
IPSJ Transactions on System LSI Design Methodology Vol.13 31–34 (Feb. 2020)

[DOI: 10.2197/ipsjtsldm.13.31]

Short Paper

Synthesis and Generalization of Parallel Algorithm for
Matrix-vector Multiplication

YukioMiyasaka1,a) Akihiro Goda1 AshishMittal2 Masahiro Fujita1

Received: June 5, 2019, Revised: August 30, 2019,
Accepted: October 27, 2019

Abstract: Recently, there have been more chances to calculate matrix-vector multiplication due to the growing use
of the neural network. We have proposed the method to automatically synthesize the optimum parallel algorithm for
the given environment and synthesized an algorithm for matrix-vector multiplication of a specific size matrix with 4
nodes connected in a oneway ring. This paper proposes a method to generalize the synthesized algorithm to deal with
any size matrix. We generalized the synthesized algorithm for the 32 × 32 matrix to calculate N × N matrix-vector
multiplication.

Keywords: partial synthesis, program synthesis, automatic parallelization

1. Introduction

Matrix-vector multiplication (MVM) is a time-consuming cal-
culation in a neural network. It requires many Multiply and Accu-
mulate (MAC) operations. As each multiplication is independent,
there has been much effort to parallelize MVM [1], [2], [3].

Some research has been conducted to parallelize designs auto-
matically [4], [5], [6], [7]. They partitioned a dataflow into several
blocks and distribute them among nodes considering data depen-
dency and communication. We expect that we can derive a more
efficient parallel design by transforming the dataflow according
to the computing environment before partitioning it.

We have proposed the method to automatically synthesize the
optimum algorithm in the given parallel environment from the
specified input-output relation [8]. We have applied our auto-
matic synthesis method to MVM to derive the algorithm exe-
cutable with nodes (processing units) connected in oneway-ring-
topology. We were able to synthesize the optimum algorithm for
the 32× 32 matrix with 4 nodes by analyzing the algorithms syn-
thesized for smaller sizes of matrices.

This paper proposes a method to generalize the synthesized al-
gorithm to obtain the algorithm for an arbitrary size matrix.

This paper is organized as follows: Section 2 explains partial
synthesis, which is fundamental to our work. Section 3 describes
our previous work on the synthesis of the optimum algorithm.
Section 4 explains our method to generalize the algorithm. Sec-
tion 5 discusses the effectiveness of the proposed method, and
Section 6 concludes the paper.

1 The University of Tokyo, Bunkyo, Tokyo 113–0032, Japan
2 Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra

400076, India
a) miyasaka@cad.t.u-tokyo.ac.jp

2. Partial Synthesis

Partial synthesis generates a new design equivalent to the spec-
ification by filling the blanks in the given template. The specifi-
cation is a correct design or a set of correct input-output patterns.
The template is an incomplete design, which has several blanks
inside where each blank has candidates to fill itself.

We can formulate the synthesis problem as a 2-level Quanti-
fied Boolean Formula (2QBF) shown in Eq. (1). The formula is
satisfied when there exists the assignment of candidates for all
blanks (y) satisfying the following condition: the output pattern
of the specification (SPEC) is equal to that of Template (TMPL)
for every input pattern (x). This 2QBF can be solved by itera-
tively solving SAT problems [9]. The synthesis is successful if
Eq. (1) is satisfied.

∃y.∀x.SPEC(x) = TMPL(x, y) (1)

3. Synthesis of Parallel Algorithm

We modeled parallel environments as Fig. 1. Each node has
several registers and a processor with a fixed number of inputs.
Each register stores one variable. All nodes are synchronized and
any operation in a processor takes one cycle. Nodes are connected

Fig. 1 The model of a parallel environment.

c© 2020 Information Processing Society of Japan 31

IPSJ Transactions on System LSI Design Methodology Vol.13 31–34 (Feb. 2020)

by oneway connections. The communication of one variable by a
connection takes one cycle overlapped with operation. The mod-
eled environment can be realized as a Coarse Grained Reconfig-
urable Array (CGRA), which works at 100–400 MHz when im-
plemented on FPGA [10].

