
IPSJ Transactions on System LSI Design Methodology Vol.11 29–45 (Aug. 2018)

[DOI: 10.2197/ipsjtsldm.11.29]

Invited Paper

Behaviour Driven Development for Hardware Design

Melanie Diepenbeck1 Ulrich Kühne2,a) Mathias Soeken3,b)

Daniel Grosse1,4,c) Rolf Drechsler1,4,d)

Received: March 7, 2017

Abstract: Hardware verification requires a lot of effort. A recent study showed that on average, there are more ver-
ification engineers working on a project than design engineers. Hence, one of the biggest challenges in design and
verification today is to find new ways to increase the productivity. For software development the agile methodology
as an incremental approach has been proposed and is heavily used. Behavior Driven Development (BDD) as an agile
technique additionally enables a direct link to natural language based testing. In this article, we show how BDD can
be extended to make it viable for hardware design. In addition, we present a two-fold strategy which allows to specify
textual acceptance tests and textual formal properties. Finally, this strategy is complemented by methods to generalize
tests to properties, and to enhance design understanding by presenting debug and witness scenarios in natural language.

Keywords: behaviour driven development, test driven development, test generation, property generation, specifica-
tion

1. Introduction

Software plays a major role in our lives – we use software in
many appliances in our homes and workspaces. Since software
becomes more widespread, its functional range and its complex-
ity has increased in the last decade. As a consequence, building
(new) features for customers becomes more challenging. In order
to cope with this challenges new software development processes
have emerged.

Behaviour Driven Development (BDD) has gained increasing
attention as an agile development approach. BDD aims to bridge
the communication gap between the software development team
and the non-technical stakeholders. For this task both groups col-
laborate and create so-called user stories in natural language. By
this, they capture the features of the software in terms of sce-

narios. Scenarios are expressed using a Given-When-Then sen-
tence structure to connect the human concept of cause and ef-
fect to the software concept of input/process/output in an intuitive
way [40]. By writing glue code, the software developer gives an
executable semantics to the scenarios, which allows to run them
as acceptance tests. Furthermore during the agile process de-
velopers create, rapidly test, and integrate small, valuable code
sections—in case of BDD with the natural language “interface.”
Strong tool support has been developed in the recent years (e.g.,
Refs. [32], [40]).

While the hardware business is traditionally more conserva-

1 Group of Computer Architecture, University of Bremen, Germany
2 LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France
3 Integrated Systems Laboratory, EPFL, Lausanne, Switzerland
4 CPS, DFKI Bremen, Germany
a) ulrich.kuhne@telecom-paristech.fr
b) mathias.soeken@epfl.ch
c) grosse@informatik.uni-bremen.de
d) drechsler@uni-bremen.de

tive than the software world, there is an increased interest in
agile design methodologies for the design of circuits and sys-
tems [24], [25], [27]. However, adapting the BDD flow to the
design of integrated circuits is not a trivial task. There are sev-
eral hardware-specific aspects that need to be taken into account.
Some of these issues are related to the nature of Hardware De-

scription Languages (HDLs), such as timing, concurrency, and
the use of dedicated testbenches. A major difference in hardware
development is, however, the demand for first-time-right designs
since hardware re-spins are extremely expensive.

In BDD, the system under development is checked using ac-
ceptance tests, i.e., scenarios that test whether certain features
are implemented according to the requirements. But, when con-
sidering safety critical hardware designs, testing is not enough.
Formal methods are necessary to find subtle bugs that might be
missed when the design is simulated, covering only few selected
inputs. While in testing, tests are used to describe part of a re-
quirement, in formal verification properties are the key elements
that formalise a requirement. Using automatic or semi-automatic
proof techniques, high confidence can be reached in the cor-
rect functionality. In particular, SAT-based model checking tech-
niques [6], [7], [34] have been successfully applied to industrial
scale hardware designs. However, their application is difficult
and requires writing properties in temporal logics like LTL [30]
or dedicated languages such as the Property Specification Lan-

guage (PSL [1]).
In this article, we show how BDD can be extended to make it

viable for hardware design. Instead of the original flow, which
is based on acceptance tests only, we introduce a two-fold strat-
egy, that also allows the user to write formal properties, which

This article summarizes and extends previous work published at
High Level Design Validation and Test Workshop [12] and Tests and
Proofs [11].

c© 2018 Information Processing Society of Japan 29

IPSJ Transactions on System LSI Design Methodology Vol.11 29–45 (Aug. 2018)

can be model-checked on the design. A major contribution is the
seamless integration of formal methods into the BDD methodol-
ogy: Maintaining the natural language style of the requirements,
a unified specification document is created that is the source of
both acceptance tests and formal properties. As a result, circuit
components are created in an iterative fashion, while being tested
and formally verified in a structured way, connecting the checked
functionality to the natural language requirements.

Using the presented methodology, the best of the two worlds –
static vs. dynamic verification – can be used. While test cases
are often more intuitive for designers, properties can offer a
much higher coverage and verification quality. Also, writing (and
checking) a strong invariant in form of a property is often more
concise than a collection of test cases witnessing this invariant.
In terms of resource usage, simulating the design during regres-
sion tests is usually less time-consuming than running a model-
checker on a complex design.

To fully benefit from the two-fold BDD strategy, we have cre-
ated shortcuts between testing and formal verification. On the one
hand side, we are able to generalise properties from the written
test code. These properties are formally verified on the iteratively
developed implementation and improve the coverage of the test
cases. On the other hand, if a formal property fails, we can gener-
ate a debug scenario in natural language that describes the failing
run in an intuitive way. This scenario can later serve as a regres-
sion test to verify that the specific corner case works correctly
after changing the design.

To summarize, the main contribution of this work is a BDD
flow for hardware design with the following properties:
• Test-driven BDD for hardware designs
• Executable textual properties similar to scenarios (Property-

driven BDD)
• Automatically generalised properties from tests
• Automatically generated textual debug and witness scenar-

ios from properties
Our approach is a first step towards productivity enhancements
based on BDD for HW. Requirements and solutions evolve
through collaboration and hence potential misunderstanding can
be reduced. As a consequence the “correct” functionality is im-
plemented and verified as correct, the costs are reduced while at
the same time the quality improves.

This paper is structured as follows. Starting with the prelimi-
naries in Section 2, the overall flow of the proposed methodology
is presented in Section 3. The testing part is discussed in Sec-
tion 4, while the integration of formal verification is presented in
Section 5. Afterwards, Sections 6 and 7 show the interconnec-
tion of the two strategies, namely the generalisation of tests and
the generation of debug scenarios, respectively. Related work is
discussed in Section 8, before Section 9 concludes the work.

2. Preliminaries

2.1 Behaviour Driven Development
BDD is an extension of Test Driven Development (TDD) in

which test cases are provided as a starting point and are the cen-
tral elements along the whole design process. First, all test cases
are specified, however, since no implementation is available, they

will all fail initially. Guided by the error messages from the fail-
ing test cases, the implementation grows incrementally until all
test cases eventually pass.

In BDD test cases are written in natural language rather than
source code, offering a communication mean for both the design-
ers and stakeholders. Test cases are called acceptance tests. They
are structured by means of features, where each feature can con-
tain several scenarios. Each scenario, in turn, constitutes one test
case and is written following a Given-When-Then sentence struc-
ture. Each sentence is called a step. As an example, consider the
following scenario:

Scenario: Adding two numbers

Given a calculator
When I add the numbers 4 and 5
Then I see the result 9

(1)

This scenario starts the implementation of a simple calculator and
describes the addition of two numbers. In order to execute the
scenario, the steps need to be bound to test code. This is achieved
using so-called step definitions which are 3-tuples consisting of
a keyword (which can be Given, When, Then or And), a regular
expression, and the actual test code. All steps of a scenario are
executed in the order in which they appear in the scenario. When-
ever a step matches a regular expression, the corresponding test
code is executed. The step definitions for the scenario described
above are implemented as follows:

Given /^a calculator$/ do
@calculator = Calculator.new

end

When /^I add the numbers (\d+) and (\d+)$/ do |a, b|
@calculator.add(a.to_i, b.to_i)

end

Then /^I see the result (\d+)$/ do |a|
@calculator.result.should == a.to_i

end

The example has been realized in Ruby [18] using Cucum-
ber [40] as underlying tool to invoke the BDD flow. Note that
the general flow can be applied to other programming languages
and BDD tools accordingly. In Ruby, object instance variables
are prefixed by an ‘@’ and functions such as ‘Given’ can get a
block as parameter that is enclosed by ‘do’ and ‘end’. By making
extensive use of operator overloading, assertions can be written
intuitively such as in the last step definition using ‘should==’.

