
IPSJ Transactions on System LSI Design Methodology Vol.12 74–77 (Aug. 2019)

[DOI: 10.2197/ipsjtsldm.12.74]

Short Paper

A Genetic Algorithm for Scheduling of Data-parallel Tasks
on Multicore Architectures

Yang Liu1,a) LinMeng1,b) Hiroyuki Tomiyama1,c)

Received: November 29, 2018, Revised: March 8, 2019,
Accepted: April 22, 2019

Abstract: This paper proposes a genetic algorithm for scheduling of multiple data-parallel tasks on multicores. Un-
like traditional task scheduling, this work allows individual tasks to run on multiple cores in a data-parallel fashion.
Experimental results show the effectiveness of the proposed algorithm over state-of-the-art algorithms.

Keywords: task scheduling, multicore architecture, task parallelism, data parallelism, genetic algorithm

1. Introduction

This paper addresses task scheduling on multicore architec-
tures, with a goal of minimum schedule length under constraints
on inter-task dependency and the number of cores. In general,
task scheduling is an NP-hard problem, and finding exact solu-
tions is proven to be very complex and consumes a large amount
of memory and computing resources [1], [2], [3]. Therefore,
many heuristic approaches to task scheduling have been pro-
posed [4], [5], [6], [7]. Recently, genetic algorithms (GAs) have
been widely studied as useful methods for obtaining high-quality
solutions for task scheduling problems [8], [9], [10], [11], [12].
Unfortunately, previous works on GA-based task scheduling con-
sider task parallelism only. Many studies such as Refs. [13],
[14], [15], [16], [17], [18], [19] and [20] have shown that, for
a large class of scientific and multimedia applications, exploit-
ing both task and data parallelisms yields better speedups com-
pared to either pure task parallelism or pure data parallelism. In
Ref. [13], the authors developed a language, compiler and run-
time system for task- and data-parallel systems. The authors
of Refs. [14] and [15] studied scheduling of data-parallel tasks
where the degree of data parallelism for each task is flexible. In
Refs. [16], [17], [18], [19] and [20], on the other hand, the authors
studied scheduling of data-parallel tasks where the degree of data
parallelism for each task is fixed prior to scheduling. The authors
of Refs. [16], [17] and [18] proposed heuristic algorithms based
on list scheduling, while the work in Ref. [19] proposed an exact
banch-and-bound algorithm. In Ref. [20], the authors presented
an integer linear programming approach to scheduling of data-
parallel tasks which considers communication overheads among
dependent tasks.

This paper proposes a genetic algorithm for task scheduling

1 Graduate School of Science and Engineering, Ritsumeikan University,
Kusatsu, Shiga 525–8577, Japan

a) yang.liu@tomiyama-lab.org
b) menglin@fc.ritsumei.ac.jp
c) ht@fc.ritsumei.ac.jp

with both task and data parallelisms where the degree of data par-
allelism is fixed and communication overheads are not taken into
account. Specifically, we propose a novel chromosome represen-
tation for task scheduling problem and efficient genetic operators
(i.e., selection, crossover and mutation) for the chromosome rep-
resentation.

2. Problem Description

The task scheduling problem addressed in this paper is the
same as the one in Refs. [17], [18] and [19]. This paper assumes
homogeneous multicore architectures. An application is modeled
as a directed acyclic graph, so called a task graph, where a node
represents a task and a directed edge represents a flow depen-
dency between two tasks. Figure 1 shows an example of a task
graph and its optimal schedule on four cores. Tasks labeled “S”
and “E” are dummy tasks, denoting an entry point and an exit
point of the application, respectively. Two integer values are as-
sociated with each task. The first number denotes the degree of
data parallelism of the task. In other words, the number denotes
the number of cores which are necessary to run the task. We
assume that the degree of data parallelism is decided by program-
mers, and how to decide it is out of the scope of this paper. The
latter number on each node denotes the execution time of the task.
For example, task 1 runs on 4 cores, and it takes 10 time units to
complete its execution.

Given a task graph, task scheduling decides when and on which
cores each task is executed in such a way that the overall schedule
length (a.k.a. makespan) is minimized while meeting constraints
on inter-task dependency and the number of available cores.

Fig. 1 A task graph with data parallelism (left) and its optimal schedule on
four cores (right).

c© 2019 Information Processing Society of Japan 74

IPSJ Transactions on System LSI Design Methodology Vol.12 74–77 (Aug. 2019)

3. The Proposed Genetic Algorithm

3.1 An Overall Procedure
Genetic algorithms are a kind of meta-heuristic algorithms in-

spired by the processes observed in natural selection [21]. Our
genetic algorithm is based on a standard procedure as follows:
(1) Initialization: Generate initial population.
(2) Calculation of the fitness: Calculate the fitness value for each

individual.
(3) Selection: Select individuals as parents for the next genera-

tion.
(4) Crossover: Vary the programming of a chromosome (or

chromosomes) from one generation to the next generation.
(5) Mutation: Alter genes in chromosomes.
(6) Termination: Go back to step (2) until a certain criteria is

reached.

