
IPSJ Transactions on System LSI Design Methodology Vol. 1 48–57 (Aug. 2008)

Regular Paper

Dynamic Power Management for Embedded System Idle

State in the Presence of Periodic Interrupt Services

Gang Zeng,
†1

Hiroyuki Tomiyama
†1

and Hiroaki Takada
†1

Generally, there are periodic interrupt services such as periodic clock tick
interrupts in the real-time embedded systems even though the system is in the
idle state. To minimize the power consumption of idle state, power management
therefore should consider the effect of periodic interrupt services. In this paper,
we deal with this issue in two different cases. In case the periodic interrupt
cannot be disabled, we formulate the power consumption of idle state, and
propose static and dynamic approaches for the optimal frequency selection to
save idle power. On the other hand, in case the periodic interrupt can be
disabled, we propose the configurable clock tick to disable the interrupt service
until the next task is released so that the processor can stay in the low power
mode for longer time. The proposed approaches are implemented in a real-time
OS; and its efficiency has been validated by theoretical calculations and actually
measurements on an embedded processor.

1. Introduction

Energy consumption has become one of the major concerns in today’s embed-
ded system design especially for battery-powered devices. For the sake of safety,
in real-time systems the utilization of processor is less than 100% even if all tasks
run at WCET (worse case execution time). Moreover, workload of each task may
vary from instance to instance, which results in the less average execution time
than the WCET. All these factors lead to the system idle state in which there
are no tasks needed to be scheduled. A common approach to save energy in
idle state is to transition the processor into low power mode where the processor
consumes the less power than run mode. However, use of low power mode is not
free, in particular the transition from low power mode to run mode consumes

†1 Graduate School of Information Science, Nagoya University

Fig. 1 Effect of periodic timer interrupt services on low power mode of M16C. (supply
voltage: 3V, current sense resistor: 2 ohm, time scale: 1ms, voltage scale: 20mV).

both time and energy cost. Meanwhile, a fact that may be neglected is that
most real-time OS (RTOS) maintains a periodic clock interrupt to synchronize
the system and trace the clock events even in the idle state. For example the
uc/OS-II, eCOS, and Linux need a 10ms clock interrupt to generate the system
clock. Besides the periodic clock tick, some interrupt-driven embedded systems
such as data acquisition systems also need periodic interrupts to activate the
CPU from low power mode for data processing. Figure 1 shows the captured
idle state voltage waveform of a current sense resistor which is inserted between
the power supply and the power pin of a M16C processor. From this figure, it
is clear that the processor is periodically activated from low power mode by a
1 ms clock tick interrupt. As a result, these interrupt services offset the achieved
energy savings in low power mode due to the imposed time and energy overhead
for mode transitions. To tackle this problem, this paper seeks the optimal power
management strategies for embedded system idle state to relieve the effects of
periodic interrupt services.

Commonly, an embedded processor can provide multiple low power modes with
different power consumption levels. To take advantages of these power control
mechanisms, dynamic power management (DPM) tries to assign the optimal low
power mode according to the predicted duration of the system idle state. As an
example, Fig. 2 shows the power mode transition graph for two typical embedded
processors in high-end and low-end application, respectively. While the SA-1100
with integrated 32-bit RISC core is targeted at the high performance application,
the M16C 11) with integrated 16-bit CISC core, on-chip ROM and RAM is aimed

48 c© 2008 Information Processing Society of Japan



49 Dynamic Power Management for Embedded System Idle State

Fig. 2 Power mode transition for (a) StrongARM SA-1100 processor (b) M16C processor.

at low-end application. The SA-1100 processor provides three operation modes,
i.e., run, idle, and sleep modes. The run mode is the normal operating mode with
full functionalities and high power consumption. In contrast, the idle and sleep
modes are low power modes with stopped CPU clock. Idle mode disables the CPU
core clock but enables all peripheral clocks, thus on or off-chip interrupt service
requests can quickly reactivate the CPU. To further save power, sleep mode stops
both CPU and peripheral clocks. As a result, only hardware reset or special event
can wakeup the CPU, which requires long transition time whenever entering or
exiting the sleep mode. Similarly, the M16C also provides three power modes
which have similar functionalities to that of the SA-1100 but with different names.
However, the time and energy overhead of M16C for power mode transition is
far less than that of SA-1100, which is benefited from its simple and single-chip
architecture. Actually, only one instruction is needed to transition the processor
into wait mode. In summary, we have the following observations: (1) Different
low power mode has different power consumption level, which is achieved by
disabling either CPU clock or both CPU and peripheral clocks. (2) The power
mode transitions consume both time and energy cost which are dependent on
the specified low power mode and the complexity of processors. Generally, the
less power consumption the mode has, or the more complex the processor is, the
more overhead it required to transition the processor back to the run mode.