After defining the test code for each step, the scenario Adding

two numbers can be translated to an acceptance test by the BDD
tool. This is done by matching the steps with the regular expres-
sions in the step definitions. During this process, parameters are
being instantiated to form executable test code:

@calculator = Calculator.new

@calculator.add("4".to_i, "5".to_i)

@calculator.result.should == "9".to_i

Up to now, no implementation code has been written. While
creating the step definition for the scenario, design decisions al-
ready have been made that affect the structure and the interfaces
of the implementation. For example, it has been decided that the

c© 2018 Information Processing Society of Japan 30

IPSJ Transactions on System LSI Design Methodology Vol.11 29–45 (Aug. 2018)

calculator shall be realized as a class named Calculator, which
currently has at least the methods add and result.

During the implementation phase, the test cases are usually ex-
ecuted whenever the implementation changes. The designer is
guided by failing test cases, by syntactic errors – such as a miss-
ing implementation for a class or method – and semantic errors,
which indicate failing assertions that need to be resolved. In our
example, when executing the test cases, they will fail at the first
step and stop with an error message stating that the name Calcu-

lator cannot be resolved.
Following the hints of the failing test cases, the designer needs

to define a class and, subsequently, implement the methods add

and result in a way that satisfies the acceptance tests. This ends
the design process for this scenario. Using the BDD flow, the
code is not tested as a post-process, but the tests are run during
the whole implementation process, even before an implementa-
tion exists. In the successive steps, more features and scenarios
can be added to complete the implementation of the overall sys-
tem.

In order to improve the coverage of acceptance tests, feature
files allow the specification of scenario outlines which provide
parametrized scenarios enriched with example tables allowing for
several test assignments. A scenario outline for the scenario in
Eq. (1) for the pairs of addends (2, 8), (3, 9), and (100, 20) can be
written as follows:

Scenario Outline: Adding two numbers

Given a calculator
When I add the numbers <a> and
Then I see the result <c>

Examples:
| a | b | c |

2	8	10
3	9	12
100	20	120

(2)

2.2 Model Checking
During test-driven design of hardware or software, the quality

of the resulting circuit or program is assured by directed tests.
Each test case describes a particular use case in terms of inputs to
the design under test, and defines the expected response or out-
put. Testing then amounts to simulating the DUT and comparing
the actual outcome with the values specified in the test case. In
this way, it can be ensured that all relevant functionality is im-
plemented and that at least one or several working use cases can
be observed by the tests. However, it is practically impossible to
prove the correctness of a design using tests, since it is infeasible
to cover every possible computation of the DUT using simulation.

In many situations, model checking can provide a powerful al-
ternative to simulation-based verification techniques. Based on a
formal model of the DUT and a specification given in terms of
some temporal logic, model checking proves that the design ad-
heres to the specification. In the automata theoretic approach to
model checking [10], [30], [38], the problem is reduced to check-
ing if the language of the automaton composed of the system and
the negation of the specification is empty. Unfortunately, the in-
volved finite state machines can become very large, and the tech-

nique can only be applied to small systems.
The use of efficient data structures in symbolic model check-

ing [8] has widened the application area model checking. To-
day, the most scalable solutions use Boolean satisfiability (SAT)
solvers to search for counterexamples [5], [6]. Further improve-
ments have been achieved using induction [7], [34] or abstraction
and refinement [9].

In this work, we use a SAT-based inductive model checker sim-
ilar to Ref. [34]. Given a safety property and a sequential circuit,
the circuit is unrolled for k time frames and – together with the
property – transformed to a SAT-problem. In this way, either a
counterexample is found (disproving the property), or an induc-
tive proof is attempted that the property always holds. If this
cannot be proved, the length k is increased. The technique is im-
plemented in the verification framework WoLFram [37].

2.3 Property Specification Language
In this work, we use the Property Specification Language

(PSL [1]) to write assertions. PSL has been created in an effort
to establish an industrial standard for assertions, which can be
used for both dynamic and formal verification. Basically, PSL
is a super-set of Linear-time Temporal Logic (LTL [30]), with an
optional branching time extension. While PSL is a very rich stan-
dard, we only use a subset of its constructs, which is well suited
to express the testing semantics of BDD. In particular, we con-
centrate on safety properties.

PSL is built on top of basic expressions in your favourite hard-
ware description language (HDL), including Verilog. Assertions
are formed by temporal operators and verification directives. As
an example, consider the following simple PSL assertion:

assert always req -> next(ack);

Here, the verification directive assert tells the verification tool
that the following expression should be checked on the design.
The expression states that at each cycle in any computation
(always), whenever the signal req is high, then (->) one cycle
later (next), the signal ack should be high as well. A convenient
way of expressing sequences of events in PSL are sequentially ex-

tended regular expressions (SEREs). Sequences are constructed
using curly braces. Consider the following assertion:

assert always {req; ack} |=> busy;

Here, the sequence {req; ack} matches any computation where
req is high and ack is high one cycle later. The overall temporal
expression is assembled using the non-overlapping suffix impli-
cation (|=>). This means that whenever the sequence matches,
then one cycle after the last cycle of the sequence, busy must be
high. If the consequent expression should hold simultaneously to
the last cycle of the sequence, the overlapping suffix implication
(|->) can be used.

For a more detailed introduction to PSL, we refer the reader to
Ref. [16]. The semantics of PSL and SEREs is formally defined
in the appendix of the language standard [1].

c© 2018 Information Processing Society of Japan 31

IPSJ Transactions on System LSI Design Methodology Vol.11 29–45 (Aug. 2018)

Fig. 1 BDD flow for hardware design.

3. Behaviour Driven Development for Hard-
ware Design

The main contribution of this article is an extended BDD
methodology, which has been adapted to the needs of a
verification-centric hardware design flow. For this purpose, test-
driven design is complemented by formal properties. Both test
cases and properties are generated from a unified specification
document. The overall flow is shown in Fig. 1. We will briefly
sketch the involved steps in the following.

Before starting with the implementation itself, acceptance
tests, essential temporal properties and invariants are captured in
human-readable form (Step 1 in the figure). While this specifi-
cation forms the basis for the subsequent implementation, it will
keep evolving during the whole design process. In the next step,
the described features will be implemented by the designer, sup-
ported by continuous testing and model checking runs. The upper
half of the diagram in Fig. 1 represents the traditional BDD flow:
Here, a testbench is created by assigning test code to each step
(Step 2a). In the lower part of the figure, the steps are mapped to
properties (Step 2b). Both tests and properties are guiding the de-
signer in order to complete the design feature by feature (Step 3).

Although tests and properties are very different artifacts to be-
gin with, there are useful ways of conversion between them. Test
cases can often be generalized in order to cover a larger portion of
the input space. These generalized test cases are in fact properties
that can be verified by a model checker. This conversion is shown
as Step 4a in the figure. In the opposite direction, scenarios can
be extracted from a failing property. In this way, forgotten corner
cases can be expressed in human-readable form as a textual sce-
nario, and can be incorporated into the specification document as
regression tests. This use case is shown as Step 4b in the flow.

The proposed hardware BDD flow will be described in detail
in the following sections.

4. Testbench Specification and Timing

4.1 Running Examples
As running examples, an Arithmetic-Logic Unit (ALU) and a

First-In-First-Out (FIFO) will be used. In Fig. 2 the block dia-
grams of the example designs are depicted. The examples have
been developed in Verilog. In Verilog a digital system is de-
scribed as a set of modules. The individual modules can then

be connected with nets for communication using ports. Both ex-
ample designs are described using a single module as shown in
the figure.

We use an ALU design as shown in Fig. 2 (a) from an open
source hardware project *1. Next to the block diagram, part of the
design’s description is provided that shows more details on the
port information. The ALU computes 17 2-input bitwise logic
and arithmetic functions such as addition, shifting, multiplication
and comparisons like equals or less. Using the single bit input
signed i it is indicated whether the two 32 bit data inputs (a i
and b i) are to be treated a signed or unsigned integers.

While the ALU is a combinational logic circuit, the FIFO in
Fig. 2 (b) is a sequential synchronous circuit that is driven by the
clock signal clk. The FIFO has two operation modes: normal
mode and bypass mode. In normal mode the FIFO can hold up
to four elements. When the bypass mode is selected the FIFO
is not operational; the FIFO does not buffer any input data. Ele-
ments are added and removed using the single input signals push
and pop, respectively, where dat in is used to present the data
to be added to the queue. The single bit outputs empty and full
provide information on the fill status of the FIFO, while elems
gives the exact number of elements that are currently stored in
the queue.

