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Abstract: Drone is one of the promising vehicles that have exhibited the potential to reduce the cost and time in the
field of logistics. However, due to the limitation of battery capacities, the flight time remains short. Therefore, energy
consumption is one of the most critical concerns in drone delivery services. In order to reduce the energy consump-
tion, drone generally needs to fly to the destination in as short a time as possible. For delivery services, the drone has
loads to deliver and is exposed to weather effects such as windy conditions. This paper studies a routing problem for
energy minimization of delivery drones under the assumption of windy conditions. This paper formally defines En-
ergy Minimizing Vehicle Routing Problem (EMVRP) under windy conditions. Experimental scenarios with different
wind velocities and the number of customers have been simulated, and demonstrate a comparison of the metrics in the
energy consumption and the flight distance.
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1. Introduction

In the domain of logistic operations, last-mile delivery by
Unmanned Aerial Vehicles (i.e., drones) has been remarkably
promising recently. Compared with a traditional regular delivery
truck, a drone takes advantage of avoiding the congestion of road
networks, faster delivery, and cutting the cost due to the flight
without human operation. Regardless of the regulations for pre-
venting the adoption of drone delivery, many countries try to re-
lax the regulation for commercial companies. In 2013, Amazon
announced to start a logistic service called Prime Air. The ser-
vice assumes to utilize a number of drones to deliver packages
to customers. At last, this is a first service that was realized in
the UK [1]. In addition, another is that Google’s Project Wing is
currently testing food delivery drones in Australia [2].

For various usages as shown above, drones have been utilized
in many companies. On the other hand, since most of drones are
powered by batteries, the battery capacity is one of crucial is-
sues to delivery by drones. Therefore, energy consumption is a
serious constraint for drone delivery, and traditional drones can
hardly exploit the full potential of providing the drone flight. In
order to effectively utilize the full potential within the battery lim-
itation, the determination of an effective delivery route is one of
the principal actions.

Classically, routing problems start investigated from vehicle
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routing problems (VRPs [3]) that assume to use trucks for de-
livery. An extensive literature exists on the problems such as the
works in Refs. [4], [5], [6]. One of typical problems of VRP is
called as capacitated vehicle routing problem (CVRP) [4]. the
vehicle starts and returns to a depot in such a way that the total
traveling cost is minimized, where the total capacity of its vehi-
cle is not exceeded. The work in Ref. [5] assumes to use vehi-
cles powered by battery yet the vehicles have large capacities. In
Ref. [6], the authors introduce energy consumption as a cost func-
tion, which is based on distance and load of the vehicle for the
VRP with the capacity of loads. The work aims at minimization
of the energy consumption during the delivery operation, and the
problem is called as energy minimizing vehicle routing problems
(i.e., EMVRP). Unlike these works, drones have much smaller
capacity than the general vehicles. Therefore, routing problems
for drone on such the assumptions as small capacity of loads, lim-
ited flight time, and energy consumption have been extensively
researched for several years [7], [8]. The work [7] tries to min-
imize cost or delivery time under the consideration of battery-
and load-weights, and also assumes to reuse drone. They pro-
posed string-based simulated annealing algorithm compared with
a MILP technique. The authors in Ref. [8] develop a DP-based
algorithm for routing problem of drone. This work attempts to
minimize the energy consumption of the flight on the assump-
tion that the amount of energy consumption is dependent on the
weight of packages to carry.

One characteristic of drone delivery unlike the trucks is that
drone is easily affected by the effect of wind since the weight of
drone is relatively much lighter than trucks even if the drone car-
ries packages. Most of works for drones assume that the flight
speeds are constant, however, this is not practical in the environ-
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ments, where drone is flying under windy conditions.
This paper addresses one of VRPs for drone delivery, and

this is an extended version of Ref. [8] which was published as a
short paper in the same journal. This paper extends the previous
work [8] in the following way: Our work takes into account the
effect of wind, while the previous work assumes that drone flies
in an ideal environment without the windy conditions. In our pa-
per, given a set of items to deliver and wind velocity, the problem
tries to find an optimal route which starts from a depot, delivers
all of the items to customers, and comes back to the depot with
the effect of wind in mind. To solve EMVRP, the paper presents
a dynamic programming algorithm. dynamic programming algo-
rithm efficiently finds exactly optimal routes in terms of energy
consumption.

