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Abstract: Task scheduling has a significant impact on multicore computing systems. This paper studies scheduling of
data-parallel tasks on multicore architectures. Unlike traditional task scheduling, this work allows individual tasks to
run on multiple cores in a data-parallel fashion. In this paper, the inter-task communication overhead is taken into ac-
count during scheduling. The communication happens if main threads of two tasks with data-dependencies are mapped
onto the different processors. This paper proposes two methods for data-parallel task scheduling with communication
overhead. One is two-step method, which schedules tasks without communication and then assigns threads in the task
on cores. The other is integrated method, which performs task scheduling and thread assignment simultaneously. Both
of the two methods are based on integer linear programming. The proposed methods are evaluated through experiments
and encouraging results are obtained.
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1. Introduction

Multicore computing attracts an increasing attention because
of its better power/performance efficiency than single-core com-
puting. In multicore computing, task scheduling, which assigns
tasks to cores and decides the execution order of the tasks on each
core, has a significant impact on the system performance. There-
fore, multicore task scheduling has been extensively studied in
several decades. A traditional task scheduling problem assumes
that each task is executed on a single core. Prior algorithms for
the problem try to execute as many tasks as possible in paral-
lel on multiple cores, in order to minimize the overall schedule
length (a.k.a. makespan). Since task scheduling is an NP-hard
problem, it is difficult to find exact solutions in a practical time
and it consumes a large amount of memory and computing re-
sources [1], [2], [3]. Therefore, many heuristic approaches for
task scheduling have been proposed [4], [5], [6], [7], [8]. Some
researchers have extended the scheduling problem in such a way
that a task may use multiple cores [9]. Liu et al. proposed heuris-
tic algorithms to minimize the scheduling length of a given set
of dependent data-parallel tasks [10], [11], [12]. They allow in-
dividual tasks to use multiple cores. Turek et al. also allows
tasks to run on multiple cores [13]. The work developed poly-
nomial time algorithms for a multiprocessor scheduling problem
of parallelizable task. Yang and Ha’s work proposed a multi-task
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mapping/scheduling technique for scalable MPSoC [14]. The so-
lution is based on integer linear programming (ILP). They aim at
minimization of hardware cost, while satisfying the deadline con-
straints of the tasks. In Ref. [15], the task scheduling technique
based on ILP was proposed. Each task is executed on multiple
cores and many tasks are executed on multiple cores in parallel.
Their work in Ref. [15] allows a task to run on multiple cores
at a synchronous manner, where the task starts and finishes the
execution on the multiple cores at the same time. They aim at
minimization of schedule length. The ILP-based task schedul-
ing on multicore was also proposed in Ref. [16]. Different from
the work in Ref. [15], tasks are split into sub-tasks and they are
scheduled independently. The objective in Ref. [16] is the min-
imization of schedule length. Chen and Chu developed an ap-
proximation algorithm for multicore task scheduling [17]. Their
algorithm found feasible scheduling results for a set of dependent
data-parallel tasks. The work considers the intra-task overhead
such as communication and synchronization inside the tasks.