Although the sleep mode of SA-1100 has the lowest power consumption, it
is not suitable for the application considered in this paper. The reasons are as
follows. First, the transition time overhead for returning to run mode is too large

to be used in the application with short period of interrupt services. Second, the
normal interrupt service requests using on-chip clock cannot work properly in
the sleep mode. Therefore, we primarily consider the idle mode in our idle power
management approach.

In addition to DPM, another effective technique for power reduction is dynamic
voltage/frequency scaling (DVFS), since the power consumption of CMOS cir-
cuits is proportional to its clock frequency and its voltage square. The DVFS
attempts to drop the clock frequency and supply voltage of the processor dy-
namically to the lowest possible level while meeting the deadline constraint of
task. The voltage and frequency scaling are usually accomplished by controlling
a DC-DC converter and PLL (phase lock loop) circuit, respectively. While many
high-end processors have equipped with the DVFS capabilities, few low-end pro-
cessors can dynamically change their supply voltages. However, most low-end
processors can change its clock frequency easily by setting the divider registers.
As a result, the clock frequency can be changed quickly for a low-end processor
using divider register comparing with a high-end processor using PLL. For ex-
ample, while many commercial high-end processors require the transition time
ranging from 189 us to 3.3 ms for voltage and frequency scaling 10), the M16C
requires negligible time for frequency change. For simplicity, we refer to DVFS
hereafter whenever voltage and/or frequency are changed during execution.

The motivation of this work stems from the fact that the power consumption of
processor in idle mode is not fixed but dependent on the set clock frequency before
entering the idle mode 7). In general, the higher frequency, the more power is con-
sumed in idle mode. For example, the PXA225 processor (an upgraded product of
SA-1100 series) consumes 45mW-121 mW power in idle mode which corresponds
to 100 MHz - 400 MHz frequency 7). The reason is that although the disabled
CPU cannot consume dynamic power in idle mode, the enabled peripherals still
consume power which is directly dependent on the selected clock frequency 8).
To reduce the power of idle mode, we therefore expect to lower the frequency
of processor. However the lowered frequency will lead to longer execution time
for interrupt service routine (ISR), which may result in increased total energy.
Accordingly, we need to determine the optimal frequency for the idle state with
periodic interrupt services to save energy. To the best of our knowledge, this is

IPSJ Transactions on System LSI Design Methodology Vol. 1 48–57 (Aug. 2008) c© 2008 Information Processing Society of Japan



50 Dynamic Power Management for Embedded System Idle State

the first work that addresses the problem of selecting the optimal frequency to
save energy for idle state in the presence of periodic interrupt services. The main
contribution of this work is that we proposed two DPM strategies for idle state
power management with periodic interrupt services considering two different ap-
plication cases. Specifically, (1) In case the periodic interrupt cannot be disabled
such as the data acquisition systems, we formulate the power consumption of idle
state, and propose static and dynamic approaches for the processors with large
or negligible DVFS overhead, respectively. (2) In case the periodic interrupt can
be disabled such as the clock tick interrupt, we propose configurable clock tick
and DPM algorithm to save idle energy and keep system time synchronization
simultaneously.

The rest of the paper is organized as follows. Section 2 gives related work.
Section 3 presents the proposed power model and approaches. In Section 4,
experimental results are described. Finally, Section 5 summarizes the paper.

2. Related Work

There have been a large number of publications so far, which employed DPM
or DVFS for power savings. Most DPM literature focuses on the design of power
management policies using predictive schemes or stochastic optimum control
schemes 1),4). In these schemes, they generally assume fixed power consump-
tion for each low power mode and their objective is to decide when and which
low power mode the devices should transition into. In practice, an on-chip timer
interrupt is commonly employed in embedded systems to reactivate the CPU
from low power mode quickly. In this case, the on-chip clock of timer cannot
be disabled, which results in varied power consumption in low power mode as
mentioned in Section 1. However, this special issue has not been discussed in any
previous DPM literature.