The reminder of this paper is organized as follows. Section 2
describes related work regarding from traditional routing prob-
lems to modern problems for drone delivery. Section 3 intro-
duces our previous work presented in Ref. [8]. In this section,
routing problem of minimizing energy consumption for drone de-
livery is formally defined. Based on the described problem, the
section presents principles of dynamic programming approach,
and describes its algorithm. Moreover, the evaluation of EMVRP
for drone delivery with the traditional routing techniques is con-
ducted. Section 4 is an extension of our work that is the routing
problem to minimize the energy consumption under windy condi-
tions. The overview of our proposed problem is described with a
motivated example, and the effect of wind is formulated. The ex-
perimental scenarios have been conducted with instances of the
problem, and compare the energy consumption, flight distance,
and flight time, with or without the effect of wind. Finally, Sec-
tion 5 concludes this paper.

2. Related Work

Classical routing problems are based on traveling salesman
problem (i.e., TSP) which is well-known problem to ask the
shortest route with visiting all customers and return back to the
origin. TSP is one of NP-hard problems, and a large number
of heuristic, meta-heuristic and exact algorithms have been de-
veloped for decades. One of the simplest yet efficient heuristic
algorithms is the nearest neighbour (i.e., NN) algorithm, which
selects the nearest customer one by one until all customers are
visited. Exact algorithms for TSP include dynamic programming
(i.e., DP) algorithms developed by Bellman [9] and by Held and
Karp [10]. Based on such the works, a number of extensions for
routing problems have been recently investigated.

As the extensions of TSP, VRP have been developed for ve-
hicle delivery scenarios [3], [11]. The VRP was first proposed
by Dantizig and Ramser [3]. With the increasing demand for
practical purposes, the trend of VRP has been shifted into real-
istic VRP, which is widely known as rich VRP (i.e., RVRP) [11].
One of the most popular VRP is called as CVRP presented in
Refs. [3], [4]. The goal of VRP are focused on optimization of
various costs for a vehicle on condition that vehicles must leave
and return to delivery base after the accomplishment of visiting
all the customers. EMVRP further extend VRP for energy min-
imization [6], [12], [13]. The energy for travel from a point to

another is defined as a function of the distance between the two
points and the weight of the vehicle and carrying items. Then,
EMVRP asks the route which visits all customers with the min-
imum energy. In general, EMVRP as well as VRP are NP-hard,
and can hardly be solved in a practical time. In Ref. [6], Kara et
al. formally define EMVRP as an integer programming problem.
The energy is assumed to be proportional to a product of the dis-
tance and the weight. In Ref. [14] Wang extended EMVRP for
heterogeneous vehicles and presented an integer programming
formulation. Then, in Ref. [15], Wang proposed a genetic algo-
rithm for the EMVRP for heterogeneous vehicles. There have
appeared many works for VRP with different variants, however,
they can hardly be applied to routing problems for drone delivery
since the VRP have not dealt with the issues specified to drone
such as flight range and the amount of loads under the limitation
of battery capacity.

Recently, one of routing problems unique to drone delivery is
proposed, so called the flying sidekick traveling salesman prob-
lem (i.e., FSTSP). This work assumes to deliver packages by
drones and trucks work together [16]. In the literature, Wang et
al. [17] introduce VRP that multiple truck and drones are utilized
for delivery. They conduct worst case scenarios analysis to max-
imize the advantages of drone usage. Chang and Lee attempt to
search the effective route with truck carrying drones [18]. They
develop an approach to cluster delivery locations for drones by K-
means clustering, traveling route for truck is minimized based on
TSP, and their proposal is to find shift-weights based on nonlin-
ear programming. Jeong et al. [19] tackle the truck-drone hybrid
delivery system with no-fly zone in mind. On the other hand, due
to the battery capacity, energy-aware routing problems for drone
delivery have been appealing. In Ref. [7], the work attempts to
minimize the total cost under time window constraint during de-
livery operation. Moreover, sub-optimal solutions for the prob-
lem are presented by employing a simulated annealing heuristic
approach. These works above have an assumption that the veloc-
ity of drone is basically constant. However, in the real world, the
impact exerted by windy condition is not negligible, especially in
terms of determining the flight path of drone [20].