3.2 Representation of a Chromosome
A chromosome is a set of strings, and represents a potential so-

lution (also called as an individual) for the problem. Adequate
definition of the chromosome is one of the most important issues
in genetic algorithms. In our genetic algorithm, a chromosome is
defined as an array of N elements where N represents the number
of tasks. This array determines the sequence of task execution.
Figure 2 shows an example of our chromosome for the task graph
in Fig. 1. The chromosome indicates that task 1 (depicted as T1
in the figure) is scheduled first, task 2 is the next, and so on.

A chromosome is called valid if the scheduling solution repre-
sented by the chromosome satisfies the precedence dependencies
among the tasks. The chromosome in Fig. 2 is valid since T1 is
scheduled before T3, and T2 is scheduled before T4 and T5.

3.3 Initialization
Our algorithm begins with generating a set of chromosomes.

A chromosome is generated by randomly ordering the tasks from
the leftmost gene to the right, still meeting precedence depen-
dencies. In case of the task graph in Fig. 1, the leftmost gene is
randomly selected from T1 or T2. If T2 is selected as the first
gene, the second gene is randomly selected from T1, T4 or T5.

3.4 Fitness Function and Selection
The fitness function defines the quality of the chromosome. In

our genetic algorithm, the fitness function returns the shortest
length of the schedule represented by the chromosome. Briefly
speaking, our fitness function runs list-based scheduling with the
priority represented by the chromosome.

Our genetic algorithm employs a classic selection technique
based on roulette wheel. On a virtual roulette wheel, our algo-
rithm assigns each chromosome a segment of a size proportional
to its fitness. Hence, chromosomes with higher fitness values are

Fig. 2 A chromosome example.

more likely to be selected for the next generation.

3.5 Crossover and Mutation
In genetic algorithms, crossover creates a new chromosome by

exchanging part of genes between two chromosomes, and muta-
tion randomly alters genes in a chromosome. Figure 3 illustrates
how our crossover and mutation operations are performed in or-
der to generate valid chromosomes.

Our crossover operation first randomly selects two chromo-
somes A and B from the population, next randomly selects a
crossover point in chromosome A, then copies the left part of
chromosome A to child chromosome C, and finally copies the
remaining genes from chromosome B to chromosome C.

Our mutation operation first randomly selects a chromosome
from the population, next randomly selects a gene (i.e., T4 in
Fig. 3), and then randomly places the gene between its immediate
predecessor(s) and successor(s). The task graph in Fig. 1 shows
that the predecessor of T4 is T2, and T4 has no successor. There-
fore, T4 is placed randomely but after T2.

3.6 Termination
Our genetic algorithm stops when the number of generations

reaches a user-specified number.

4. Experiments

The proposed genetic algorithm was implemented in C++,
and was evaluated against three state-of-the-art algorithms. One
is an exact branch-and-bound algorithm [19], and the other two
are heuristic ones based on list scheduling, i.e., the PCS algo-
rithm [17] and the dual-mode algorithm [18]. Since the branch-
and-bound algorithm is computationally expensive, we limited
the runtime of the algorithm up to 12 hours, and the best solu-
tion found by that time was used for our evaluation. As bench-
mark programs, 20 task graphs with 50 tasks each were selected
from Standard Task Graph (STG) [22] *1. The experiments were
conducted on Intel Core i7-4790K with 32 GB memory. In our
genetic algorithm, the population size was set to 16,384, and the
number of generations was limited to 50.

Figures 4 and 5 show the quality of results (i.e., normalized
schedule length) on four cores and eight cores, respectively. The
results clearly demonstrate the effectiveness of our genetic algo-
rithm over the heuristic algorithms.

The runtime of the four scheduling algorithms are compared
in Table 1. The runtime of the branch-and-bound algorithm sig-
nificantly depends on the task graph. The PCS and dual-mode
algorithms ran in the order of milliseconds, while our genetic al-

Fig. 3 Examples of crossover (left) and mutation (right).

*1 Since tasks in STG do not assume data parallelism, we randomly as-
signed the degree of data parallelism to the tasks.

c© 2019 Information Processing Society of Japan 75

IPSJ Transactions on System LSI Design Methodology Vol.12 74–77 (Aug. 2019)

Fig. 4 Comparison of four algorithms on four cores.

Fig. 5 Comparison of four algorithms on eight cores.

Table 1 Runtimes of the scheduling algorithms (seconds).