While DPM is aimed at reducing power during the long idle time by transi-
tioning the processor into low power mode, DVFS is aimed at saving power by
lowering the processor voltage and/or frequency to reclaim the runtime slack,
which is generated due to the fluctuation of workload. Most DVFS algorithms
assume periodic tasks with known WCET and deadline. Although the objective
of DVFS is to prolong the task execution time until deadline by lowering the

CPU’s voltage and frequency, the slack time cannot be reclaimed completely.
This is because the generated slack can only be reclaimed when there are ready
tasks that can be scheduled immediately. Moreover, the discrete frequency levels
of processor makes DVFS cannot utilize the generated slack completely. The
above reasons result in idle state of processor even for the DVFS enabled pro-
cessor. Unfortunately, most DVFS literature ignores the power management in
idle state, and simply assumes to enter a low power mode with zero power 2),3)

or fixed power consumption 10) in idle state. Moreover, in practice the time over-
head for power mode transition may be too long to be applicable for some short
idle duration, which results in no power reduction in this case.

Recently, a variable scheduling timeouts method is proposed for power savings
in Linux systems by eliminating the useless tick interrupts during system idle
state 9). However an existing problem needed to be solved in real-time systems
is how to keep the system clock synchronization caused by tick timer reprogram-
ming.

3. Power Model and Approaches

Consider a typical low power embedded processors, we assume that the pro-
cessor can provide multiple low power modes and selectable voltage/frequency
levels for power control. To simplify the calculation, we also assume that the time
and power overhead for power mode transition and voltage/frequency scaling are
fixed. As discussed in Section 1, we primarily consider the low power mode with
enabled peripheral clocks in our approach. The proposed power management is
implemented in the idle task of RTOS, which is scheduled to run when system
detects the beginning of an idle state.

We deal with the power saving problem of idle state as two different cases in the
following sections. While in case one the periodic interrupt cannot be disabled
such as the data acquisition system, in case two the interrupt can be disabled for
a specified duration such as the clock tick interrupt.

3.1 Case One: the Periodic Interrupt cannot be Disabled
Prior to formulating the power consumption of idle state, we give the following

notations.
• M : selected speed ratio, i.e., 1/M full speed

IPSJ Transactions on System LSI Design Methodology Vol. 1 48–57 (Aug. 2008) c© 2008 Information Processing Society of Japan



51 Dynamic Power Management for Embedded System Idle State

• Tp (us): period of interrupt service
• Th (us): execution time of interrupt service routine at full speed
• Ts (us): execution time for low power mode setting in idle task at full speed
• Tt (us): time overhead for power mode transition
• It (mA): average current during power mode transition
• Tv (us): time overhead for dynamic voltage/frequency scaling
• Iv (mA): average current during voltage/frequency scaling
• Irm (mA): the run mode average current at 1/M full speed
• Iim (mA): the idle mode average current at 1/M full speed
• Vm (V): the corresponding voltage for 1/M full speed setting
• Iidle (mA): average current of idle state
• Pidle (mW): average power of idle state

Consider the fact that different scale processors may have different DVFS over-
head as discussed in Section 1, we propose static and dynamic approaches for
processors with large or negligible DVFS overhead, respectively.

On one hand, if the processor has large DVFS time overhead, a static approach
is preferable, i.e., only once DVFS setting at the beginning of idle state for any
continuous idle time. Specifically, the program in idle task takes corresponding
actions according to the current system state. If it is the first time to enter
idle state, the power management program in idle task sets the optimal speed
and transitions the processor into low power mode. Otherwise, it only puts the
processor into low power mode and without any speed change when the idle task
is reactivated from low power mode by interrupt. The above processing procedure
is illustrated in Fig. 3. And the corresponding notations for each stage of this
procedure are denoted in Fig. 4. Based on the above information, the average
current and power of idle state with periodic interrupt services can be calculated
by the following equations:

Iidle = {(Th+Ts)MIrm + TtIt + [Tp − (Th + Ts)M − Tt]Iim}/Tp (1)
Pidle =IidleVm (2)

In the above equations, the period of interrupt Tp and the execution time
for power mode setting Ts are assumed to know in advance. Time and power
overhead for power mode transition Tt, It, and the average current under different
speed settings in run and idle mode Irm, Iim can be obtained from processor’s

Fig. 3 Processing procedure of idle state under power management.