The flight range and energy consumption of drones are greatly
affected by the effect of wind [21], [22]. A simplest model of
windy conditions is the steady wind [23]. It means the constant
speed and direction, and which does not change during drone op-
eration. Another model is based on the physically environmental
information such as pressure, temperature, humidity, and so on.
Kundu and Matis create a windy model derived from drag and lift
ratio [24]. Moreover, statistically analyzing from historical data
enables to estimate the current status of windy conditions. How-
ever, the models based on environments and statistics are much
more complex than the simple model, and this paper assumes the
simplest assumption that the wind blows constantly and does not
change during delivery.

Their work assumes windy conditions, but does not assume the
weight of packages to carry. Thus, their cost function does not in-
clude the weight of packages. On the other hand, in our work, the
weight of packages and the wind affects the energy consumption
may change the flight speed of drone.
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To our best knowledge, this is the first paper to tackle EMVRP
for drone delivery, where energy consumption is influenced by
the weight of packages, under windy conditions.

3. Energy-aware Routing Problem for Deliv-
ery Drones

This paper is the extension of the work in Ref. [8]. This sec-
tion introduces the routing problem presented in Ref. [8] in order
to compare with the proposed problem in this paper. Let us de-
fine the problem with an example of energy-aware routing prob-
lem for delivery drones, and describe the formulation based on an
integer programming.

3.1 A Motivated Example
In this section, the definition of the routing problem for deliv-

ery drone is described with a motivated example. Figure 1 shows
the example of the routing problem for delivery drones. A set
of customers with a depot is represented as a non-directed com-
plete graph. In the example, the node labeled “0” denotes a de-
pot, and the other three nodes denote customers (i.e., shipping
destinations). The numbers in the boxes represent the weight
of the items to deliver, and the numbers on the edges represent
the distance between the two places. The optimal route for TSP
is shown in Fig. 1 (a). The total distance of the route is 107
(= 14 + 32 + 35 + 26). However, this route may not be opti-
mal for EMVRP. In general, the power consumption of a drone
mainly depends on the total weight of loaded items.

The energy consumption of drones depends not only on the
flight distance but also on the total weight of loaded items. The
heavier the load is, the higher the energy consumption is. The
optimal route for EMVRP is shown in Fig. 1 (b) *1. The total dis-
tance of the EMVRP route is 107 (= 21 + 35 + 37 + 14) as well

Fig. 1 Optimal routes.

*1 Actually, the optimal EMVRP route depends on the drone.

as that of TSP, but the delivery order of the flight is not the same
in terms of minimizing the energy consumption.

3.2 Problem Definition
We are given N items to deliver. Without loss of generality, no

two items are to be delivered to the same customer. The items or
customers are numbered from 1 to N. The customer where item
i (1 ≤ i ≤ N) is to be delivered is called customer i. As already
mentioned, the depot is numbered 0 as shown in Fig. 1.

This paper assumes that the items are delivered in a single trip
by a drone. All of the items are uploaded onto the drone at the
depot, and the drone starts a trip. If the total weight of the items
exceeds the capacity of the drone, the items need to be partitioned
into groups before routing and delivery, and how to partition the
items is out of the scope of this paper.