Our previous method creates templates as Fig. 2 based on the
model of a parallel environment. We denote a blank by {} with
its candidates inside. A function beginning from ‘f’ is a blank
function, which is an arbitrary function to be determined by the
synthesis.

We first try synthesis with the template which takes just one
cycle. If it fails, we try again with a new template with the num-
ber of cycles increased by one until the synthesis succeeds. The
synthesized program takes the minimum possible number of cy-
cles because SAT solver implicitly proves that there is no correct
program with that number of cycles when the synthesis fails.

We performed the synthesis of MVM for N ×N matrix with M

nodes connected in oneway-ring-topology. We were able to syn-
thesize a program for N = M = 2 but not N > 2 and M ≥ 2 with
a timeout of 1 day. To synthesize programs for larger matrices,
we devised additional constraints as follows:
• Each processor performs only MAC operation
• N is dividable by M

• Nodes communicate only input-vector-elements
• The movement of data in registers is symmetric among

nodes
• The movement of data is repeated every N cycles
• The movement of data is repeated every M cycles except the

i × N-th cycle where i is an integer

//cycle0

//node0

reg0_c0n0 = { inputs of program }

reg1_c0n0 = { inputs of program }

... //repeat for the other registers in node0

ope_c0n0 = f_c0n0(reg0_c0n0, reg1_c0n0, reg2_c0n0)

//node1

reg0_c0n1 = { inputs of program }

... //repeat for the other registers in node1

ope_c0n1 = f_c0n1(reg0_c0n1, reg1_c0n1, reg2_c0n1)

... //repeat for the other nodes

//communication by oneway connections

con0_c0 = { reg0_c0n0, reg1_c0n0, ... }

con1_c0 = { reg0_c0n1, reg1_c0n1, ... }

... //repeat for the other connections

//cycle1

//node0

reg0_c1n0 = { reg0_c0n0, reg1_c0n0, ...,

con3_c0, ...,

ope_c0n0 }

... //repeat for the other registers in node0

ope_c1n0 = f_c1n0(reg0_c1n0, reg1_c1n0, reg2_c1n0)

... //repeat for the other nodes

//communication by oneway connections

con0_c1 = { reg0_c1n0, reg1_c1n0, ... }

... //repeat for the other connections

... //repeat for the other cycles

return { reg and ope at the last cycle }

Fig. 2 The template for a modeled parallel environment.

• The candidates for some blanks are reduced
We synthesized a program for N = 16,M = 4 in 22.5 seconds

and one for N = 32,M = 4 in 3 hours using the same addi-
tional constraints. The synthesized programs finish in the min-
imum possible number of cycles, N2/M, where we must do N2

multiplications with M nodes doing MAC operation.

4. Generalization of Algorithm

The synthesis method explained in Section 3 seems impossi-
ble to synthesize a program for a larger matrix such as N =

1000,M = 4 in a feasible time. The synthesis time increases
exponentially according to N as we can see from the previous
results. It is reasonable because the synthesis problem is origi-
nally one of PSPACE problems and the size of problem increases
according to N.

A way to compute MVM for N = 1000,M = 4 is to divide the
matrix into 15625 sub-matrices of 8 × 8 and execute the program
synthesized for N = 8 and M = 4 for each sub-matrix. However,
it is not obvious whether the communication between each exe-
cution of the program can be completely hidden or not. If not, the
entire calculation will take extra time for communication.

We propose a method to generalize the synthesized program.
We use the generalization-template in Fig. 3. According to the
constraints used in the synthesis, it has four loops where the num-
ber of iterations is N/M for two loops and M for the other loops.
A matrix-element used in node p at cycle k + j×M2 + i ×M × N

is defined by X and Y: X represents the row of the element, and
Y represents the column of the element. They are defined with
blanks s and c. The candidates of blank s are N, M, 1, 0, −N,
−M, and −1. The candidates of blank c are N, M, and INF which
is such a large int that x%INF is x for any int x. The number
of lines for X is the same as that for Y . It is initially 1 and is
increased by one when the generalization fails.