Fig. 4 Notations of idle state power management.

data manual or actual measurements. As shown in Eq. (1), the average current of
idle state is a function of the selected speed M and the execution time of ISR Th.
According to this relation, the power optimization problem can be formulated as:
for a specified processor and application with known Th, Tp, Ts, Tt, It, Irm, and
Iim, finds the optimal M such that the average idle current is minimal. Because
the relation between Iidle and M is linear, and the selectable speeds are limited,
we can calculate all possible results of Iidle vs. M at given Th. Then, the one
that has the minimal average current should be the optimal speed setting.

On the other hand, if the processor has negligible DVFS time overhead, a
dynamic approach may save more power at the expense of two DVFS settings
for each interrupt process. The procedure is that the full speed is set at the
beginning of each interrupt service, and the slowest speed is set before entering
the low power mode each time. Its objective is to save more power by keeping
the processor in low power mode with the minimal power consumption for longer
time. In this case, the average idle current can be calculated by the following
equation:

Iidle ={[Tp−(Th+Ts)−Tt−2Tv]Il+(Th+Ts)Ih+TtIt+2TvIv}/Tp (3)
where Ih represents the current of full speed running, and Il represents the

IPSJ Transactions on System LSI Design Methodology Vol. 1 48–57 (Aug. 2008) c© 2008 Information Processing Society of Japan



52 Dynamic Power Management for Embedded System Idle State

current of the slowest speed in idle mode. Note that this approach is not realistic
for some high-end processors with large DVFS overhead. For example, Intel’s
PXA225 requires about 500 us for each DVFS setting 7). In this case, the dynamic
approach is obviously not applicable if the interrupt service is of 1ms period.

3.2 Case Two: the Periodic Interrupt can be Disabled for a Specified
Duration

We assume periodic tasks with known WCET and deadline in this case, and
we only discuss how to disable clock tick interrupt by using a configurable clock
tick during idle state. Under the above assumptions, whenever OS detects the
beginning of an idle state, it also knows the nearest releasing time of next periodic
task. As a result, the accurate duration of idle state can be calculated by OS. For
this reason, OS therefore can disable the clock tick during this known idle time
and transition the processor into low power mode to save more power. Note that
this approach is different from general DPM in the sense that while general DPM
assumes random tasks and predicts the duration of idle state by using previous
idle duration information, this approach assumes periodic tasks and obtains the
accurate duration of idle state in advance by calculation. Therefore the decision
for power mode transition in this approach is straightforward.

When the clock tick interrupt is disabled during idle state, a problem that
should be solved is how to trace the original clock tick to keep system time syn-
chronization. To this end, another timer, as shown in Fig. 5, can be used to count
the lost ticks during idle time when the tick interrupt is disabled. Because the

Fig. 5 Configurable clock tick and timer setting procedure.

original tick timer is never stopped and restarted except disabling its interrupt
requests, the system time synchronization can be guaranteed easily. However,
this approach is hardware-dependent since a wire connection between the output
of timer 1 and the input of timer 2 is required as shown in Fig. 5 (a). The count
value of timer 2 for generating the wakeup interrupt prior to the release of next
task should be set to the calculated duration of idle state. The detailed timer
setting procedure is listed in Fig. 5 (b). In conjunction with the configurable clock
tick, the complete algorithm for idle state power management is given in Fig. 6.
Note that this algorithm shows the most aggressive effort to save energy during
idle state. It employs DVFS, DPM, as well as multiple low power modes together
to achieve the maximal energy savings. In practice, only some of these potential
may be exploited due to the limitations imposed by the specific processor and
application. For example, if the internal clock is required to activate the proces-
sor, the deep low power mode (i.e., low power mode 1 in Fig. 6) cannot be used
in this algorithm as discussed in Section 1. The efficiency of this algorithm will
be evaluated in the following section with respect to several possible cases.

Fig. 6 Power management algorithm when the periodic interrupt can be disabled.

IPSJ Transactions on System LSI Design Methodology Vol. 1 48–57 (Aug. 2008) c© 2008 Information Processing Society of Japan



53 Dynamic Power Management for Embedded System Idle State

Table 1 Measured run and wait mode average current under different speed settings.