Let w(i) denote the weight of item i and d(i1, i2) denote the
distance between customers i1 and i2. Also, let x( j) denote the
j-th visited customer, which is the decision variable of the routing
problem. Since a route starts and ends at the depot, we define:

x(0) = x(N + 1) = 0 (1)

Also, all of the customers are visited once, which is formally
defined as follows:

1 ≤ x( j) ≤ N (1 ≤ j ≤ N) (2)

x( j1) � x( j2) (1 ≤ j1, j2 ≤ N, j1 � j2) (3)

Let e(p(w), d(x( j), ( j + 1))/vd) denote the energy consumption
of the delivery drone, which is a function of payload weight w
and flight distance d. Function e(p(w), d(x( j), ( j + 1))/vd) de-
pends on the drone, and is assumed to be given. For example,
e(p(w), d(x( j), ( j + 1))/vd) is defined as:

e

(
p(w),

d(x( j), ( j + 1))
vd

)
∝ p(w +Wdrone) × d(x( j), x( j + 1))

vd
(4)

where Wdrone is the weight of drone itself and p(w) is the power
consumption and vd is the speed of drone. vd is assumed to be
constant in this section. It should be noted that this work is not
restricted to formula (4).

Let W( j) denote the total payload when the drone leaves j-th
visited customer. When the drone starts a trip, all of the items
are loaded. Therefore, the following formula expresses the con-
straint.

W(0) =
N∑

i=1

w(i) (5)

When the drone makes the j-th stop (1 ≤ j ≤ N) at customer
x( j), an item of weight w(x( j)) is unloaded. Therefore, the total
payload when the drone leaves customer x( j) is defined as:

W( j) = W( j − 1) − w(x( j)) (6)

Then, the objective of our EMVRP is defined as:

min
N∑

j=0

e

(
p(W( j)),

d(x( j), x( j + 1))
vd

)
(7)
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Algorithm 1 Dynamic Programming for EMVRP
1: Winit ← ∑

W
2: for next customer ∈ V do
3: dp[1 << (next customer − 1)][next customer]← energy(depot to next customer with Winit)
4: Weight[1 << (next customer − 1)]← (Winit −Wnext customer)
5: end for
6:
7: for state in [0, 1, 2, . . . , (2N − 1)] do
8: for next customer ∈ V do
9: if next customer has not been visited yet then

10: for prev customer ∈ V do
11: if prev customer has been already visited then
12: dp[state|(1 << (next customer − 1))][next customer]←
13: min(dp[state][prev customer] + energy(prev customer to next customer with Weight[state]),
14: dp[state|(1 << (next customer − 1))][next customer])
15: Weight[state|(1 << (next customer − 1))]←Weight[state] −Wnext customer

16: end if
17: end for
18: end if
19: end for
20: end for
21:
22: min cost ← INFINIT E
23: for prev customer ∈ V do
24: min cost ← min( dp[2N − 1][prev customer] + energy(prev customer to depot without payload),min cost)
25: end for

The EMVRP addressed in this paper is formally defined as fol-
lows. Given w, Wdrone, d, vd and e, find x for the objective (7)
while meeting the constraints (1)–(3), (5) and (6).

3.3 Dynamic Programming Algorithm
This section presents a DP-based approach to the routing prob-

lem described in Section 3.2. Generally, the routing problems
such as TSP and VRP as well as the problem in this section are
known as NP-hard problems. Therefore, the routing problems can
hardly be solved in practical time, and many heuristic algorithms
are developed by researchers. In order to evaluate the quality of
such the algorithms, exact solutions are very crucial for compar-
ison. In this paper, DP-based algorithm, which is one of popular
algorithms that can find an exact optimal solution, is utilized to
the problem. The following section presents principles of the al-
gorithm, and describes the overview of its algorithm.

3.4 Principles
This section outlines our DP-based algorithm for EMVRP *2.

In general, dynamic programming is an approach to mathematical
optimization problems. DP divides a given problem into smaller
sub-problems in a recursive manner. Then, using the optimal so-
lutions of the sub-problems, DP finds an optimal solution for the
original problem. DP runs efficiently by avoiding re-computation
of similar sub-problems, where the similar sub-problems denote
the sub-problems whose optimal solutions are the same with each
other. In the design of DP algorithms, it is crucial to derive a re-
currence relation between an original problem and sub-problems.