We synthesized X and Y with assigning 32 to N and 4 to M such
that the generalization-template is equivalent to the program syn-
thesized in our previous work for N = 32,M = 4. X and Y were
synthesized as Eq. (2) in 1 second. The generalized algorithm
takes N2/M cycles, the minimum possible number of cycles.

X = −M ∗ i + p + N − M

Y = −M ∗ j + N − M + (−k + p + N)%M
(2)

for(int i = 0; i < N/M; i++) {

for(int j = 0; j < N/M; j++) {

for(int k = 0; k < M; k++) {

for(int p = 0; p < M; p++) {

// {s} == {N, M, 1, 0, -N, -M, -1}

// {c} == {N, M, INF}

X = ({s}*i + {s}*j + {s}*k + {s}*p + {s}) % {c}

+ ({s}*i + {s}*j + {s}*k + {s}*p + {s}) % {c}

...

Y = ({s}*i + {s}*j + {s}*k + {s}*p + {s}) % {c}

+ ({s}*i + {s}*j + {s}*k + {s}*p + {s}) % {c}

...

//out_vec[X] += matrix[X][Y]*vec[Y]

}}}}

Fig. 3 The generalization-template.

c© 2020 Information Processing Society of Japan 32

IPSJ Transactions on System LSI Design Methodology Vol.13 31–34 (Feb. 2020)

Fig. 4 The model of a parallel environment.

As of now, we do not have a method to prove the generalized
algorithm is still correct when we change N and M to any num-
ber. When we use the generalized program, we should verify it
after assigning specific values to N and M.

The verification consists of 2 parts: whether the outputs are
correct and whether the communication is valid in the environ-
ment. We verify the first part by checking that each node uses all
matrix-weights involved in the output-vector-elements the node
outputs. For the second part, we adopted the assumption that a
node must use the received input-vector-element in the next MAC
operation whenever it receives. Then, we can verify the second
part by checking that the input-vector-element used in a node was
the most recently used in its adjacent nodes. The verification of
Eq. (2) took 0.1 seconds for the first part and 5 seconds for the
second part when we assign N = 1000,M = 4.

This template of generalization is different from a tiling
method, although they look similar. A tiling method exploits the
cache reuse. Our method generalizes the synthesized MVM pro-
gram based on the constraints imposed in the synthesis.

5. Effectiveness

The synthesized algorithm takes the minimum number of cy-
cles, which is proved through iterative synthesis. It must be faster
or no less faster than what is generated by existing approaches.

We can see the effectiveness of the synthesized algorithm by
comparing it with the straight forward algorithm shown in Fig. 4
when N = M = 4. It is assumed that loading from exter-
nal storage takes much longer time than communication among
nodes. The straight forward algorithm requires 3 more registers
for each node and takes 7 cycles in total including 3 cycles to
broadcast vector-elements before MAC operation, whereas the
synthesized algorithm reuses registers and takes only 4 cycles
by overlapping the communication with MAC operation. When
N = 1000,M = 4, the algorithm takes N2/M = 2.5 × 105 cycles.
If CGRA works at 100 MHz, it requires 2.5 milli seconds.

6. Conclusion

We proposed the method to generalize the result of the syn-
thesis method for the parallel MVM algorithm. We assumed that
the algorithm can be represented by several loops with their num-
ber of iterations defined by the size of matrix and the number of
nodes. We were able to generalize the program with those loops.
Its correctness can be verified after the size of matrix and the
number of nodes is defined.

References

[1] Kelefouras, V., Kritikakou, A., Papadima, E. and Goutis, C.:
A methodology for speeding up matrix vector multiplication for
single/multi-core architectures, The Journal of Supercomputing,
Vol.71, No.7, pp.2644–2667 (online), DOI: 10.1007/s11227-015-
1409-9 (2015).

[2] Hendrickson, B., Leland, R. and Plimpton, S.: An Efficient Paral-
lel Algorithm for Matrix-vector Multiplication, International Jour-
nal of High Speed Computing, Vol.7, No.1, pp.73–88 (online), DOI:
10.1142/S0129053395000051 (1995).