Four cores Eight cores
B&B [19] 0.89–43,200 (suspended) 0.93–43,200 (suspended)
PCS [17] < 0.01 < 0.01

Dual-mode [18] < 0.01 < 0.01
GA (this work) 3.81–4.37 4.21–4.84

gorithm ran in the order of seconds.
The results in Fig. 4, Fig. 5 and Table 1 clearly show the trade-

off between the quality of results and the algorithm runtime. In
principle, the branch-and-bound algorithm broadly explores the
solution space to find a truely optimal solution. However, due to
its exponential complexity of computation, it sometimes takes an
unacceptably long time to find the solution. The PCS and dual-
mode algorithms are based on list scheduling. Once they find a
solution in a greedy manner, they stop without trying to find bet-
ter solutions. Therefore, they run fast, but the quality of results is
not high. The genetic algorithm iteratively explores the solution
space by repeating selection, crossover and mutation operations.
With our parameter settings in the experiments, the genetic al-
gorithm searched approximately 800,000 valid solutions for each
task graph. This is the main reason why the genetic algorithm out-
performs the PCS and dual-mode algorithms which search only
one solution.

5. Conclusions

In this paper, we proposed a genetic algorithm for the task
scheduling problem which takes into account both task paral-
lelism and data parallelism. Our experiments using a set of stan-
dard task sets show that the proposed genetic algorithm efficiently
finds near-optimal schedules in a short runtime. In future, we plan
to extend our scheduling algorithm so that inter-task communica-
tion and resource conflicts are taken into account.

Acknowledgments This work is in part supported by KA-
KENHI 15H02680.

References

[1] Kasahara, H. and Narita, S.: Practical multiprocessor scheduling al-
gorithms for efficient parallel processing, IEEE Trans. Computers,
Vol.C-33, No,11, pp.1023–1029 (1984).

[2] Fujita, S.: A branch-and-bound algorithm for solving the multipro-
cessor scheduling problem with improved lower bounding techniques,
IEEE Trans. Computers, Vol.60, No.7, pp.1006–1016 (2011).

[3] Sinnen, O., Kozlov, A.V. and Shahul, A.Z.S.: Optimal scheduling of
task graphs on parallel systems, Proc. 9th International Conference
on Parallel and Distributed Computing, Applications and Technolo-
gies (PDCAT), pp.323–328 (2008).

[4] Kwok, Y.K. and Ahmad, I.: Static scheduling algorithms for allocat-
ing directed task graphs to multiprocessors, ACM Computing Surveys
(CSUR), Vol.31, No.6, pp.406–471 (1999).

[5] Hwang, J.J., Chow, Y.C., Anger, F.D. and Lee, C.Y.: Schedul-
ing precedence graph in systems with interprocessor communication
times, SIAM Journal of Computing, Vol.18, No.2, pp.244–257 (1989).

[6] Sih, G.C. and Lee, E.A.: A compile-time scheduling heuristic
for interconnection-constrained heterogeneous processor architecture,
IEEE Trans. Parallel and Distributed Systems, Vol.4, No.2, pp.175–
187 (1993).

[7] Hagras, T. and Janecek, J.: A high performance, low complexity al-
gorithm for compile-time job scheduling in homogeneous computing
environment, Proc. 2013 International Conference on Parallel Pro-
cessing Workshops, pp.149–155 (2003).

[8] Page, A.J. and Naughton, T.J.: Dynamic task scheduling using ge-
netic algorithms for heterogeneous distributed computing, Proc. 19th
International Parallel and Distributed Processing Symposium, p.189a
(2005).

[9] Hou, E.S.H., Ansari, N. and Ren, H.: A genetic algorithm for multi-
processor scheduling, IEEE Trans. Parallel and Distributed Systems,
Vol.5, No.2, pp.113–120 (1994).

[10] Omara, F.A. and Arafa, M.M.: Genetic algorithms for task schedul-
ing problem, Journal of Parallel and Distributed Computing, Vol.70,
No.1, pp.13–22 (2010).

[11] Roy, P., Alam, M.M. and Das, N.: Heuristic based task scheduling in
multiprocessor systems with genetic algorithm by choosing the eligi-
ble processor, International Journal of Distributed and Parallel Sys-
tems (IJDPS), Vol.3, No.4, pp.111–121 (2012).

[12] Entezari-Maleki, R. and Movaghar, A.: A genetic-based scheduling
algorithm to minimize the makespan of the grid applications, Proc.
International Conferences on Grid and Distributed Computing (GDC)
and Control and Automation (CA), pp.22–31 (2010).

[13] Hassen, S.B., Bal, H.E. and Jacobs, C.J.H.: A task- and data-parallel
programming language based on shared objects, ACM Trans. Pro-
gramming Languages and Systems (TOPLAS), Vol.20, No.6, pp.1131–
1170 (1998).