The communication overhead among tasks is not taken into ac-
count in Refs. [10], [11], [12], [13], [14], [15], [16], [17]. How-
ever, the overhead happens in reality. There are some other works
which consider the inter-task communication overhead. Roel et
al. describe a design flow to map a throughput-constrained ap-
plication on MPSoC [18]. SDF modelling in their work includes
communication via the interconnect. They implemented the prac-
tical application on MPSoC. Hwang et al. assume the scheduling
problem for non-preemptive tasks on identical processors sub-
ject to inter-processor communication delays [19]. This work de-
signed and analyzed a new heuristic, called Earliest Task First
(ETF). They assumed that each task is executed on one processor
in n identical processors. In the work of Ref. [20], A* scheduling
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algorithm is proposed in order to minimize the schedule length.
The algorithm can find optimal schedules in reasonable time for
task graphs with 40 nodes. If two tasks with data dependencies
are mapped onto the same processor, the communication between
them is implemented by data sharing in local memory and no
communication delay is incurred. Venugopalan et al. proposed
an ILP based approach to find exact results for a task scheduling
problem with communication delays [21]. Communication delay
in Ref. [21] is based on Ref. [20]. The work also aims at the min-
imization of schedule length. In Refs. [20], [21], no multitasking
or parallelism is permitted within a task. The work in Ref. [22]
proposes the list scheduling algorithm taking into account com-
munication overhead in distributed memory machine. A task is
executed on a processor, and communication time is required if
two task which have dependent relation between them are as-
signed on the different processors. Fujita et al. propose two tech-
niques for obtaining a sharp lower bound on makespan for mul-
ticore task scheduling with communication delay [23]. In their
work, multiprocessor systems consist of identical processors, and
a unit of task is executed on a processor. It takes communication
delay between tasks with dependent flow if they are assigned to
different processors. The work in Ref. [24] presents a heuristic
algorithm for obtaining satisfactory suboptimal schedules. Their
algorithm is based on a classical list scheduling. The aim in the
work is the minimization of completion time. Each task is exe-
cuted on a processor and the communication channels are to be
half-duplex. An ILP based approach is proposed for integrated
hardware/software partitioning and pipelined scheduling of em-
bedded systems in Ref. [25]. Computation tasks are mapped to
hardware or software components of the target architecture. The
problem is to map computation tasks to SW or HW components.
Communication time is set to zero if tasks with data dependence
are mapped to the same component. As described above, many
researchers have studied multicore task scheduling problems with
communication overhead. However, they assume that each task
is executed on a single processor without data parallelism.

This paper studies scheduling of data-parallel tasks with tak-
ing into account communication time. We propose two schedul-
ing approaches. Based on ILP, this work schedules the tasks in
such a way that the overall schedule length is minimized. To our
knowledge, this is the first paper to address scheduling of depen-
dent data-parallel tasks with communication overhead.

This paper is organized as follows. Section 2 defines the
scheduling problem solved in this paper. Section 3 and 4 present
our scheduling methods and an ILP formulation of our task
scheduling problem. Section 5 evaluates our scheduling tech-
nique. Finally, Section 6 concludes this paper.

2. Scheduling Problem of Data-Parallel Tasks
with Communication Time

2.1 Problem Definition
In this section, we define the scheduling problem for data-

parallel with communication time.
The tasks that are to be scheduled are represented as a weighted

directed acyclic graph such as Fig. 1. The nodes represent tasks
and are associated with two values, data parallelism and the

Fig. 1 An example of task-graph.

Fig. 2 A data-parallel task.

execution time. The directed edges represent data dependency
between tasks. The edge cost is the communication time between
two tasks. In this problem, a task consists of one or more thread(s)
such as Fig. 2. In case of multiple threads, there is a single main-
thread and zero or more sub-thread(s). The main-thread partitions
data into multiple pieces, and distributes them to the sub-threads
for data-parallel execution. There may be inter-thread communi-
cation and synchronization during execution of the threads. Then,
the computation results of the sub-threads are gathered to the
main-thread, and the overall result data is passed to the successor
task. Such overheads for data-parallel execution within the task
are assumed to be included in the execution time of the task. We
also assume that no preemption is allowed, and all of the main-
thread and the sub-threads start and finish on multiple cores at
the same time in a synchronous manner. Communication over-
head happens if the main-thread of the predecessor task and that
of the successor task are mapped to different cores.

For simplicity, this paper assumes that cores are fully con-
nected and no conflict happens on the communication network.
However, this work can easily extend for shared communication
links on which communication traffics conflict with each other, by
treating the communication links as shared resources in a similar
way to CPU cores during scheduling.

A set of dependent data-parallel tasks and a set of homoge-
neous cores are given in advance as part of the task graph. This
work decides (a) mapping of the tasks onto the cores, and (b) the
start time of each task. The aim is the minimization of schedule
length. A task consists of one or more thread(s).