[3] Codenotti, B. and Puglisi, C.: Matrix-vector multiplication: Parallel
algorithms and architectures, Computers and Mathematics with Appli-
cations, Vol.16, No.12, pp.1057–1063 (online), DOI: 10.1016/0898-
1221(88)90262-3 (1988).

[4] Mathews, M. and Abraham, J.P.: Automatic Code Parallelization with
OpenMP task constructs, 2016 International Conference on Informa-
tion Science (ICIS), pp.233–238, IEEE (online), DOI: 10.1109/IN-
FOSCI.2016.7845333 (2016).

[5] Mi, P., Zhao, Z., Sheng, W. and He, W.: An automatic parallelizer
for Coarse-Grained Reconfigurable processor, 2016 13th IEEE In-
ternational Conference on Solid-State and Integrated Circuit Tech-
nology (ICSICT), pp.215–217, IEEE (online), DOI: 10.1109/IC-
SICT.2016.7998880 (2016).

[6] Nasiri, E., Shaikh, J., Hahn Pereira, A. and Betz, V.: Multiple Dice
Working as One: CAD Flows and Routing Architectures for Silicon
Interposer FPGAs, IEEE Trans. Very Large Scale Integration (VLSI)
Systems, Vol.24, No.5, pp.1821–1834 (online), DOI: 10.1109/TVLSI.
2015.2478280 (2016).

[7] Strauch, T.: Timing driven RTL-to-RTL partitioner for multi-FPGA
systems, 2013 23rd International Conference on Field programmable
Logic and Applications, pp.1–4, IEEE (online), DOI: 10.1109/FPL.
2013.6645579 (2013).

[8] Miyasaka, Y., Mittal, A. and Fujita, M.: Synthesis of Algorithm Con-
sidering Communication Structure of Distributed/Parallel Computing,
20th International Symposium on Quality Electronic Design (ISQED),
pp.45–51, IEEE (online), DOI: 10.1109/ISQED.2019.8697224
(2019).

[9] Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S. and Saraswat, V.:
Combinatorial sketching for finite programs, ACM SIGARCH Com-
puter Architecture News, Vol.34, No.5, p.404 (online), DOI: 10.1145/
1168919.1168907 (2006).

[10] Taras, I. and Anderson, J.H.: Impact of FPGA Architecture on Area
and Performance of CGRA Overlays, 2019 IEEE 27th Annual Inter-
national Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM), pp.87–95, IEEE (online), DOI: 10.1109/FCCM.2019.
00022 (2019).

Yukio Miyasaka received his B.E. de-
gree from the University of Tokyo in
2018. He is currently a Master’s course
student in the Department of Electrical
Engineering and Information Systems at
The University of Tokyo. His research in-
terests include logic synthesis and formal
methods.

c© 2020 Information Processing Society of Japan 33

IPSJ Transactions on System LSI Design Methodology Vol.13 31–34 (Feb. 2020)

Akihiro Goda received his B.E. degree
from the University of Tokyo in 2018. He
is currently a Master’s course student in
the Department of Electrical Engineering
and Information Systems at The Univer-
sity of Tokyo. His research interests in-
clude logic synthesis and formal meth-
ods.

Ashish Mittal is a senior undergraduate
student in the Department of Computer
Science and Engineering at Indian Insti-
tute of Technology Bombay.

Masahiro Fujita received his Ph.D. de-
gree in Engineering from the University
of Tokyo in 1985 and shortly after joined
Fujitsu Laboratories Ltd. From 1993 to
2000 he had been assigned to Fujitsu’s US
research office and directed the CAD re-
search group. In March 2000, he joined
the department of Electronic Engineering

in the University of Tokyo as a professor, and now a professor
at System Design Research Center (previously VLSI Design and
Education Center) in the University of Tokyo. He has been in-
volved in many research projects on various aspects of formal
verification.

(Recommended by Associate Editor: Nozomu Togawa)

c© 2020 Information Processing Society of Japan 34