Selected Speed Measured I (mA) at V =3V

(1/M full speed) Run mode:Irm Wait mode:Iim

20MHz (1/1) 10.04 1.30
10MHz (1/2) 6.35 1.26
5MHz (1/4) 4.35 1.24

2.5MHz (1/8) 3.24 1.23
1.25MHz (1/16) 2.45 1.22

4. Evaluation and Experimental Results

4.1 Experiment Setup and Measurement Environment
To validate and evaluate the proposed approach, we select the OAKS16-mini

board with a M16C (M30262F8GP) embedded processor to implement the ap-
proach. As a typical embedded processor, M16C provides three power modes
and can quickly change its clock frequencies by setting the divider registers, al-
though it cannot change its supply voltage. We measure the processor current
by inserting a digital multimeter between the power supply and the power pin
of the processor. An oscilloscope is utilized to observe the voltage waveform of
the current sense resistor which is inserted between the power supply and the
power pin of the processor. The time and power overhead for power mode transi-
tion are estimated by using the captured voltage waveform through oscilloscope,
which is similar to the one shown in Fig. 1. The above experiments are performed
separately so that the current measurements are accurate with removed current
sense resistor. The measured power consumptions of different power modes and
estimated power mode transition overhead are illustrated in Fig. 2.

Our approach has been implemented in a RTOS called TOPPERS/JSP ker-
nel 5) which is an open source RTOS in consistent with the ITRON 6) standard.
The TOPPERS RTOS is targeted at real-time applications with limited resource
requirement. A configurable clock tick is implemented in OS with default 1 ms
interrupt period. The normal execution time of the timer ISR for system time
updating is about 12 us at 20 MHz.

4.2 Evaluation of the Proposed Approach when the Periodic Inter-
rupts cannot be Disabled

Table 1 summaries the measured run and wait mode average current under

Fig. 7 Calculated average current under 1ms interrupt period.

different speed settings. All these measurements are performed by executing
a busy loop and the results for wait mode is measured with clock enable but
without any interrupt services.

Based on these measured parameters, and Eq. (1), we can obtain the following
current vs. execution time and speed curves under 1 ms interrupt period in
Fig. 7. From this figure, it is clear that the optimal speed selection with the
minimal power consumption is determined by the execution time of ISR. To
validate the correctness of Eq. (1), we performed experiments under 4 cases with
different interrupt periods and execution time of ISR. The original timer ISR of
the TOPPERS is selected as baseline in case 1, and case 2, 3, and 4 are derived
from the baseline by changing its period and execution time. Although the timer
ISR is employed in the evaluation for the simplicity, the results can be applied to
any other ISR with different parameters. The measured and calculated current
results under 4 cases are summarized in Tables 2, 3, 4, and 5, respectively.
In the results, the optimal speeds leading to the minimal current are denoted
with boldface. It is obvious from these results that the speed selections with
the minimal measured currents are consistent with the theoretical calculated
results in all 4 experiments, although there are errors between the calculated
and measured values. Therefore, we can utilize the proposed idle current model
in Eq. (1) to calculate the optimal speed for any ISR with known period and

IPSJ Transactions on System LSI Design Methodology Vol. 1 48–57 (Aug. 2008) c© 2008 Information Processing Society of Japan



54 Dynamic Power Management for Embedded System Idle State

Table 2 Comparison of measured and calculated average current in case 1.

Selected Speed Idle state average I (mA) at
(1/M full speed) V =3V, Tp=1ms, Th=12us

Measured Iidle Calculated Iidle

20MHz (1/1) 1.47 1.472
10 MHz (1/2) 1.45 1.451

5MHz (1/4) 1.47 1.461
2.5MHz (1/8) 1.50 1.498

1.25MHz (1/16) 1.57 1.534

Table 3 Comparison of measured and calculated average current in case 2.

Selected Speed Idle state average I (mA) at
(1/M full speed) V =3V, Tp=1ms, Th=7us

Measured Iidle Calculated Iidle

20MHz (1/1) 1.40 1.419
10MHz (1/2) 1.38 1.389
5MHz (1/4) 1.37 1.385
2.5MHz (1/8) 1.38 1.401

1.25MHz (1/16) 1.42 1.416

Table 4 Comparison of measured and calculated average current in case 3.