Let S denote a set of customers who are already visited, and
let i be the latest visited customer in S. We call a pair (S, i) as
a state. Obviously, the initial state is ({φ}, 0). Then, we define a
problem asking the minimum energy consumption E(S, i) for de-
livery from the initial state to state (S, i). Now, we can derive a

*2 Due to the limited space, pseudo-code of the algorithm is not presented.

Fig. 2 Runtime of the routing algorithms.

recurrence formula to calculate E(S, i) as follows.

E(S, i) = min

{
E(S\i, i′) + e

(
p(W ′(S̄) + w(i)),

d(i′, i)
vd

)

| i′ ∈ S\i
}

(8)

Recall that i is the latest customer in S. In the formula,
i′ denotes the second latest customer. E(S\i, i′) is the mini-
mum energy consumption for flying from the depot to i′, and
e(p(W ′(S̄) + w(i)), d(i′, i)/vd) is the energy consumption for fly-
ing from i′ to i. W ′(S̄) denotes the total weight of items which are
not yet delivered, which is formulated as:

W ′(S̄) =
∑
k�S

w(k) (9)

In formula (8), it should be noted that, when departing from
i′, item i is still loaded on the drone. Therefore, w(i) is added
to W ′(S̄). Also, it is obvious that the energy consumption at the
initial state, i.e., before leaving the depot, is zero.

E({φ}, 0) = 0 (10)

The original routing problem asks the minimum energy con-
sumption when the drone departs from the depot, visits all of N

destinations, and comes back to the depot. Formally, the original
problem asks:
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Fig. 3 Energy consumption of the obtained routes.

E({0, 1, 2, . . . ,N}, 0) (11)

The problem in expression (11) is recursively partitioned into
sub-problems according to formula (8), reaching formula (10),
and then, the optimal route with the minimum energy consump-
tion is obtained.

3.5 Algorithms
A dynamic programming algorithm for the routing problem is

presented in the previous work [8], based on the principles above.
The pseudo code of our algorithm is outlined in Algorithm 1.

Winit is the total weight of all items to be delivered, and V is a
set of customers. state represents a set of customers who are al-
ready visited. Actually, state is a bit-vector of length N, where N

is the number of customers. If customer i is visited, the (i − 1)-th
bit is set. dp[state][customer] is a two-dimensional array which
stores the energy consumption, and it corresponds to E(S, i) in
Section 3.4. For example, dp[3][2] means that the drone already
visited customers 1 and 2 *3, and the drone is now at 2. Lines
2–4 calculates the energy consumption from the depot to the first
customer. Then, Lines 7–18 travel all of remaining customers,
and finally in Lines 21–23, the drone comes back to the depot
and the minimum energy consumption is calculated. Lines 7–18
are the main part of the DP algorithm. Instead of recursive pro-
cedure calls, the algorithm calculates the energy with three-level
nested loops. The computational complexity of our DP algorithm
is O(2N × N2), which is much faster than an exhaustive search of
O(N!).

3.6 Evaluation
Our DP algorithm as well as several existing algorithms are im-

plemented in Python, and are compared in terms of the runtime
of the algorithms and the quality of solutions (i.e., the energy
consumption of the obtained routes). Seven routing algorithms
shown below are compared in the experiments.

*3 Note that 3 is 011 in binary notation, where the first and second bits from
the right are 1.

TSP-NN: The nearest-neighbor algorithm for TSP.
TSP-BF: A brute-force algorithm for TSP.
TSP-DP: A dynamic programming algorithm for TSP [10].
EM-HF: A heaviest-first algorithm for EMVRP. It iteratively

selects the heaviest item one after another.
EM-NN: A NN-like algorithm for EMVRP. It iteratively se-

lects the minimum-energy neighbor one after another.
EM-BF: A brute-force algorithm for EMVRP.
EM-DP: Our DP algorithm proposed in this paper.
Expression (4), which is presented in Ref. [6], is used for en-

ergy calculation. Based on the power measurement results in
Ref. [25], Wdrone is set to 300 and the maximum payload is set
to 48. A total of 320 instances of EMVRP are randomly gener-
ated, where the number of customers ranges from 5 to 20. For
each number of customers, there are 20 problem instances.