2.2 Scheduling Example
An example for scheduling in this work is shown in Figs. 1

and 2. A set of tasks is shown in Fig. 1. A schedule result for
the task-graph in Fig. 1 is shown in Fig. 3, where main-threads
are drawn in blue. Since the main-threads of tasks 1 and 3 are
mapped to the same core, there is no communication overhead
from tasks 1 to 3. On the other hand, since the main-threads of
tasks 2 and 5 are mapped to different cores, task 5 is executed af-
ter the execution time of task 2 plus the communication time, and
thus the start time of task 5 becomes 47 time-units (= 32 + 15).
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Fig. 3 An example of scheduling result.

Then, the overall length is 67 time-units.

3. Two-Step Approach to Scheduling and
Thread Assignment

In this section, we propose a two-step scheduling approach
(TSS). There are two steps in TSS. In the first step, TSS sched-
ules tasks without considering communication overhead. In this
step, each task is assigned multiple cores, but main-threads and
sub-threads are not distinguished. Then, in the second step, main-
threads are selected in such a way that the overall communication
overhead is minimized.

3.1 Scheduling Example for TSS
Figure 4 shows an example of scheduling result for Fig. 1. The

left Gantt chart in Fig. 4 describes a scheduling result in the first-
step scheduling. The other represents scheduling result in the
second-step scheduling. In the first step, task 5 is mapped to
cores 2 and 3. Then, the main threads of all tasks are not distin-
guished. The main threads are decided in the second step. Task 5
is executed the communication time after the execution of task 2
has been completed. That is because the main threads of tasks 2
and 5 are assigned to different cores.

3.2 Formulation of the First-Step Scheduling
The first-step scheduling technique is based on ILP in

Ref. [10], and scheduling solutions are obtained with ILP. We re-
view the ILP formulation in Ref. [10] which is used in the first
step in this section.

Let mapi, j denote mapping information of task i ∈ {1, . . . ,
Ntask}, where Ntask represents the number of tasks. mapi, j is
1 if task i is assigned to core j ∈ {1, . . . ,Ncore}, where Ncore

represents the number of cores. Otherwise, mapi, j is 0. Let Pari

denote the digree of data parallelism of task i. Pari is assumed
to be given. The mapping constraint for each task is expressed as
follows.

∀i,
∑

j
mapi, j = Pari (1)

Let Timei denote the execution time of task i. We assume that
Timei is given. Let starti and finishi denote the start time and the
finish time of task i. Note that starti is a decision variable and
finishi is a dependent viriable defined by the following equation.

∀i, finishi = starti + Timei (2)

If two tasks i1, i2 ∈ i, are mapped to the same core, the execu-
tion of the two tasks cannot be overlapped in the same time. This
resource constraint is following formula.

Fig. 4 An example of scheduling result for TSS.

∀i1, i2, j, mapi1, j + mapi2, j ≤ 1

∨ finishi1 ≤ starti2

∨ finishi2 ≤ starti1 (3)

This work assumes a set of dependent tasks; that is, the tasks
may have a precedence dependency. Let Flowi1,i2 denote a prece-
dence dependency between tasks i1 and i2. Flowi1,i2 is 1 when
task i1 must be finished before task i2 starts. Otherwise, Flowi1,i2

is 0. We assume that Flowi1,i2 is given. Then, the precedence
constraint is expressed as follows.

∀i1, i2, Flowi1,i2 → finishi1 ≤ starti2 (4)

This work aims at minimization of the overall schedule length.
Therefore, the objective function of our scheduling problem is
given as follows.

max
i
{ finishi} (5)

The first-step scheduling problem for data-parallel tasks with-
out communication overhead is now formally defined: Given
Timei, Pari and Flowi1i2, find mapi j and starti which minimize
the objective function (5), subject to the four constraints (1)–(4).
There are (3 ·Ntask2 ·Ncore+3 ·Ntask2+3 ·Ntask) constraints and
(Ntask2 ·Ncore+Ntask2 +Ntask ·Ncore+ 2 ·Ntask+ 1) variables
in total.

3.3 Formulation of the Second-Step Scheduling
In the second step, main-threads are decided in such a way that

the overall communication overhead is minimized. Then, map-
ping information and the execution order of tasks in Section 3.2
are given.