4.2 Testing Hardware Designs with BDD
In order to inspect a hardware design, a testbench is written that

simulates the design under test. A testbench in Verilog is written
as a separate module, as shown in Fig. 3. The testbench gives a
test case for the FIFO design, where the total capacity of elements
is inserted. The testbench module fifo tb instantiates the FIFO
design. The test case is declared in the initial block, which
states a behavioural process that is only executed once. Also, a
clock generator is described using an always block that continu-
ously repeats its statements, thereby creating the synchronisation
signal.

Since for hardware design such a separate testbench exists, the
original BDD flow needs to be adjusted to handle this specific of
hardware design. The starting point in the original and the new
BDD flow is a failing scenario that is used to implement the in-
tended behaviour of the design using test code from associated

*1 http://opencores.org/project,m1 core

c© 2018 Information Processing Society of Japan 32

IPSJ Transactions on System LSI Design Methodology Vol.11 29–45 (Aug. 2018)

Fig. 2 Block diagrams of example circuits.

Fig. 3 Testbench for the FIFO example checking if the FIFO takes 4 elements.

step definitions.
Example 1. Figure 4 shows an example scenario that describes

how data is written (push operation) to the FIFO from the previ-

ous section. When an element is pushed to the empty queue, then

it is the oldest element in the FIFO and therefore it can be read

from the output.

After writing the scenario, step definitions (also shown in
Fig. 4) are created and filled to generate test stimuli of the fu-
ture testbench. All steps of a scenario yield a complete test case.

To create a runnable test, all step definitions of a scenario are as-
sembled to a single test case and added as an initial process of a
testbench.

Another specific that is different for hardware designs is tim-
ing. Most designs have clocks that drive the design. In this case
a clock generator needs to be added to the testbench. Since in a
BDD flow all crucial behavioural information is included in the
feature files, the clock tick information can also be added. This
is done for all scenarios of a feature in the specification by us-

c© 2018 Information Processing Society of Japan 33

IPSJ Transactions on System LSI Design Methodology Vol.11 29–45 (Aug. 2018)

Fig. 4 BDD scenario with step definitions.

ing the predefined background step “Given the clock (\w+) ticks

every (\d+) time units”. The first parameter in this step definition
names the clock of the module under test and the second gives the
period of one clock cycle. A clock cycle is the time between two
rising edges of the clock signal. We only consider single clock
designs. A synchronisation delay can be described using the pre-
defined step “And I wait (\d+) cycles?” (see Fig. 4) or directly in
the test code using the delay operation of Verilog (e.g., #3;).

As briefly discussed in Section 3, Then-steps are usually used
to describe assertions in a scenario. To support assertions in Ver-
ilog *2, we made the $assert-function available for the BDD
flow.

The body of the testbench can automatically be generated using
the clock informations and the port information already described
in the design’s description or it can also be written by the designer
manually as seen in the following example.
Example 2. This example shows a user defined testbench for the

FIFO example.

module fifo_test;
reg clk, rst_n, push, pop, mode;
reg [7:0] dat_in;
wire full, empty;
wire [7:0] dat_out;
wire [3:0] elems;

fifo f(clk, rst_n, push, pop, mode, full, empty,
elems, dat_in, dat_out);

initial begin
$yield;

end
// clock gen and finalisation
initial clk <= 0;
always #1 clk <= !clk;

*2 Our implementation builds on Verilog IEEE Std. 1346-2001

initial #100 $finish;

endmodule

The ‘$yield’ command is not a Verilog command but a place-
holder which will be substituted with the corresponding Verilog
test code from the individual scenarios. This testbench then needs
to be made visible in the feature file specification by adding an-
other background step: “Given the testbench (\w+)”, where the
name of the testbench needs to be specified.

5. Property Specification

Properties are an essential part of a specification. They state
expected behaviour by defining valid or invalid paths through the
state space of the design. This section shows how properties can
be defined in the BDD process as part of the feature specifica-
tion. We call these properties textual properties and they are the
counter part to scenarios, which are natural language test cases.
Textual properties are defined alongside scenarios as a second
driver for the development of the design. Like scenarios, also
textual properties contain of one or more steps. The main idea is
to reuse the existing semantics that are used for describing prop-
erties to describe textual properties.

There are some differences in the application of properties and
scenarios. While scenarios directly translate to test cases that are
run in a testbench, textual properties need to be transcribed to
formal properties that can be checked using an automatic verifi-
cation tool. Consequently, step definitions of textual properties
do not contain test code but are written in a property specification
language (such as PSL).

A textual property can be specified in two different ways:
(1) as an implication property where steps are given in terms of

the Given-When-Then structure (known from scenarios), or
(2) as an invariant property which consists of a single step and

no Given-When-Then keyword.
Both types are described in more detail in the following subsec-
tions. Please note that even if in the beginning simple (bit-level)
expressions are used when formally capturing the behaviors, our
approach fully supports word-level specification in the step defi-
nitions.

5.1 Textual Implication Properties
A special aspect of a scenario is its structural semantics that

is very similar to a formal property. The Given-When-Then-
structure translates very nicely to the formal setting.
Example 3. An implication p → q can be expressed in natural

language with “When *3 p is true, then q needs to be true, too.”

The first part — starting with the keyword When — is used to de-

scribe the antecedent p while the consequent q of the property is

indicated by a Then keyword.

The semantic structure of the property in the example is very
similar to the structure that is used for most scenarios. Using
the existing keywords When and Then it is possible to describe
an implication property using the existing structural semantics of
scenarios.

*3 Although If would be semantically correct, When can be used as syn-
onym.

c© 2018 Information Processing Society of Japan 34

IPSJ Transactions on System LSI Design Methodology Vol.11 29–45 (Aug. 2018)

In order to create a property that can be used for formal ver-
ification, the textual property needs to be assigned to a correct
property in PSL. The step definition code of all When-steps of a
scenario belongs to the antecedent, the consequent is filled with
the step definition code of all Then-steps of scenario. In this way,
the verification intent of the test scenario is captured in a PSL
property.

The Given-keyword is usually used to set up the context for a
scenario [40]. This is similar to textual properties where global
assumptions – such as configurations or environment constraints
– need to be defined.

The following example illustrates how to specify textual impli-
cation properties in the BDD process.
Example 4. Figure 5 (a) shows an implication property that

states that the number of elements of a FIFO is increased when-

ever an element is pushed. This property is only valid if the FIFO

operates in normal mode, which is defined in the Given-step. The

property looks very similar to a scenario which would be used for

testing, but instead of assigning test code to the steps, the desired

behaviour is expressed with PSL code. The step definition code

in PSL is given in Fig. 5 (b).

The PSL property code is written in a Verilog flavour. To build

the property, the designer specifies for which part of the property,

i.e., antecedent, consequent, or assume, the given PSL code is

written. For each part an API command is provided.

Although this information could in principle be generated from
the appropriate keywords (When as antecedents, Then as conse-
quents, and Given as assumes), it is not generated automatically,
so that properties can be written more flexible. In some cases
those keywords are not suitable at all as described in the follow-
ing section.

Since step definition can be reused in every part of the prop-
erty (antecedent, consequent or assume part), the specified API
commands in the step definitions are checked against the used
keywords in the scenario. If they mismatch, a warning is dis-
played and the step definition code is inserted to the property part
defined by the keyword since the natural language description are
given a higher ranking.

Fig. 5 Implication property.

5.2 Textual Invariant Properties
Invariant properties describe global requirements of a design

that cannot be easily stated as a set of scenarios. An invariant de-
scribes safety behaviour which means that a specific state should
never be reached [26]. For instance, two signals read enable
and write enable cannot be asserted at the same time or a spe-
cific capacity cannot be exceeded. For an invariant property an
implication structure is not applicable. Hence, the usual Given-

When-Then structure may be superfluous.
Example 5. The following property verifies the maximum

amount of elements that can be stored in the FIFO.

Property: Invariant

* The number of elements in the FIFO is at most 4.