Selected Speed Idle state average I (mA) at
(1/M full speed) V =3V, Tp=10ms, Th=12us

Measured Iidle Calculated Iidle

20MHz (1/1) 1.32 1.317
10MHz (1/2) 1.28 1.279
5MHz (1/4) 1.25 1.262

2.5MHz (1/8) 1.24 1.256
1.25 MHz (1/16) 1.24 1.251

execution time, which will lead to the minimal average current.
Although only the average currents are given in the above results, the average

power can be derived by multiplying the average current and the supply voltage,
and energy consumption of idle state can be calculated by multiplying the aver-
age power and the duration of idle state. It is worth noting that the reduction of
average power is dependent on the period and execution time of ISR, as well as
the power consumption of different speeds as indicated in Eq. (1). For example,
in case 3, selecting the 1.25 MHz can achieve 6% average power reduction com-
paring with the full speed execution, and in case 4, selecting the 10 MHz can save

Table 5 Comparison of measured and calculated average current in case 4.

Selected Speed Idle state average I (mA) at
(1/M full speed) V =3V, Tp=10ms, Th=200us

Measured Iidle Calculated Iidle

20MHz (1/1) 1.49 1.544
10 MHz (1/2) 1.45 1.533

5MHz (1/4) 1.49 1.558
2.5MHz (1/8) 1.52 1.621

1.25MHz (1/16) 1.62 1.683

Fig. 8 Calculated average current of static and dynamic approaches under 1ms interrupt
period.

10% average power than execution with 1.25 MHz. As can be seen, selection of
different speeds during idle state may result in significant difference of average
power.

Experiments are also conducted to validate the proposed dynamic approach
especially for the M16C with negligible DVFS overhead. The same conditions
as the above case 1 are employed in these experiments. Additionally, the varied
speeds are set at the beginning of ISR, and the slowest speed (1/16 full speed) is
set in the idle task before entering the low power mode. The calculated results
using Eq. (3) and assuming negligible DVFS overhead are depicted in Fig. 8
where the curves for static and dynamic approaches are shown, respectively. As
can be seen, the full speed setting for ISR plus the slowest speed setting (1/16)

IPSJ Transactions on System LSI Design Methodology Vol. 1 48–57 (Aug. 2008) c© 2008 Information Processing Society of Japan



55 Dynamic Power Management for Embedded System Idle State

for low power mode outperforms other speed combinations in dynamic approach,
as well as all speed settings in static approach. Meanwhile, the actually measured
result for this case shows average current 1.39mA which is the minimal current
compared with the measured results for static approach in Table 2. The results
indicate that the dynamic approach can further reduce the average power by
4.1% than the optimal static approach in case 1, and achieves the maximal 11%
reduction in average power comparing with the speed selection of 1.25MHz.

4.3 Evaluation of the Proposed Approach when Clock Tick Inter-
rupts can be Disabled

To evaluate the proposed DPM algorithm, Pillai and Shin’s dynamic DVFS
scheduling algorithm 2) is employed as the baseline for the comparison. The
goal is to evaluate the energy saving improvement after applying our idle power
management approach comparing with the original DVFS algorithm alone. This
typical DVFS algorithm is designed for hard real-time embedded systems un-
der earliest deadline first (EDF) scheduling. The algorithm is dynamic in the
sense that it detects the runtime slack caused by early completion of task and
attempts to lower the voltage/frequency of the next scheduled task to reclaim the
slack. To implement this algorithm, we modify the scheduler of the TOPPERS
to support the EDF scheduling, and add function for the measurement of task
execution time. The proposed configurable clock tick and DPM algorithm are
also implemented in the idle task of the TOPPERS.

As mentioned in Section 3.2, the energy saving potential of the DPM algorithm
is dependent on specific processor and application. For this reason, we implement
the DPM algorithm in three versions with different power saving level. The DPM
1 only sets the slowest speed at the beginning of idle state and without entering
any low power mode. In contrast, the DPM 2 firstly sets the slowest speed and
configurable clock tick, and then enters the wait mode. Instead of using one
low power mode, DPM 3 determines to transition into the wait or stop mode
according to the calculated duration of idle state. As described in Section 1,
in stop mode the on-chip clock is disabled completely, thus to implement the
DPM 3, a external clock source is utilized to drive the clock tick timer and
activate the processor from stop mode. The time thresholds of Tout1, Tout2, and
Tout3 in the algorithm of Fig. 6 are set as 100ms, 20 ms, and 5 ms, respectively.

Table 6 Experimental task set.