Let main mapi, j denote a 0-1 decision variable. main mapi, j

becomes 1 if the main-thread of task i is mapped to core j. There
is only a main-thread in each task. The constraint for each task is
expressed as follows.

∀i,
∑

j
main mapi, j = 1 (6)

Let sub mapi, j denote a 0-1 decision variable. sub mapi, j be-
comes 1 if a sub-thread of task i is mapped to core j. Let Pari

be the degree of parallelism (the number of cores) of task i. Pari

is assumed to be given. The total of threads is equal to the de-
gree of parallelism. The constraint is formulated by the following
formula.

∀i,
∑

j
{main mapi, j + sub mapi, j} = Pari (7)

Mapping information is given by the first-step scheduling as
mapi, j. In this section, mapi, j is expressed as Mapi, j. If Mapi, j

is 1, the main-thread or sub-thread of task i mapping to core j is
selected. The selection for threads is expressed as follows.
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Fig. 5 An example of the order constraint.

∀i, j, main mapi, j + sub mapi, j = Mapi, j (8)

Let Timei denote the execution time of task i. Timei is assumed
to be given. Let starti and finishi denote the start time and the
finish time of task i, respectively. Note that starti is a decision
variable and finishi is a dependent variable defined by the follow-
ing equation.

∀i, finishi = starti + Timei (9)

If two tasks, i1 and i2, are executed at the same time, the two
tasks is mapped to the different cores. Otherwise, the execution
of the two tasks cannot be overlapped. The resource constraint is
formulated by the following formula.

∀i1, i2, i′ ∈ {i1, i2}, j,∑
i′
(main mapi′ , j + sub mapi′ , j) ≤ 1

∨ finishi1 ≤ starti2

∨ finishi2 ≤ starti1 (10)

Let ei1,i2 be a 0-1 decision variable, which is 0 if main-threads
of two tasks, i1 and i2, are mapped to the same core. In other
words, ei1,i2 becomes 1 when communication between tasks i1
and i2 happens. ei1,i2 is given by:

∀i1, i2,

ei1,i2 =

⎧⎪⎪⎨⎪⎪⎩
0 if max j{main mapi1, j + main mapi2, j} = 2
1 otherwise

(11)

This work assumes a set of dependent tasks, and the tasks may
have a precedence dependency. Let Ci1,i2 denote communication
time between tasks i1 and i2. Ci1,i2 is assumed to be given. Ci1,i2 is
0 if there is no data dependency from tasks i1 to i2. Ci1,i2 is posi-
tive when there is the precedence constraint between two tasks.
Ci1,i2 is positive when task i1 must be finished before task i2
starts. Then, the precedence constraint is expressed as follows.

∀i1, i2, Ci1,i2 > 0→ finishi1 +Ci1,i2 · ei1,i2 ≤ starti2

(12)

The execution order of tasks is given as starti in Section 3.2. It
is expessed as Starti in this section. If task i1 is executed on core j

before task i2 executed on core j, two tasks have a precedence de-
pendency. Figure 5 shows an example of the order constraint. In
this figure, tasks are executed on core 1 in the order of tasks 1, 2,
3, and 4. This schedule is obtained from the first-step scheduling.
Then, task 1 is executed on core 1 before task 2. Therefore, it
is assumed that tasks 1 and 2 have a precedence dependency in
the second-step scheduling. Similarly, data dependency between
other tasks is added to task-graph such as dotted edge in Fig. 5.

The order constraint is formulated by the following.

∀i1, i2, j,

Starti1 < Starti2 ·Mapi2, j → finishi1 ·Mapi1, j ≤ starti2 (13)

This work aims at the minimization of the overall schedule
length. The objective function of our scheduling problem to be
minimized is given as follows.

max
i
{ finishi} (14)

The second-step scheduling problem is now formally defined:
Given Timei, Pari and Ci1,i2, Mapi, j and Starti find main mapi, j,
sub mapi, j and starti which minimize the objective function (14),
subject to the eight constraints (6)–(13).

Although formulas (10)–(14) are not in a linear form, they can
be easily linearized by a simple transformation technique.