The following step definition contains the PSL code for the

property, stating that the number of elements shown at output

elems will at most be 4:

Then /^the number of elements in the FIFO is at most 4\.$/ do
Verilog::add_consequent do
elems <= 4

end
end

Both descriptions can be viewed as natural language patterns
for describing properties. Property specification patterns haven
been introduced by Dwyer et al. in Ref. [14] where the authors
proposed patterns for commonly occurring requirements. The
implication properties can be viewed as subset of the Response
patterns. Invariant properties can be used to describe properties
from the Absence pattern.

5.3 Assembling the Property
The property code in the step definitions needs to be assembled

to a correct property in PSL syntax in order to be checked against
the implementation. The structural semantics of the textual prop-
erty defined by the keywords and the API calls is used to map
the appropriate parts to the property. The antecedent parts (also
given by When) and the consequent parts (also given by the Then

keyword) of the step definitions is mapped to the antecedent and
the consequent of the resulting property, as can be seen in Fig. 6.

The PSL code of each step is joined for the antecedent and con-
sequent block, respectively. If the property code of the antecedent
(respectively consequent) occurs in the same time step, they are
assembled as parallel sequences using the non-length matching

and ‘&’ operator. Steps in consecutive cycles are treated using
the concatenation operator ‘;’ between the statements.

In the textual property of Fig. 6 (a), timing is explicitly stated
with the predefined step When I wait 1 cycle which separates the
antecedent and consequent blocks. Using the non-overlapping
suffix implication operator ‘|=>’ in the generated property, it is
expressed that the consequent is expected to hold one cycle after
the last cycle of the antecedent. The transcription of timing to the
PSL property is depicted in the figure using a dashed arrow.

The last step definition is special since it defines an assume-
block which describe global restrictions. As a result, an inde-
pendent property is assembled for every assume-block given in a
property. In the example, the configuration of the FIFO — the

c© 2018 Information Processing Society of Japan 35

IPSJ Transactions on System LSI Design Methodology Vol.11 29–45 (Aug. 2018)

Fig. 6 Implementation.

FIFO operates in normal mode — is constrained. Then this prop-
erty is assumed in the context of this PSL property.

The idea shown in this section leverages the experience of sys-
tem designers when writing properties for the first time. A de-
signer can start with easier PSL construct with just simple LTL,
which can be seen as simple if conditions of standard HDL code.

6. Testcase Generalisation

Specifying textual properties as a second driver for the imple-
mentation helps to increase the confidence in the correctness of
the DUV. But, in the design process it is often more natural and
easier to write a test case than specifying a property. Hence, there
might exist scenarios that could have been easily stated as prop-
erties in order to cover the complete input space of the scenario,
while by using scenario outlines only a subset of test patterns are
applied.

In the previous section we have shown how to write properties
in the same manner as natural language scenarios and drive the
implementation using these properties. Scenarios are very simi-
lar to the specification of implication properties since they build
on the same structural semantics. In the following, we will show
how to use these scenarios to automatically generalise PSL prop-
erties from them and use them for formal verification.
Example 6. Consider the scenario outline in Fig. 7, which de-

scribes pushing to an empty FIFO: After insertion of an element,

it will be visible at the output in the next cycle. Using the example

table construct, three tests will be run with different values for the

input element.

Scenarios usually consider only few selected test input data and
never cover a scenario exhaustively. The example in Fig. 7 only
covers the inputs 1, 0 and 127 explicitly. Covering the whole in-
put space would require an explicit enumeration in the examples
table, which is obviously infeasible for larger bit widths. In the

Fig. 7 Natural language scenario with poor coverage.

same time, the usage of <a> as a placeholder already suggests
using a model-checker instead, leaving the data as a free input.

Both parts of the specification, textual properties and scenar-
ios have the same validation intent which is described using
the same characteristic structural semantics given by the Given-

When-Then-structure. Hence, such scenarios (in particular the
scenario outlines) are especially well suited for generalisation in
terms of a PSL property. This property can then cover the whole
test input space. To obtain the PSL property, the structure of the
scenario defined by the Given-When-Then-keywords is mapped
to an implication property. Especially the When-Then semantic
structure can be mapped directly to an implication, as shown in
Section 5.

A property is obtained by mapping the structure of the scenario
determined by the Given-When-Then-keywords and the underly-
ing test code to an implication property. While the code of all
When-steps of a scenario constitute the antecedent of a property,
the code of all Then-steps constitute the consequent, thereby cap-
turing the verification intent of the scenario in a PSL property.

The following algorithm explains how properties are generated
from scenarios.

c© 2018 Information Processing Society of Japan 36

IPSJ Transactions on System LSI Design Methodology Vol.11 29–45 (Aug. 2018)

Algorithm P (Property Generation). Given a scenario and its
step definitions, this algorithm generates a property for it.
P1. [Assigning step definitions.] For each step in the scenario,

the step definition code is added to a skeleton property. The
position of the code depends on the keyword: Given steps are
assumptions, When steps are part of the antecedent, and Then

steps are part of the consequent.
P2. [Resolve dependencies.] Since inputs and outputs need to be

related, the parameters used to set the test input data inside
the step definition must be replaced by the placeholder vari-
able from the scenario.

P3. [Timing.] Timing information from all step definitions is ex-
tracted and each statement of the step definition is assigned
to one time step.

P4. [Test semantics.] In order to follow the same semantics as in
the test, the property is extended by expressions that ensure
the test semantics: Each attribute that does not change over
time is fixed using the stable macro which constraints an
attribute’s next value to equal its current value.

P5. [Assembling.] Assemble all statements of the antecedent and
the consequent to SERE expression using the timing informa-
tion of step P3 and the additional test expressions of step P4.

The algorithm P is illustrated in Fig. 8. As described in P1, all
statements in Fig. 8 (b) with a grey background are sorted to the
proper part of the implication property. Depending on the key-
word that is used in the scenario (see Fig. 8 (a)), a statement will
be inserted to the antecedent (if it is a When-step) or inserted to
the consequent (if it is a Then-step). Statements that only set test
input data to an input are skipped in this step, therefore the last
assignment of the second step definition is not included in the
antecedent of the property.

After that the dependencies between the inputs and the outputs
are resolved. For this purpose, the implicit information of the
glue code is used. The glue code is the part of the scenario and
the step definitions that relates the input and output signals with
placeholders such as <a>. Placeholders correspond to selected
test input data. Since the same placeholder variables are used to

Fig. 8 From a scenario to a generalised property.

target the same inputs and outputs in the scenario, it is possible to
resolve the dependencies in the step code. In Fig. 8 (b) the param-
eters arg and out are substituted by the placeholder <a>. This is
indicated by the solid arrows that connect the parameters of the
step definitions with the placeholder <a> in the scenario. Both
mark the same input dat in. For this reason, the parameter out
can be replaced by the input dat in in the last step definition,
which is indicated by the dashed arrow.

6.1 Limitations of Property Generalisation
The generalisation of scenarios to properties allows to improve

the verification coverage without any user intervention. The only
overhead is in terms of runtime when applying model checking
instead of mere testing. When formal methods are applicable to
a design, then the generated properties can cover the whole input
space and can potentially discover more bugs. This makes the
generalisation very attractive. However, generalising simple test
cannot fully replace a full fledged property suite, and some de-
sign intent that is well captured by complex temporal properties
will not be generalisable from user written scenarios. One pos-
sibility to overcome the problem is to generalise a property from
several test cases and not only one, as more data can be gathered
this way. This also avoids having a large amount of fine-grained
small properties.

Another pitfall that frequently occurs in scenario outlines is
functionality implicitly described by example data. Consider
again the scenario outline in Eq. (2). There, the intended func-
tionality (adding two numbers) is given by the examples that de-
fine the correct output <c> for inputs <a> and . In the step
definitions of the scenario, there is no hint whatsoever about the
semantics of the tested function. Therefore, generalising this sce-
nario will not result in a useful property that verifies the addition.
A similar problem occurs if environment assumptions are implic-
itly given by the test data. Such assumptions are e.g., restrictions
on the data range of certain inputs, special relationships between
inputs or even specific temporal sequences of inputs.

As a rule of thumb, in order to avoid such pitfalls, outputs
should not be constrained by means of an example table, if possi-
ble. Instead, explicitly stating the relationship between the inputs
and outputs in the scenario allows generalization. As for the adder
example, the scenario could be improved by providing a step that
precisely describes the expected output to be the sum of <a> and
. In the case of environment constraints, these can often be
stated as a Given-sentence. These rules also help to improve the
quality of the scenarios when serving as a documentation of the
DUV.