Task name Period WCET Actual ET

Task 1 500–2000 (ms) 130 (ms) 28–130 (ms)
Task 2 500–3000 (ms) 245 (ms) 38–245 (ms)

It is important to note that the determination of time threshold is dependent
on specific processor and OS, in particular the time and power overhead for
mode transition as well as the period of clock tick. Two periodic tasks with
known WCET and deadline are assumed to run on this experimental platform.
Table 6 presents the corresponding parameters of the task set, where the actual
execution time of task is varied and less than the WCET, as commonly seen in
most embedded systems. The task set is executed totally 5 times, each with
different power management strategy as described above. Their corresponding
energy results for one minute running are summarized in Table 7. From the
results, we can derive the following observations:
• The use of DVFS cannot eliminate all idle state.
• The longer idle state, the more energy savings can be achieved.
• Combining DVFS and DPM can achieve better energy savings than using

DVFS alone.
• Combining multiple low power modes can achieve more energy savings than

using only one low power mode.
Specifically, in our experiments DVFS alone without any idle state power manage-
ment achieves average 41% energy savings comparing with full speed execution.
DVFS with the slowest speed setting during idle time achieves average 53% en-
ergy savings. Combining DVFS and DPM with wait mode obtains average 65%
energy savings. DPM using both wait and stop mode accomplishes the best 67%
energy savings in average. In summary, the proposed configurable clock tick and
idle state power management can achieve additional 26% energy savings com-
paring with the original DVFS without any idle power management. Note that
beside the application of combining the DVFS with the proposed DPM as done
in the above experiments, the approach can also be applied alone to the periodic
tasks. Furthermore, if the duration of idle state can be known in advance, it can
also be applied to the aperiodic tasks.

Experiment is also conducted to verify the capability of the approach for keep-

IPSJ Transactions on System LSI Design Methodology Vol. 1 48–57 (Aug. 2008) c© 2008 Information Processing Society of Japan



56 Dynamic Power Management for Embedded System Idle State

Table 7 Evaluation of power savings for different power management strategies.

Energy for one minute running under different task periods
Power management (normalized energy results)

strategies P1:500ms P1:500ms P1:1000ms P1:2000ms
P2:500ms P2:900ms P2:1500ms P2:3000ms

Full speed 1807mJ 1807mJ 1807mJ 1807mJ
(1) (1) (1) (1)

Dynamic DVFS alone 1594mJ 1288mJ 897mJ 468mJ
(0.88) (0.71) (0.50) (0.26)

Dynamic DVFS+DPM1 1194mJ 1010mJ 752mJ 460mJ
(only the slowest speed) (0.66) (0.56) (0.42) (0.25)
Dynamic DVFS+DPM2 944mJ 773mJ 553mJ 282mJ

(the slowest speed+wait mode) (0.52) (0.43) (0.31) (0.16)
Dynamic DVFS+DPM3 943mJ 747mJ 499mJ 239mJ

(the slowest speed+wait mode+stop mode) (0.52) (0.41) (0.28) (0.13)

ing system time synchronization. We implement the configurable clock tick and
the original clock tick in TOPPERS, respectively, and then let them run the
above DVFS experiments for 30 minutes. Finally, we compare their clock tick
value after running. The results show no difference between the two implemen-
tations, which indicates the configurable clock tick can trace the original clock
tick precisely even if the clock tick is disabled during idle state.

5. Concluding Remarks

Even in a DVFS enabled embedded system, there must exist idle state where
no task needs to be scheduled. Moreover, a periodic interrupt services may be
required to run even in the system idle state. As a common approach, the pro-
cessor can be transitioned into the low power mode during idle state. However,
the power consumption of low power mode is neither zero nor fixed which is
dependent on the current clock frequency in low power mode. In this work we
present different approaches for idle state power management in the presence of
periodic interrupt services. In case the periodic interrupt cannot be disabled, we
formulate the idle power consumption and propose static and dynamic methods
to save energy for the processors with large or negligible DVFS overhead, respec-
tively. In case the periodic interrupt can be disabled such as the periodic clock
tick interrupt, we propose the configurable clock tick and DPM algorithm for
energy savings by keeping the processor in low power mode for longer time. We

have implemented the proposed approaches in a RTOS and evaluated them on
a frequency scalable embedded processor. The measured results show that the
maximal 11% power can be reduced in the first case, and average 26% power can
be further reduced in the second case comparing with DVFS without any idle
power management. As for future work, we plan to evaluate and validate the
proposed approach on other embedded processors.

Acknowledgments This work is supported in part by Core Research for
Evolutional Science and Technology (CREST) program from Japan Science and
Technology Agency.