Formula (10) can be replaced with (15)–(21) as follows. Let
xi1,i2, j be a 0-1 variable, being 1 if

∑
i′∈{i1,i2}(main mapi′ , j +

sub mapi′ , j) < 2. A part of formula (11) is expressed by the
following inequality.

∀i1, i2, i′ ∈ {i1, i2}, j,∑
i′
(main mapi′ , j + sub mapi′ , j) − 2 ≥ −U · xi1,i2, j (15)

∀i1, i2, i′ ∈ {i1, i2}, j,∑
i′
(main mapi′ , j + sub mapi′ , j) − 2 < U · (1 − xi1,i2, j)

(16)

Here, U is large positive constant. U is sufficiently large if
U >

∑
k maxk(Timei). Next, let xi1,i2 be a 0-1 variable, being 1 if

finishi1 ≤ starti2. A part of formula (11) is linearized as follows.

∀i1, i2, ( finishi1 − starti2) + U · xi1,i2 > 0 (17)

∀i1, i2, ( finishi1 − starti2) − U · (1 − xi1,i2) ≤ 0 (18)

Similarly, let xi2,i1 be a 0-1 variable, being 1 if finishi2 ≤ starti1.
A last of formula (11) is linearized as follow.

∀i1, i2, ( finishi2 − starti1) + U · xi2,i1 > 0 (19)

∀i1, i2, ( finishi2 − starti1) − U · (1 − xi2,i1) ≤ 0 (20)

Then, formula (11) can be replaced with a linear inequality as
follows.

∀i1, i2, j, xi1,i2, j + xi1,i2 + xi2,i1 > 0 (21)

Formula (11) can be replaced with Eqs. (22), (23) and (24) as
follows. Let yi1,i2, j be a 0-1 variable, being 0 if main-threads of
two tasks, i1 and i2, are mapped to the core j. This variable is
expressed by the following inequality.

∀i1, i2, i′ ∈ {i1, i2}, j,(∑
i′

main mapi′ , j − 2
)
+ 2 · yi1,i2, j ≥ 0 (22)

∀i1, i2, i′ ∈ {i1, i2}, j,(∑
i′∈{i1,i2} main mapi′ , j − 2

)
− 2(1 − yi1,i2, j) < 0 (23)

Figure 6 shows an example of mapping threads to four cores.
The Gantt chart on top of Fig. 6 shows the main threads of two
tasks are not executed on the same core, core 1. In other words,
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Fig. 6 Mapping main threads to cores.

there is communication overhead between tasks. ei1,i2 is 1 if
main-threads of two tasks, i1 and i2, are mapped to the different
cores. Therefore, ei1,i2 becomes 1 in the case of the top in Fig. 6.
The other of Fig. 6 shows the main threads of two tasks are exe-
cuted on the core 1; there is no communication overhead between
tasks. Therefore, ei1,i2 becomes 0 in the case of the other in Fig. 6.
ei1,i2 in formula (11) expressed by the following equation, using
Ncore which is the number of cores in the target systems.

∀i1, i2, ei1,i2 =
∑

j
yi1,i2, j − Ncore + 1 (24)

Formula (12) can be replaced with a linear inequality as fol-
lows.

∀i1, i2, Ci1,i2 · ( finishi1 − starti2 −Ci1,i2 · ei1,i2) ≤ 0 (25)

Formula (13) can be replaced with Eqs. (26), (27) and (28) as
follows. Si1,i2, j is positive if task i2 starts after the start time of
task i1. S′i1,i2, j is positive if task i2 is executed after the finish
time of task i1. When task i2 is executed on core j before task i1
has been executed on core j, the following inequality as well as
inequality (28) is satisfied.