7. Generation of Debug and Witness Scenarios
from Properties

To simplify the utilisation of properties furthermore in a BDD
manner, this approach generates exemplary scenarios for proper-
ties, either when the property check fails such that the developer
receives a debug scenario for finding the bug in the DUV or as
an explanation for any written property in terms of a witness sce-

nario. The idea of this approach is to generate executable scenar-
ios that can be understood and reused by the developer for further

c© 2018 Information Processing Society of Japan 37

IPSJ Transactions on System LSI Design Methodology Vol.11 29–45 (Aug. 2018)

Fig. 9 Scenario generation overview.

investigations of the design. Therefore, this approach generates
a debug scenario or a witness scenario for a property by reusing
existing steps that the developer already used in other scenarios.

In order to find a witness scenario for any valid property or a
debug scenario for an invalid property, a trace property needs to
be created that considers the existing steps for the creation of a
counterexample or witness trace.

Figure 9 shows the general outline of this approach. To be able
to form a trace property, the source property and all executable
step definitions have to be known. The counterexample, which
is generated through bounded model checking, is transformed to
a new scenario consisting of — as much as possible — existing
steps. To retrieve the known steps for a new scenario, all steps
need to be encoded in the trace property, so that they can be read
from the counterexample.
Algorithm S (Scenario Generation). Given a property p and
all already written scenario steps and their step definitions, this
algorithm generates a set of good exemplary scenarios for it.
S1. [Pre-process scenario steps.] As a pre-process, all steps to-

gether with their corresponding step definition code need to
be gathered. This is done while all scenarios are simulated.
Since the step definition code contains only Verilog code
these steps need to be generalized similar to the approach in
Section 6.

S2. [Trace property.] Using the property and all generalized steps,
a trace property is formed to find a scenario that generates a
debug (or witness) trace for the source property.

S3. [Trace scenario.] After the model check is executed, each
trace of the counterexample is decoded to form a BDD sce-
nario.

S4. [Find good generated scenarios] Evaluate all scenarios using
optimisation techniques to find the best possible scenarios for
the developer.

While Algorithm S only outlines the general method of the sce-
nario generation approach, the following subsections will explain
the individual steps in more detail.

7.1 Pre-process Scenario Steps (S1)
In order to create a debug or witness scenario for a (failing)

property, the counterexample trace which results from a failing
model check needs to reference the existing steps in the debug or
witness trace. This information is then used to create a new sce-
nario. A step is only relevant if it is associated with step definition
code in Verilog that can be executed without any (syntax) errors
since the resulting scenario shall be executable. Hence, all steps
and their correct step definition code are gathered during simu-
lation. To integrate these step definition into the trace property,

each step definition code needs to be translated to PSL, which can
be done using the approach from Section 6.

7.2 Creating a Trace Property (S2)
The trace property intends to generate a trace for the (failing)

source property. Instead of generating an arbitrary counterexam-
ple, this trace shall consist of as many existing steps as possible,
so that an easily comprehensible scenario can be put together.
To achieve this, two technicalities need to be encoded into the
trace property: all runnable steps and the verification intent of
the source property. Depending on the former property checking
result (if any) it needs to be handled differently. At first we will
introduce the generation of a trace property that will result in a
new scenario for debugging, which is also shown in Fig. 10.

Figure 10 displays an example for a generated trace property
for a property that has failed during the property check. The prop-
erty in the figure describes the amount of elements that are con-
tained in the FIFO if the FIFO is full. This property will be used
as a running example in this section. We made this property fail
by inserting a bug into the FIFO design which returns a wrong
number of elements contained in the FIFO. The error has not
been covered by any user defined scenarios.

To find a counterexample for the failing source property shown
in Fig. 10 (a), the reversed verification intent of the property needs
to be encoded to find a counterexample for the original verifica-
tion intent. The second line of block 2 shows how to encode
an implication property. Block 1 illustrates that every step must
be encoded in the trace property. The scenario created from
the counterexample should be composed only of steps, hence, at
least one step needs to hold which is enforced by the first line of
block 2.

The described kind of property generates a counterexample
that can be used to create a new scenario for debugging the fail-
ing property. In case a witness scenario shall be generated, the
constraint in block 2 would be created as follows

property full_fifo = never (antecendent && consequent);

In this case we want a witness for the valid property, therefore
the consequent can not be negated in order to find a trace contain-
ing the correct verification intent.

If the property is an invariant the antecedent clause is left out
for both kinds of trace properties as shown in the following con-
straint

property full_fifo = never (consequent);

In order to give a better explanation for a debug (or witness)
trace different kinds of traces are created. This is done in two
different ways: (1) allowing clock cycles without user steps and
(2) banning existing traces.

For the first way a trace property is created that requires less
known steps in the resulting scenario. This is done by allowing
to set DUV inputs independent of encoded testing steps in some
time steps, which is achieved using e.g., a modified assume di-
rective (block 4) such as the following:

c© 2018 Information Processing Society of Japan 38

IPSJ Transactions on System LSI Design Methodology Vol.11 29–45 (Aug. 2018)

Fig. 10 Generating a witness property for an implication property, that describes when the FIFO is full.

assume always next_e[0..1] (step1 || step2 || step3 ||
step4);

In this implementation only every second time step, a prede-
fined step is assumed to be part of the trace. Therefore, in be-
tween these steps, a behaviour that is not representable by known
steps is allowed in the trace.

Additionally it can be useful to restrict the counterexamples by
prohibiting known traces. Considering the example above, this is
done by adding the following constraint to the property:

assume never {step1; step2};

This excludes any sequence containing of step1 followed by
step2. Although this is rather strict, it can generate considerably
different scenarios which enable a different view on the design.

7.3 Creating a New Scenario (S3)
After the model checker has generated a counterexample, it

needs to be converted into a runnable scenario. The counterex-
ample consists of assigned input signals for every time step. The
encoded steps in the property appear as assigned signals in the
counter example. A step signal that is assigned in a specific time
step can be directly converted to a natural language step. All
transformed steps result in a new scenario. Nevertheless, it may
be possible that an assigned step does not cover all input signals
of the DUV, therefore the counterexample may contain additional
relevant input assignments. These assignments also need to be
converted to new steps. Furthermore the assertion needs to be en-
coded into a new Then-step, too. As a result, we categorize the
creatable types of steps as follows:
User step: A user step is a step that has been defined by the

developer for writing tests. It is encoded into the trace prop-
erty and can directly be used in the new scenario, when it is
assigned in the counterexample.

Assign step: Since some input signals can be assigned in the
counterexample that are not covered by any user steps, these
assignments need to be encoded as new, self-contained steps.
These steps are called assign steps. For example a step,
which sets the input signal dat in to 42will be named “And
dat in is set to 42”.

Check step: To express the verification intent of the failing

property in the new scenario, check steps are created. They
contain assertions and often start with the Then-keyword.
Check steps are added at the end of a new scenario. The
creation of these steps from PSL code is explained in detail
below.

Aux step: An aux step is a helper step that eases the creation of
check steps. Its application and creation is described in the
following subsection in more detail.

7.3.1 Generating Check Steps
To check the verification intent of the failing property at the

end of the newly generated scenario, the property needs to be
transformed to assertion test code and added as Then-steps. Two
types of properties are considered here: implication and invariant
properties. While an implication property consists of two check
steps, the first represents antecedent and the second the conse-
quent of the property, an invariant property only consists of one
check step.

Since a property may be expressed over several clock cycles,
everything that takes effect in a separate clock cycle needs to be
encoded apart from other cycles and inserted in the right time step
of the new scenario.
Example 7. Consider the following sequence of an antecedent

that will be represented by a check step

{ empty ; push==1 }

This sequence can be effectively checked by the following test

code

check_reg_1 = empty;

#2;

check_reg_2 = push == 1;

$assert(check_reg_1 && check_reg_2);

The individual assignments of each cycle are saved in a register

at different time steps. This enables the complete sequence to be

checked in the last time step.

Since the registers used in the sequence need to be assigned in
the new scenario, a special natural language step, called aux step

is generated, that makes the technical overhead visible to the de-
veloper. The step for the first assignment saved in “check reg 1”
is named “And the check reg ‘check reg 1’ is set to empty”.

c© 2018 Information Processing Society of Japan 39

IPSJ Transactions on System LSI Design Methodology Vol.11 29–45 (Aug. 2018)

Fig. 11 Generating a scenario from a counterexample.