References

1) Benini, L., Bogliolo, A. and Micheli, G.D.: A Survey of Design Techniques for
System-Level Dynamic Power Management, IEEE Trans. on Very Large Scale In-
tegration Systems (VLSI ), Vol.8, No.3, pp.299–316, (June 2000).

2) Pillai, P. and Shin, K.G.: Real-Time Dynamic Voltage Scaling for Low-Power Em-
bedded Operating Systems, Proc. ACM Symposium Operating Systems Principles,
pp.89–102, (2001).

3) Kim, W., Shin, D., Yun, H., Kim, J. and Min, S.L.: Performance Comparison of Dy-
namic Voltage Scaling Algorithms for Hard Real-Time Systems, Proc. IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS), pp.219–228,
(2002).

4) Ren, Z., Krogh, B.H. and Marculescu, R.: Hierarchical Adaptive Dynamic Power
Management, IEEE Trans. on Computers, Vol.54, No.4, pp.409–420, (Apr. 2005).

IPSJ Transactions on System LSI Design Methodology Vol. 1 48–57 (Aug. 2008) c© 2008 Information Processing Society of Japan



57 Dynamic Power Management for Embedded System Idle State

5) TOPPERS Project. http://www.toppers.jp/
6) ITRON Project. http://www.sakamura-lab.org/TRON/ITRON/
7) Intel, Application Note: PXA255 and PXA26x Applications Processors Power

Consumption During Power-up, Sleep, and Idle (Apr. 2003).
8) Texas Instruments, Application Report: SPRA164, Calculation of TMS320LC54x

Power Dissipation (June 1997).
9) Variable Scheduling Timeouts (VST) Project Page.

http://tree.celinuxforum.org/CelfPubWiki/VariableSchedulingTimeouts
10) Shin, D. and Kim, J.: Intra-Task Voltage Scheduling on DVS-Enabled Hard Real-

Time Systems, IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, Vol.24, No.10, pp.1530–1549, (Oct. 2005).

11) Renesas Corp. http://www.renesas.com/fmwk.jspcnt=m16c-family-landing.jsp
fp=/sproducts /mpumcu/m16c-family/

(Received December 25, 2007)
(Revised March 17, 2008)

(Accepted May 1, 2008)
(Released August 27, 2008)

(Recommended by Associate Editor: Hideharu Amano)

Gang Zeng graduated from Hunan University, China, with
B.E., M.E. degrees in 1993, 2001, respectively. From 1993 to
1998, he joined Hunan University where he was a lecturer in the
Institute of Electric and Information Engineering. From 2001 to
2002, he joined ZTE Corporation where he was a senior engineer.
He received his Ph.D. degree in information science from Chiba
University in 2006. He is currently a postdoctoral researcher in

the Graduate School of Information Science of Nagoya University. His research
interests include power-aware computing, embedded system design, design for
testability, system-on-a-chip testing. He is a member of IEEE.

Hiroyuki Tomiyama received his Ph.D. degree in computer
science from Kyushu University in 1999. From 1999 to 2001, he
was a visiting postdoctoral researcher with the Center of Embed-
ded Computer Systems, University of California, Irvine. From
2001 to 2003, he was a researcher at the Institute of Systems
& Information Technologies/KYUSHU. In 2003, he joined the
Graduate School of Information Science, Nagoya University, as

an assistant professor, where he is now an associate professor. His research in-
terests include system-level design automation, architectures and compilers for
embedded systems and systems-on-chip. He currently serves as an editor of IPSJ
Transactions on SLDM, an associate editor of ACM TODAES and an edito-
rial board member of International Journal on Embedded Systems. He has also
served on the organizing and program committees of several premier conferences
including ICCAD, ASP-DAC, DATE, CODES+ISSS, and so on. He is a member
of ACM, IEEE, IPSJ and IEICE.

Hiroaki Takada is a Professor at the Department of Infor-
mation Engineering, the Graduate School of Information Science,
Nagoya University. He received his Ph.D. degree in Information
Science from the University of Tokyo in 1996. He was a Research
Associate at the University of Tokyo from 1989 to 1997, and was
an Assistant Professor and then an Associate Professor at Toy-
ohashi University of Technology from 1997 to 2003. His research

interests include real-time operating systems, real-time scheduling theory, and
embedded system design. He is a member of ACM, IEEE, IPSJ, IEICE, and
JSSST.

IPSJ Transactions on System LSI Design Methodology Vol. 1 48–57 (Aug. 2008) c© 2008 Information Processing Society of Japan