∀i1, i2, j, Si1,i2, j = Starti2 ·Mapi2, j − Starti1 (26)

∀i1, i2, j, S′i1,i2, j = finishi1 ·Mapi1, j − starti2 (27)

∀i1, i2, j, Si1,i2, j · S′i1,i2, j ≤ 0 (28)

The objective function (14) can be replaced with Eqs. (29) and
(30) as follows. finmax is the objective valuable. The aim of
our research is the minimization of finmax, together with an ad-
ditional constraint (30).

finmax (29)

∀i, finmax − finishi ≥ 0 (30)

Formulas (10)–(14) can be linearized as formulas (15)–(30).
Thus, the task scheduling problem leads to an integer linear pro-
gramming (ILP) problem. There are (8·Ntask2 ·Ncore+6·Ntask2+

Ntask · Ncore + 4 · Ntask) constraints and (4 · Ntask2 · Ncore + 2 ·
Ntask · Ncore + 2 · Ntask2 + 2 · Ntask + 1) variables in total.

4. Integrated Approach to Scheduling and
Thread Assignment

In this section, we propose an integrated scheduling approach

(IS). Unlike TSS, scheduling of tasks and mapping of main
threads are optimized simultaneously in IS. It is theoretically
possible for IS to find better than (or at least equal to) the optimal
solution of TSS because the solution space of IS completely cov-
ers that of TSS. However, it is difficult to find the good solutions
of the IS method within a practical time due to the wider solution
space.

Let main mapi, j denote a 0-1 decision variable. main mapi, j

becomes 1 if the main-thread of task i is mapped to core j. Let
sub mapi, j denote a 0-1 decision variable. There is only a main-
thread in each task. The constraint for each task is expressed as
follows.

∀i,
∑

j
main mapi, j = 1 (31)

sub mapi, j becomes 1 if a sub-thread of task i is mapped to
core j. Let Pari be the degree of parallelism of task i. Pari

is assumed to be given. The mapping constraint for each task
is expressed as follows. The total of threads is equal to the de-
gree of parallelism. The constraint is formulated by the following
formula.

∀i,
∑

j
{main mapi, j + sub mapi, j} = Pari (32)

The thread of task i mapped to core j is a main-thread or a sub-
thread. The selection for threads is expressed as follows.

∀i, j, main mapi j + sub mapi j < 2 (33)

Let Timei denote the execution time of task i. Timei is assumed
to be given. Let starti and finishi denote the start time and the fin-
ish time of task i, respectively. Let Ci1,i2 denote communication
time between tasks i1 and i2. Ci1,i2 is assumed to be given. Ci1,i2

is 0 if there is no data dependency from tasks i1 to i2. Note that
starti and ei1,i2 are a decision variable and finishi is a dependent
variable defined by the following equation.

∀i, finishi = starti + Timei (34)

If two tasks, i1 and i2, is executed at the same time, the two
tasks is mapped to the different cores. Otherwise, the execution
of the two tasks cannot be overlapped in the same time. This
resource constraint is formulated by the following formula.

∀i1, i2, i′ ∈ {i1, i2}, j,∑
i′
(main mapi′ , j + sub mapi′ , j) ≤ 1

∨ finishi1 ≤ starti2

∨ finishi2 ≤ starti1 (35)

Let ei1,i2 be a 0-1 decision variable, which is 0 if main-threads
of two tasks, i1 and i2, are mapped to the same core. In other
words, ei1,i2 becomes 1 when communication between tasks i1
and i2 happens. ei1,i2 is given by:

∀i1, i2,

ei1,i2 =

⎧⎪⎪⎨⎪⎪⎩
0 if max j{main mapi1, j + main mapi2, j} = 2
1 otherwise

(36)

This work assumes a set of dependent tasks, and the tasks may
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have a precedence dependency. Let Ci1,i2 denote communica-
tion time between tasks i1 and i2. Ci1,i2 is assumed to be given.
Ci1,i2 is 0 if there is no data dependencies from tasks i1 to i2.
Ci1,i2 is positive when there is the precedence constraint between
two tasks. Ci1,i2 is positive when task i1 must be finished before
task i2 starts. Otherwise, Ci1,i2 is 0. Then, the precedence con-
straint is expressed as follows.