7.3.2 Translating the Counterexample into an Executable
Scenario

Before translating the counterexample to an executable sce-
nario it is necessary to have a counterexample as concise as pos-
sible. Using approaches such as Ref. [31] the counterexample can
be reduced such that it only contains a minimal (relevant) set of
assignments. This reduced counterexample is then translated to
a trace scenario. After applying this technique a concise coun-
terexample is extracted where each assignment to step and input
signals is translated to user steps and assign steps, respectively.
The verification intent of the property is translated to aux and
check steps according to the method described above.

Consider the trace shown in Fig. 11 for the example property
in the previous section. The top eight signals are left after the as-
signments of the counterexamples have been lifted. The signals
below have been reduced but are kept in the trace for the sake
of completeness. The trace of the counterexample consists of six
time steps.

The translated scenario of this trace is shown in Fig. 12. The
dashed lines in the trace of Fig. 11 highlight the fourth time step,
where an element (“0”) is pushed to the FIFO, which is also de-
scribed by the first step (encoded with step1) named I push 20.
In the resulting scenario on the left hand side of Fig. 12 the time
steps 2 to 5 contain an assignment step that is redundant since
both steps set the dat in signal but only the last value is impor-
tant. This redundancy occurs due to the placeholder of the step
definition that is set to “20” in the original step but the corre-
sponding input signal is set to “0” in the counterexample. Hence,
the placeholder value is replaced such that the assigned value in
the counterexample is used. This is shown on the right hand side
of Fig. 12 where the assignment information of the input signal
dat in is merged into the step I push 0.

7.4 Find Good Generated Scenarios (S4)
Steps 1 to 3 generate a large number of scenarios that the devel-

oper could use for debugging the failing property. Selecting the
best scenarios can be hard. This section proposes an approach to
find a set of good scenarios from which the developer can choose.

In order to detect a good scenario, we need to define what

makes a scenario a useful supplement to the test suite. In fact,
there are several aspects, some of which conflict with each other:
On the one hand side, a scenario should be as concise as pos-
sible, since shorter scenarios are easier to understand for a hu-
man reader and since they consume less simulation time. On the
other hand, a good scenario should have high code coverage to
be useful. Some corner case related statements in the code might
be hard to reach, therefore requiring long and complex scenar-
ios. Finding “good” scenarios is a multi-objective optimization

(MOO) problem, and we will use MOO techniques to solve it.
Before giving the exact criteria for the problem at hand, we will
introduce the central notions of MOO in the following. In partic-
ular, we are interested in Pareto optimal solutions, for which none
of the objectives can be improved without compromising one or
more of the other objectives.
Definition 1 (Pareto optimum). Given the solution space Ω, an
evaluation function f : Ω → Rn maps a solution to a vector of n

objectives. For each dimension i, an ordering relation ≺i ∈ {<, >}
is given, depending on whether objective i is minimized or maxi-
mized, respectively. A solution p dominates another solution q if
the following holds:

p ≺ q ⇔ ∃i : fi(p) ≺i fi(q) ∧ � j : f j(q) ≺ j f j(p) (3)

The Pareto set P is then defined as the set of all non-dominated
solutions:

P = {p | �q ∈ Ω : q ≺ p} (4)

In order to apply this notion in the context of scenario genera-
tion, we need to define the optimization criteria. At first, we will
review the definition of a scenario in terms of automatic scenario
generation including the different types of steps presented in the
previous section.
Definition 2 (Automatically generated scenario). Let S =

〈s1, · · · , sn〉 be a scenario with n steps. Each step can have one
of four types: si ∈ US ∪ AS ∪ CS ∪ XS, where US is the set of
all user steps, AS is the set of all assign steps, CS is the set of all
check steps and XS is the set of all aux steps. The length of S is
defined as len(S) = n.

For a generated scenario to be useful, we want it to be as short
as possible. Furthermore, in order to obtain a readable scenario
that the user can easily make sense of, it should ideally consist
of user steps only, since these steps have previously been defined
by the user. This gives rise to the first two objectives: Minimiz-
ing the length, while keeping the ratio of user steps high. The
remaining dimensions are made up by coverage metrics.
Definition 3 (Coverage). The coverage cov(S) = (c1, . . . , cn) of a
scenario S is an ordered n-tuple where n is the number of cover-
age criteria of that can be measured running S separately by the
underlying coverage tool and c ∈ [0..1].

Obviously, the coverage of a scenario should be as high as pos-
sible. In our implementation we use the tool covered *4 which
calculates six coverage metrics: line coverage, toggle coverage,
memory coverage, combinational logic coverage, FSM coverage
and assertion coverage. Overall, the objective function is defined

*4 http://covered.sourceforge.net/

c© 2018 Information Processing Society of Japan 40

IPSJ Transactions on System LSI Design Methodology Vol.11 29–45 (Aug. 2018)

Fig. 12 Debug scenario for the failing property A full FIFO.

as follows.
Definition 4. Given the set of all generated scenarios Ω, the ob-
jective function f : Ω→ R8 is given by
• f1(S) = len(S) with ≺1 defined as <

(Get a scenario that is as short as possible)
• f2(S) = |US |

len(S) with ≺2 defined as >
(Get as many user steps in the scenario as possible)

• (f3(S), . . . , f8(S)) = cov(S) with ≺i defined as > for i = 3 . . . 8
(Get the highest possible coverage)

Example 8. Consider the generated scenarios for the failing

property A full FIFO in Fig. 13. The first generated scenario

is the longest scenario, it contains the most user defined steps

and has the highest code coverage, since it also applies the pop

operation. But this additional operation does not suit the seman-

tic meaning of the new scenario. The FIFO is filled to be fully

stocked; a removal of elements is counter-productive. The sec-

ond and third scenario have the same code coverage but differ

in the number of user defined steps. While the second scenario

only consists of mostly user steps, the third scenario uses mostly

assign steps. Although the third scenario is more concise, it hides

the behaviour of the test case and therefore is not considered as

a good scenario.

8. Related Work

8.1 Specifying Properties
This section reviews the diverse related work relevant to the ap-

plication of formal properties in an agile development flow. Two
research fields can be distinguished for the application of proper-
ties in an agile framework such as BDD: combining formal meth-
ods with agile development processes and easing the usability of
formal verification.
8.1.1 Formal Methods in Agile Development

The combination of formal techniques and agile development

has been considered in Ref. [22]. There, Henzinger et al. propose
a paradigm called “extreme model checking”, where a model
checker is used incrementally during the development of software
programs. Another approach is called “extreme formal model-
ing” [36]. In contrast to our work, a formal model is derived first,
which can then be used as a reference in the implementation pro-
cess. The technique has also been applied to hardware [35].

The work by Nummenmaa et al. [28] describes an approach
that uses an executable formal specification in an agile develop-
ment process. The authors combine a formal specification with
realistic user interaction, thereby visualizing formal methods.
8.1.2 Easing the Usability of Formal Methods

The work in Refs. [14], [15] proposes a first approach to ease
the creation of formal specification by introducing a property
specification pattern system that generalises descriptions of com-
monly occurring requirements. Parts of this pattern system is ap-
plied in the property-based BDD of this work.

The authors of Ref. [33] use a FSM notation to add formal ver-
ification to the verification process with little to no knowledge of
formal methods. This work also eases the use of formal verifica-
tion by reducing the new training to a minimum by using natural
language to approach formal verification step by step.

8.2 Generalising Properties from Tests
In Ref. [2], Baumeister proposed an approach to generalize

tests to a formal specification. His work considers Java as target
language where the specification is checked using generated JML
constraints. The drawback is that the approach does not facilitate
an automatic generalization of tests.

A property-driven development approach is presented in
Ref. [3], where a UML model is developed together with a speci-
fication and tests in a TDD manner and OCL constraints are being
added to the UML models while generalizing test cases. How-

c© 2018 Information Processing Society of Japan 41

IPSJ Transactions on System LSI Design Methodology Vol.11 29–45 (Aug. 2018)

Fig. 13 Selecting good scenarios.

ever, this approach is not implemented.
Automatic generation of properties has been described in

Ref. [23]. However, in that work, properties and constraints are
generated from Production Based Specification, which is a formal
specification language based on regular expressions.

8.3 Generating Scenarios from Properties
Two research fields can be distinguished for the application of

properties in an agile framework such as BDD: test cases genera-
tion from formal properties and finding good test cases.
8.3.1 Test Cases from Properties

Visser et al. presented an approach in Ref. [39] that generate
test inputs using model checking and symbolic execution. In this
work test inputs are computed for Java white box tests. The coun-
terexamples to the properties are used to report the test inputs.
This is similar to our work with the differences that this approach
generates natural language scenarios that can be used for hard-
ware testing.