[14] Radulescu, A., Nicolescu, C., van Gemund, A.J.C. and Jonker, P.P.:
CPR: Mixed task and data parallel scheduling for distributed systems,
Proc. 15th International Parallel and Distributed Processing Sympo-
sium (IPDPS) (2000).

[15] Shimada, K., Kitano, S., Taniguchi, I. and Tomiyama, H.: ILP-
based scheduling for parallelizable tasks, IEICE Trans. Fundamentals,
Vol.E100-A, No.7, pp.1503–1505 (2017).

[16] Ramaswamy, S., Sapatnekar, S. and Banerjee, P.: A framework for
exploiting task and data parallelism on distributed memory multicom-
puters. IEEE Trans. Parallel and Distributed Systems, Vol.8, No.11,
pp.1098–1116 (1997).

[17] Liu, Y., Meng, L., Taniguchi, I. and Tomiyama, H.: Novel list schedul-
ing strategies for data parallelism task graphs, International Journal
on Networking and Computing, Vol.4, No.2, pp.279–290 (2014).

[18] Liu, Y., Meng, L., Taniguchi, I. and Tomiyama, H.: A dual-mode
scheduling approach for task graphs with data parallelism, Interna-
tional Journal of Embedded Systems, Vol.9, No.2, pp.147–156 (2017).

[19] Liu, Y., Meng, L., Taniguchi, I. and Tomiyama, H.: A branch-and-
bound algorithm for scheduling of data-parallel tasks, Proc. Workshop
on Synthesis and System Integration of Mixed Information Technolo-
gies (SASIMI), pp.96–100 (2016).

[20] Shimada, K., Taniguchi, I. and Tomiyama, H.: Communication-aware
scheduling of data-parallel tasks on multicore architectures, IPSJ
Trans. System LSI Design Methodology, Vol.12, pp.65–73 (2019).

[21] Holland, J.H.: Genetic algorithms, Scientific American, Vol.267, No.1,
pp.66–73 (1992).

[22] Tobita, T. and Kasahara, H.: A standard task graph set for fair evalu-
ation of multiprocessor scheduling algorithms, Journal of Scheduling,
Vol.5, No.5, pp.379–394 (2002).

c© 2019 Information Processing Society of Japan 76

IPSJ Transactions on System LSI Design Methodology Vol.12 74–77 (Aug. 2019)

Yang Liu received his M.E. and Ph.D.
degrees in science and engineering from
Ritsumeikan University in 2015 and 2018,
respectively. He currently works for
Panasonic Advanced Technology Devel-
opment Co., Ltd. His research interests in-
clude multicore task scheduling, embed-
ded systems, and simultaneous localiza-

tion and mapping.

Lin Meng received his B.S., M.S., and
Ph.D. degrees in science and engineer-
ing from Ritsumeikan University in 2006,
2008 and 2012, respectively. He was a
Research Associate with the Department
of Electronic and Computer Engineer-
ing, Ritsumeikan University from 2011 to
2013, where he was also an Assistant Pro-

fessor from 2013 to 2018, and a Lecturer from 2018 to 2019.
From 2015 to 2016, he was a Visiting Scholar with the De-
partment of Computer Science and Engineering, University of
Minnesota at Twin Cities. In 2019, he became an Associate Pro-
fessor with the Department of Electronic and Computer Engineer-
ing, Ritsumeikan University. His research interests include com-
puter architecture, parallel processing and deep learning based
image recognition. He is a member of IEEE, IEICE and IPSJ.

Hiroyuki Tomiyama received his B.E.,
M.E. and D.E. degrees in computer sci-
ence from Kyushu University in 1994,
1996 and 1999, respectively. He worked
as a visiting researcher at UC Irvine, as
a researcher at ISIT/Kyushu, and as an
associate professor at Nagoya University.
Since 2010, he has been a full profes-

sor with College of Science and Engineering, Ritsumeikan Uni-
versity. He has served on program and organizing committees
for a number of premier conferences including DAC, ICCAD,
DATE, ASP-DAC, CODES+ISSS, CASES, ISLPED, RTCSA,
FPL and MPSoC. He has also served as editor-in-chief for IPSJ
TSLDM, as an associate editor for ACM TODAES, IEEE ESL
and Springer DAEM, and as chair for IEEE CS Kansai Chapter
and IEEE CEDA Japan Chapter. His research interests include,
but not limited to, design methodologies for embedded and cyber-
physical systems. He is a member of ACM, IEEE, IEICE and
IPSJ.

(Recommended by Associate Editor: Yasuhiro Takashima)

c© 2019 Information Processing Society of Japan 77