∀i1, i2, Ci1,i2 > 0→ finishi1 +Ci1,i2 · ei1,i2 ≤ starti2

(37)

This work aims at minimization of the overall schedule length.
The objective function of our scheduling problem to be mini-
mized is given as follows.

max
i
{ finishi} (38)

Our scheduling problem with task communication time is now
formally defined: Given Timei, Pari and Ci1,i2, find main mapi, j,
sub mapi, j and starti which minimize the objective function (38),
subject to the seven constraints (31)–(37). Although formulas
(35)–(38) are not in a linear form, they can be easily linearized
by a simple transformation technique as well as Eqs. (15)–(25)
and (29)–(30). There are (5 ·Ntask2 ·Ncore + 6 ·Ntask2 +Ntask ·
Ncore + 4 · Ntask) constraints and (2 · Ntask2 · Ncore + 2 · Ntask ·
Ncore + 2 · Ntask2 + 2 · Ntask + 1) variables in total.

5. Experiments

5.1 Experimental Setups
In order to test the effectiveness of this work, a set of ex-

periments is conducted with fifteen task-graphs generated by
TGFF [26]. Each task-graph contains up to 30 tasks. TGFF gen-
erates task graphs and resource parameters in accordance with the
user’s parameterized graph. In the experiments, we set the exe-
cution time parameter to 50 ± 20 and the edge cost parameter to
8 ± 5. In addition, we selected a task-graph of the realistic ap-
plication from the Standard Task Graph (STG) set developed at
Waseda University [27]. The task-graph contains 88 tasks. The
task-graph is not taken account into communication cost. There-
fore, we assume that the communication overhead between two
tasks is 10% of the predecessor execution time.

Since no previous work is directly comparable to this work, we
compared our two methods with a simple scheduling method as
follows.
• SS: The sequential schedule when each task is assigned se-

quentially. Figure 7 shows an example of SS result for the
task graph shown in Fig. 1. Note that no communication is
necessary with the SS method. The schedule length of the
SS method is

∑
i Timei.

• EPCS: The heuristic algorithm based on the PCS algorithm
proposed in Ref. [10].

• TSS: ILP-based two-step scheduling approach presented in
Section 3.

• IS: ILP-based integrate scheduling approach presented in
Section 4.

EPCS is an extended version of the PCS algorithm proposed in
Ref. [10]. The PCS algorithm is based on list scheduling. Since

Fig. 7 Sequential scheduling method (SS).

Fig. 8 Extended PCS method (EPCS).

the original PCS algorithm does not take into account the commu-
nication overhead among tasks, we have extended the PCS algo-
rithm for the communication overhead. When a task is scheduled,
the main thread of the task is mapped to the core where the main
thread of its predecessor task is mapped, if the core is available.
Figure 8 shows an example of EPCS. TSS and IS are ILP-based
scheduling proposed in this paper. In order to solve the ILP prob-
lems, we used IBM ILOG CPLEX 12.8 on Intel Core i9-7980XE
processors. Since ILP is very time-consuming, optimal solutions
are not sometimes found in a practical time. In our experiments
for TGFF and STG, CPU runtime of CPLEX is limited up to 2
hours and 24 hours, respectively, and the best solutions found at
that time are used for evaluation.

5.2 Experimental Results
The scheduling results on two, four and eight cores are shown

in Figs. 9, 10 and 11, respectively. In the figures, a label on X-axis
indicates ID of the task-graph and the number of tasks. Y-axis
represents the schedule length normalized SS method.

On average, the TSS method achieves 6%, 12% and 14% re-
duction and the IS method achieves 8%, 13% and 15% reduction
in schedule length, compared with the SS method. The TSS and
IS methods outperformed the SS method. In the SS method, the
communication overhead between tasks does not happen because
the main-threads of tasks are mapped to same cores. However,
our proposed methods take advantage of the task parallelism.
Therefore, the TSS and IS methods can find better solutions than
the SS method even if the communication happen.

The TSS method achieves 2%, 4% and 2% reduction, com-
pared with the EPCS method. The IS method achieves 3%, 4%
and 3% reduction. The EPCS method is based on list scheduling,
which takes advantage of inter-task parallelism. Therefore, the
EPCS method finds shorter schedule length than the SS method.
However, due to the greedy nature of the EPCS algorithm, EPCS
is not as good as the TSS and IS methods.