In Ref. [4], the authors extended the software model checker
Blast such that it automatically generates test suites with a full
coverage according to a given predicate for C programs. This ap-

proach check if a specific line of code is reachable and returns a
test case for the line. In contrast, our approach allows different
kinds of properties. Furthermore the solution presented in this
work is applicable for hardware designs.

In the work [29] by Oberkönig, Schickel and Eveking a method
has been presented that allows to relate formal properties of a
module to a testbench thereby generating VHDL assertions. But
these VHDL assertions do not represent a complete testbench, in-
stead the user needs to create a testbench where these assertions
can be used. This is not the case for our approach where our
generated scenarios are directly run in a testbench.
8.3.2 Finding Good Test Cases

Finding good scenarios can be considered equivalent to finding
good test cases in software development and creating good coun-
terexamples for debugging purposes in hardware development.

The foundation of generating good scenarios in this work are
counterexamples, so generating good counterexamples is of spe-
cial interest to this work. Reference [17] presents heuristics for
good counterexamples. The authors propose two heuristics: the
first heuristic is a maximum distance heuristic based on three
different conditions. The second heuristic builds upon Binary

c© 2018 Information Processing Society of Japan 42

IPSJ Transactions on System LSI Design Methodology Vol.11 29–45 (Aug. 2018)

Decision Diagrams to ensure that no identical counterexamples
are chosen. The authors of Ref. [21] propose four algorithms for
computing small counterexamples that approximate the shortest
case that are based on Dijkstra’s algorithm for maximal strongly
connected components [13]. But the only applied criterion for
a good counterexample is the size. This is not the case for our
work, where we also consider the understanding of the generated
scenario that will be used for debugging. The work by Ref. [20]
deals with this problem by generating different variations of a
counterexample that are then used by various analysis routines to
provide the user with e.g., control locations of the error.

9. Conclusions

In this article, we have presented a BDD methodology for hard-
ware design. First, we have introduced the integration of test-
benches as well as the specification of timing in BDD. Then,
we have presented a two-fold BDD strategy which allows for an
elegant switch between testing and formal verification. On the
one hand, properties can be generalized from test code which can
be formally verified on the hardware design. On the other hand,
for failing properties debug scenarios can be generated in natural
language. For each contribution we have given the respective al-
gorithm and examples for demonstration. Overall, the presented
two-fold BDD methodology brings natural language based ag-
ile development to hardware design. Thereby, testing and formal
verification – which can be used side by side – drive the imple-
mentation.

For future work we want to evaluate the developed methods in
strong cooperation with an industrial partner.

Acknowledgments This work was supported in part by
the German Research Foundation (DFG) within the Reinhart
Koselleck project DR 287/23-1 and by the University of Bre-
men’s graduate school SyDe, funded by the German Excellence
Initiative.

References

[1] Accellera: Accellera Property Specification Language Reference
Manual, Version 1.1 (2005), available from 〈http://www.pslsugar.org〉.

[2] Baumeister, H.: Combining Formal Specifications with Test Driven
Development, XP/Agile Universe, pp.1–12 (2004).

[3] Baumeister, H., Knapp, A. and Wirsing, M.: Property-driven devel-
opment, Proc. 2nd International Conference on Software Engineering
and Formal Methods, SEFM 2004, pp.96–102, IEEE (2004).

[4] Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R. and Majumdar,
R.: Generating Tests from Counterexamples, Proc. 26th International
Conference on Software Engineering, ICSE ’04, pp.326–335, IEEE
Computer Society (2004).

[5] Biere, A., Cimatti, A., Clarke, E.M., Strichman, O. and Zhu, Y.:
Bounded model checking, Advances in Computers, Vol.58, pp.117–
148 (2003).

[6] Biere, A., Cimatti, A., Clarke, E.M. and Zhu, Y.: Symbolic Model
Checking without BDDs, Tools and Algorithms for Construction and
Analysis of Systems, pp.193–207, Springer (1999).

[7] Bradley, A.R.: SAT-Based Model Checking without Unrolling,
VMCAI, Jhala, R. and Schmidt, D.A. (Eds.), Lecture Notes in Com-
puter Science, Vol.6538, pp.70–87, Springer (2011).

[8] Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L. and Hwang,
L.-J.: Symbolic model checking: 1020 states and beyond, Proc. 5th
Annual IEEE Symposium on Logic in Computer Science, LICS ’90,
pp.428–439, IEEE (1990).

[9] Clarke, E., Grumberg, O., Jha, S., Lu, Y. and Veith, H.:
Counterexample-guided abstraction refinement, Computer Aided Ver-
ification, pp.154–169, Springer (2000).

[10] Clarke, E.M. and Emerson, E.A.: Design and Synthesis of Synchro-

nization Skeletons Using Branching-Time Temporal Logic, Logic of
Programs, Workshop, pp.52–71, Springer-Verlag (1982).

[11] Diepenbeck, M., Kühne, U., Soeken, M. and Drechsler, R.: Behaviour
Driven Development for Tests and Verification, Tests and Proofs,
Seidl, M. and Tillmann, N. (Eds.), Lecture Notes in Computer Sci-
ence, Vol.8570, pp.61–77 (2014).

[12] Diepenbeck, M., Soeken, M., Große, D. and Drechsler, R.: Behavior
Driven Development for circuit design and verification, Int’l Work-
shop on High Level Design Validation and Test Workshop (HLDVT),
pp.9–16 (2012).

[13] Dijkstra, E.W.: Finding the Maximum Strong Components in a Di-
rected Graph, Selected Writings on Computing: A Personal Perspec-
tive, Texts and Monographs in Computer Science, pp.22–30, Springer
New York (1982).

[14] Dwyer, M.B., Avrunin, G.S. and Corbett, J.C.: Property Specification
Patterns for Finite-state Verification, Proc. 2nd Workshop on Formal
Methods in Software Practice, FMSP ’98, pp.7–15, ACM (1998).

[15] Dwyer, M.B., Avrunin, G.S. and Corbett, J.C.: Patterns in Property
Specifications for Finite-state Verification, Proc. 21st International
Conference on Software Engineering, ICSE ’99, pp.411–420, ACM
(1999).

[16] Eisner, C. and Fisman, D.: A Practical Introduction to PSL (Series on
Integrated Circuits and Systems), Springer (2006).

[17] Fey, G. and Dreschler, R.: Finding good counter-examples to aid de-
sign verification, Proc. 1st ACM and IEEE International Conference
on Formal Methods and Models for Co-Design, pp.51–52, IEEE Com-
puter Society (2003).

[18] Flanagan, D. and Matsumoto, Y.: The Ruby Programming Language,
O’Reilly Media (2008).

[19] Foster, H.D.: Trends in functional verification: A 2014 industry study,
Design Automation Conference, pp.48:1–48:6 (2015).

[20] Groce, A. and Visser, W.: What Went Wrong: Explaining Counterex-
amples, Proc. 10th International Conference on Model Checking Soft-
ware, SPIN ’03, pp.121–136, Springer-Verlag (2003).

[21] Hansen, H. and Geldenhuys, J.: Cheap and Small Counterexamples,
6th IEEE International Conference on Software Engineering and For-
mal Methods, SEFM ’08, pp.53–62 (2008).

[22] Henzinger, T.A., Jhala, R., Majumdar, R. and Sanvido, M.A.A.: Ex-
treme model checking, International Symposium on Verification: The-
ory and Practice, LNCS, Vol.2772, pp.332–358, Springer (2003).

[23] Jahanpour, M. and Mohamed, O.: Automatic generation of model
checking properties and constraints from production based specifi-
cation, Midwest Symposium on Circuits and Systems, pp.435–438
(2004).

[24] Johnson, N. and Foster, H.: An Agile Evolution in SoC, Presentation
at DAC (2015), available from 〈https://verificationacademy.com/
resource/43899〉.

[25] Johnson, N. and Morris, B.: A Giant Baby Step Forward: Agile Tech-
niques for Hardware Design, SNUG (2009).

[26] Martin, G., Bailey, B. and Piziali, A.: ESL Design and Verifica-
tion: A Prescription for Electronic System Level Methodology, Mor-
gan Kaufmann Publishers Inc. (2007).

[27] Morris, B. and Saxe, R.: SVUnit: Bringing Test Driven Design Into
Functional Verification, SNUG (2009).

