm for generating jazz
solos, ICMC, Vol.94, pp.131–137 (1994).

[8] Hirai, T. and Sawada, S.: Melody2Vec: Distributed Representations
of Melodic Phrases based on Melody Segmentation, Journal of Infor-
mation Processing, Vol.27, pp.278–286 (2019).

[9] Roberts, A., Engel, J., Raffel, C., Hawthorne, C. and Eck, D.: A
Hierarchical Latent Vector Model for Learning Long-Term Structure
in Music, CoRR, Vol.abs/1803.05428 (2018) (online), available from
〈http://arxiv.org/abs/1803.05428〉.

[10] Freitas, A. and Guimaraes, F.: Melody harmonization in evolution-
ary music using multiobjective genetic algorithms, Proc. Sound and
Music Computing Conference (2011).

[11] Raczyński, S.A., Fukayama, S. and Vincent, E.: Melody harmoniza-
tion with interpolated probabilistic models, Journal of New Music Re-
search, Vol.42, No.3, pp.223–235 (2013).

[12] Pachet, F. and Roy, P.: Musical harmonization with constraints: A
survey, Constraints, Vol.6, No.1, pp.7–19 (2001).

[13] Papadopoulos, A., Roy, P. and Pachet, F.: Assisted lead sheet composi-
tion using flowcomposer, International Conference on Principles and
Practice of Constraint Programming, pp.769–785, Springer (2016).

[14] Hadjeres, G., Pachet, F. and Nielsen, F.: DeepBach: A Steerable
Model for Bach chorales generation, arXiv preprint arXiv:1612.01010
(2016).

[15] Huang, C.-Z.A., Cooijmans, T., Roberts, A., Courville, A. and Eck,
D.: Counterpoint by convolution, ISMIR (2017).

[16] Ebcioğlu, K.: An expert system for harmonizing chorales in the
style of JS Bach, The Journal of Logic Programming, Vol.8, No.1-2,
pp.145–185 (1990).

[17] Koops, H.V., Magalhaes, J.P. and De Haas, W.B.: A functional ap-
proach to automatic melody harmonisation, Proc. 1st ACM SIGPLAN
Workshop on Functional Art, Music, Modeling & Design, pp.47–58,
ACM (2013).

[18] Navarro, M., Caetano, M., Bernardes, G., de Castro, L.N. and
Corchado, J.M.: Automatic generation of chord progressions with
an artificial immune system, International Conference on Evolution-
ary and Biologically Inspired Music and Art, pp.175–186, Springer
(2015).

[19] Ponsford, D., Wiggins, G. and Mellish, C.: Statistical learning of
harmonic movement, Journal of New Music Research, Vol.28, No.2,
pp.150–177 (1999).

[20] Eigenfeldt, A. and Pasquier, P.: Realtime generation of harmonic
progressions using controlled Markov selection, Proc. ICCC-X-
Computational Creativity Conference, pp.16–25 (2010).

[21] Quick, D.: Kulitta: A framework for automated music composition,
Yale University (2014).

[22] Phon-Amnuaisuk, S. and Wiggins, G.A.: The four-part harmonisation
problem: A comparison between genetic algorithms and a rule-based
system, Proc. AISB ’99 Symposium on Musical Creativity, pp.28–34,
AISB London (1999).

[23] Donnelly, P. and Sheppard, J.: Evolving four-part harmony using ge-
netic algorithms, European Conference on the Applications of Evolu-
tionary Computation, pp.273–282, Springer (2011).

[24] Papadopoulos, H. and Peeters, G.: Large-Scale Study of Chord Es-
timation Algorithms Based on Chroma Representation and HMM,

International Workshop on Content-Based Multimedia Indexing,
CBMI ’07, pp.53–60 (2007).

[25] Ueda, Y., Uchiyama, Y., Nishimoto, T., Ono, N. and Sagayama, S.:
HMM-based approach for automatic chord detection using refined
acoustic features, 2010 IEEE International Conference on Acoustics
Speech and Signal Processing (ICASSP), pp.5518–5521, IEEE (2010).

[26] Marx, A.B.: Theory and practice of musical composition, Gordon
(1866). Translated by Saroni, H.S.

[27] Kaneko, H., Kawakami, D. and Sagayama, S.: Functional harmony
annotation data-base for statistical music analysis, ISMIR (2010).

[28] Wilk, C.M. and Sagayama, S.: Harmony and voicing interpolation for
automatic music composition assistance, APSIPA (2018).

[29] Rohrmeier, M.: Towards a generative syntax of tonal harmony, Jour-
nal of Mathematics and Music, Vol.5, No.1, pp.35–53 (2011).

[30] Classical Archives LLC, available from 〈https://www.
classicalarchives.com〉 (accessed 2018-05-23).

[31] Wilk, C.M. and Sagayama, S.: Automatic Music Completion Based
on Joint Optimization of Harmony Progression and Voicing, Journal
of Information Processing, Vol.27, pp.693–700 (2019).

[32] Fujisawa, T., Cook, N.D., Nagata, N. and Katayose, H.: A Psy-
chophysical Model of Chord Perception, SIGMUS 90 (2006-MUS-
066), pp.99–104 (2006).

Christoph M. Wilk was born in 1992.
He received his M.S. degree from
Heidelberg University, Germany in 2017.
He is currently a Ph.D. student at Meiji
University. His research interest is math-
ematical modeling of musical concepts.

Shigeki Sagayama was born in 1948. He
received his B.E., M.S. and Ph.D. degrees
from the University of Tokyo, Tokyo,
Japan, in 1972, 1974, and 1998, respec-
tively, all in mathematical engineering and
information physics. After spending 24
years with NTT Laboratories in Tokyo
and Yokosuka, Japan, and ATR Interpret-

ing Telephony Laboratories, Kyoto, Japan, he became a Professor
of the Graduate School of Information Science, Japan Advanced
Institute of Science and Technology (JAIST), Ishikawa. In 2000,
he was appointed Professor at the University of Tokyo. He was a
Professor of Meiji University from 2014 to 2019. His major re-
search interests include processing, recognition and synthesis of
speech, music, acoustic signals, handwriting, and images. Prof.
Sagayama received the National Invention Award from the Insti-
tute of Invention of Japan in 1991, the Director General’s Award
from the Science and Technology Agency of Japan in 1996, and
other academic awards. He is a fellow of IEICEJ, a life member
of IEEE and a member of the ASJ (Acoustical Society of Japan)
and IPSJ.

c© 2020 Information Processing Society of Japan 266