Let us compare the TSS and IS methods. On average, the
IS method achieves 1%, 1% and 1% reduction in scheduling
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Fig. 9 Scheduling results on 2 cores.

Fig. 10 Scheduling results on 4 cores.

Fig. 11 Scheduling results on 8 cores.

length, compared with the TSS method. Scheduling of tasks and
mapping of main threads are optimized simultaneously in the IS
method. On the other hand, in the TSS method, each task is
scheduled without the communication overhead and main-threads
are selected in such a way that the overall communication over-
head is minimized. Therefore, the solution space of the IS method
completely covers that of the TSS, and the ILP solver found good
solutions for the IS method. In this experiments, an improvement
in schedule length of the IS method is observed in Figs. 9, 10 and
11. However, the TSS method is better than the IS method for
some task-graphs (tgff10 and tgff14 on four cores). The solu-
tion space of the IS method is much larger than that of the TSS
method. Therefore, it is sometimes difficult for the IS method to
find better solutions than TSS in a limited time.

In the next experiments, we used a task-graph developed from
the realistic application, robot control [27]. This task-graph con-
tains 88 tasks and 131 edges. The scheduling results for task set
of robot control are shown in Fig. 12. In the figures, the schedule
lengths are also normalized to the SS method. A label on X-axis
indicates the number of cores on which tasks are executed.

In cases of four and eight cores, IS failed to find any feasible
solutions. In case of two cores, IS finds a solution, but the solution
is worse than that of EPCS and TSS. The results show that the

Fig. 12 Scheduling results for robot control.

IS method is not scalable to large task graphs. The TSS method
finds shorter schedule length than the IS, EPCS and SS methods.
The TSS method achieves 23%, 40% and 74% reduction, com-
pared with the SS method. This experiment shows a significant
improvement in scheduling results. The TSS method achieves 7%
reduction on two cores, compared with the IS method. In addi-
tion, IS method is failed to find solutions on four and eight cores.
It is possible for the IS method to find better than or at least equal
to the optimal solution of the TSS method. However, it is diffi-
cult for ILP solver to find the optimal solution of the IS method
within limited time because of the wider solution space. The task-
graphs in the experiments are more than twice as large as the task-
graphs from TGFF. Therefore, the TSS method outperformed the
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Table 1 Runtime of ILP solver [seconds].

IS method in the case of task-graphs for robot control. The TSS
method achieves 7%, 19% and 16% reduction on four and eight
cores. The EPCS method is not as good as the TSS method due
to the greedy nature of the EPCS algorithm. That is why the TSS
method found shorter scheduling length than the EPCS method.

Our experimental results demonstrate the strength of methods
scheduling tasks with communication time in three methods. The
IS method finds better scheduling results than the TSS, EPCS and
SS methods. However, it is difficult to find solutions quickly in
the IS method. On the other hand, the TSS method outperforms
other methods when the IS method suffers from a large size of
task-graph.

Table 1 shows the CPU runtime of the ILP solver. The CPU
runtime of PCS method is less than one second. As described be-
fore, we limited the CPU runtime up to two hours for the TGFF
benchmarks and up to 24 hours for robot. For large task graphs,
the IS method cannot find optimal schedules within the time limit,
but still it finds the best schedules of the four methods in most
cases. For the TSS method, the first step requires the long run-
time, while the second step is fast. It should be noted that existing
heuristic algorithms such as Refs. [10], [11], [12] can be used for
the first step, in order to accelerate the TSS method.

6. Conclusions

This paper addressed a scheduling problem for data-parallel
tasks on multiple cores with communication time. This work pre-
sented two solution methods, the TSS and IS methods, for the
scheduling problem based on integer linear programming formu-
lation. The TSS method is a two-step approach to scheduling
and thread assignment. The IS method is an integrated approach
to scheduling and thread assignment. In the experiments, The
IS method finds better scheduling results than the other methods.
However, it may be difficult to find solutions in the IS method
depending on task-graphs. In the case of that, the TSS method
finds shorter schedule length than the other methods in practical

time. In future, we plan to extend this work to take into account
dynamic behaviors of tasks and architectures.
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