[28] Nummenmaa, T., Tiensuu, A., Berki, E., Mikkonen, T., Kuittinen, J.
and Kultima, A.: Supporting Agile Development by Facilitating Natu-
ral User Interaction with Executable Formal Specifications, SIGSOFT
Softw. Eng. Notes, Vol.36, No.4, pp.1–10 (2011).

[29] Oberkönig, M., Schickel, M. and Eveking, H.: Improving Testbench
Evaluation Using Normalized Formal Properties, International Con-
ference on Verification and Evaluation of Computer and Communica-
tion Systems, VECoS ’09, pp.73–83, British Computer Society (2009).

[30] Pnueli, A.: The Temporal Logic of Programs, FOCS, pp.46–57, IEEE
Computer Society (1977).

[31] Ravi, K. and Somenzi, F.: Minimal Assignments for Bounded Model
Checking, Tools and Algorithms for the Construction and Analysis
of Systems, Jensen, K. and Podelski, A. (Eds.), Lecture Notes in
Computer Science, Vol.2988, pp.31–45, Springer Berlin Heidelberg
(2004).

[32] Rose, S., Wynne, M. and Hellesøy, A.: The Cucumber for Java Book:
Behaviour-Driven Development for Testers and Developers, The Prag-
matic Bookshelf (2015).

[33] Schlipf, T., Büchner, T., Fritz, R. and Helms, M.: An easy approach to
formal verification, Proc. 10th Annual IEEE International ASIC Con-
ference and Exhibit, pp.120–124 (1997).

[34] Sheeran, M., Singh, S. and Stålmarck, G.: Checking Safety Proper-
ties Using Induction and a SAT-Solver, FMCAD, Hunt, Jr., W.A. and
Johnson, S.D. (Eds.), Lecture Notes in Computer Science, Vol.1954,
pp.108–125, Springer (2000).

[35] Suhaib, S.M., Mathaikutty, D.A., Shukla, S.K. and Berner, D.: Ex-
treme formal modeling (XFM) for hardware models, 5th International

c© 2018 Information Processing Society of Japan 43

IPSJ Transactions on System LSI Design Methodology Vol.11 29–45 (Aug. 2018)

Workshop on Microprocessor Test and Verification, MTV04, pp.30–35
(2004).

[36] Suhaib, S.M., Mathaikutty, D.A., Shukla, S.K. and Berner, D.: XFM:
An incremental methodology for developing formal models, ACM
Trans. Des. Autom. Electron. Syst., Vol.10, No.4, pp.589–609 (2005).

[37] Sülflow, A., Kühne, U., Fey, G., Große, D. and Drechsler, R.:
WoLFram – A Word Level Framework for Formal Verification,
Proc. IEEE/IFIP International Symposium on Rapid System Proto-
typing, RSP ’09, pp.11–17, IEEE (online), DOI: 10.1109/RSP.2009.21
(2009).

[38] Vardi, M.Y.: An Automata-Theoretic Approach to Linear Temporal
Logic, Logics for Concurrency - Structure versus Automata (Proc. 8th
Banff Higher Order Workshop), pp.238–266 (1995).

[39] Visser, W., Pasareanu, C.S. and Khurshid, S.: Test input generation
with Java PathFinder, ACM/SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA, Avrunin, G.S. and Rothermel,
G. (Eds.), pp.97–107, ACM (2004).

[40] Wynne, M. and Hellesøy, A.: The Cucumber Book: Behaviour-Driven
Development for Testers and Developers, The Pragmatic Bookshelf
(2012).

Melanie Diepenbeck finished her
diploma in computer science in 2011. Her
research focuses on agile development
methods and formal verification for hard-
ware design. During her Ph.D. studies
she was a student of the graduate school
System Design (SyDe). She received her
Dr.-Ing. degree from the University of

Bremen in 2015. Since 2015 she is working in the automotive
industry developing software tools for the GETRAG B.V. &
Co. KG.

Ulrich Kühne received his Dr.-Ing. de-
gree in computer science from the Uni-
versity of Bremen, Germany, in 2009. He
worked as a postdoctoral researcher in the
Laboratoire Spécification et Vérification
at ENS de Cachan, France, from 2010 to
2011. He then joined the group of Com-
puter Architecture in Bremen as postdoc-

toral researcher and coordinator of the Graduate School System
Design (SyDe) from 2011 to 2015. Since 2016, he is assistant
professor in the Complex Digital Electronic Systems group at
Télécom ParisTech, France. His research interests include hard-
ware security, formal verification, and hybrid and timed system
analysis. He served as program chair of the PROOFS workshop
on security proofs for embedded systems 2017. He is guest editor
of the Journal of Cryptographic Engineering (JCEN).

Mathias Soeken received his Dr.-Ing.
degree in computer science from the Uni-
versity of Bremen, Germany, in 2013.
He works as a researcher at the In-
tegrated Systems Laboratory at EPFL,
Lausanne, Switzerland. From 2009 to
2015 he worked at the University of Bre-
men, Germany. Since 2014, he is a regu-

larly visiting post doc at UC Berkeley, CA, USA. His research in-
terests are logic synthesis, quantum computing, reversible logic,
reverse engineering, and formal verification. He published more
than 100 papers in peer-reviewed journals and conferences and
serves in program committees of numerous conferences includ-
ing DAC, ICCAD, DATE, and FMCAD. He is member of the
IEEE and ACM.

Daniel Große received his Dr.-Ing. de-
gree in computer science from the Uni-
versity of Bremen, Germany, in 2008.
He remained as postdoctoral researcher
in the group of Computer Architecture in
Bremen. In 2010 he was a substitute pro-
fessor for computer architecture at Albert-
Ludwigs University, Freiburg, Germany.

From 2013 to 2014 he was CEO of the EDA start-up solvertec
focusing on automated debugging techniques. Since 2015 he is a
senior researcher at the University of Bremen and the German Re-
search Center for Artificial Intelligence (DFKI) Bremen and also
the scientific coordinator of the graduate school System Design
(SyDe), funded within the German Excellence Initiative. His re-
search interests include verification, high-level languages, virtual
prototyping, debugging and synthesis. In these areas he published
more than 100 papers in peer-reviewed journals and conferences
and served in program committees of numerous conferences like
e.g., DAC, ICCAD, DATE, CODES+ISSS, FDL, MEMOCODE.

c© 2018 Information Processing Society of Japan 44

IPSJ Transactions on System LSI Design Methodology Vol.11 29–45 (Aug. 2018)

Rolf Drechsler received his Diploma
and Dr. Phil. Nat. degrees in com-
puter science from J.W. Goethe Univer-
sity Frankfurt am Main, Frankfurt am
Main, Germany, in 1992 and 1995, re-
spectively. He was with the Institute of
Computer Science, Albert-Ludwigs Uni-
versity, Freiburg im Breisgau, Germany,

from 1995 to 2000, and with the Corporate Technology De-
partment, Siemens AG, Munich, Germany, from 2000 to 2001.
Since October 2001, he has been with the University of Bremen,
Bremen, Germany, where he is currently a Full Professor and the
Head of the Group for Computer Architecture, Institute of Com-
puter Science. In 2011, he additionally became the Director of the
Cyber-Physical Systems group at the German Research Center
for Artificial Intelligence (DFKI) in Bremen. His current research
interests include the development and design of data structures
and algorithms with a focus on circuit and system design. He is
an IEEE Fellow. He was a member of Program Committees of nu-
merous conferences including e.g., DAC, ICCAD, DATE, ASP-
DAC, FDL, MEMOCODE, FMCAD, Symposiums Chair ISMVL
1999 and 2014, Symposium Chair ETS 2018, and the Topic Chair
for “Formal Verification” DATE 2004, DATE 2005, DAC 2010,
as well as DAC 2011. He received best paper awards at the Haifa
Verification Conference (HVC) in 2006, the Forum on specifi-
cation & Design Languages (FDL) in 2007 and 2010, the IEEE
Symposium on Design and Diagnostics of Electronic Circuits
and Systems (DDECS) in 2010 and the IEEE/ACM International
Conference on Computer-Aided Design (ICCAD) in 2013. He
is an Associate Editor of IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions
on Very Large Scale Integration Systems, Design Automation for
Embedded Systems, IET Cyber-Physical Systems: Theory & Ap-
plications, International Journal on Multiple-Valued Logic and
Soft Computing, and ACM Journal on Emerging Technologies in
Computing Systems.

(Invited by Editor-in-Chief: Nozomu Togawa)

c© 2018 Information Processing Society of Japan 45