Figure 2 shows the results on the runtime of the seven rout-
ing algorithms on Intel Core i5 processor. The complexity of our
TSP-NN, EM-HF and EM-NN implementations are O(N2), and
their runtime is less than 1 millisecond in any cases. The com-
plexity of TSP-BF and EM-BF is O(N!), and they fail to find
optimal solutions within an hour for delivery to more than 12
customers. Although the complexity of TSP-DP and EM-DP is
exponential, they are practical for delivery to 20 customers.

Figure 3 shows the results on energy consumption obtained by
the seven algorithms, where the results are normalized to TSP-
DP. As mentioned above, there exist 20 problems for each num-
ber of customers. In the figure, the average of the seven results
is depicted. The results show that the three heuristic algorithms,
TSP-NN, EM-HF and EM-NN, are not effective. As long as EM-
BF finds solutions, it is confirmed that our EM-DP algorithm suc-
cessfully finds the same solutions as EM-BF does. Also, it is ob-
served that TSP-DP is not optimal in terms of energy consump-
tion. EM-DP outperforms TSP-DP by 1.08% on average.

4. A Drone Flight under Windy Conditions

In Section 3, the routing problem of a drone has been formu-
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Fig. 4 Optimal routes.

lated without weather conditions. However, the flight condition
for drones often depends on the weather in the real world. One of
most significant weather conditions to drone flight is windy con-
dition, as it may affect the flight path, resulting in the increased
energy consumption and the longer flight time.

4.1 The Routing Problem under Windy Condition
This section describes the routing problem for drone delivery

under windy condition with a motivated example. Figure 4 shows
the example. Figure 4 (a) represents the routing without windy ef-
fect, on the other hand, Fig. 4 (b) represents the routing with its
windy effect. In this work, the wind is assumed to be steady and
does not change during delivery operation. As well as the earlier
mentioned example in Section 3.1, the node labeled “0” denotes
a depot, and the other nodes denote customers. The numbers in
the boxes represent the weight of the items to deliver. Unlike the
prior example, there are two numbers on the edges in the paren-
theses. While the left number in the parentheses is represented
as the distance, the right number represents the velocity of the
drone under the windy condition. In this example, the velocity
of a drone is assumed to set to 1. If the wind blows against the
heading direction of the drone, the velocity of the drone becomes
lower than one. On the other hand, it becomes larger than one if
tailwind blows.

The route of a delivery drone without the wind is shown in
Fig. 4 (a). In a practical case, the delivery drone is assumed to
usually flight outdoor, and the effect of the windy condition can
not be ignored. Under the windy condition, the optimal route
for the flight is shown in Fig. 4 (b). As the result, the distance to
flight is the same each other, but the optimal routes aware of en-
ergy consumption are different. Moreover, the flight times in the
figures are also different. In Fig. 4 (a), the flight time of the drone
is 107 (= 21/1 + 35/1 + · · · + 14/1), though that in Fig. 4 (b) is

Fig. 5 The effect of wind.

132.215 (= 26/1.11+35/0.96+ · · ·+14/1.96). The results imply
that not only the total flight time but also the delivery order are
crucial to minimize the energy consumption of delivery.

4.2 The Effect of Wind
In this section, the velocity of a drone under windy conditions

is calculated.
Let us consider the flight of a drone from the customer i1 to the

customer i2. Figure 5 illustrates the concept of the flight from the
customer i1 to the customer i2 under windy condition. In the fig-
ure, uw denotes the velocity vector of the wind. In this paper, the
wind is assumed to be steady, and does not change during the de-
livery. Vi1,i2 denotes the position vector from customer i1 to i2. If
the drone straightforwardly reaches i2 from i1, the velocity vec-
tor of the drone ud should head towards Vi1,i2. However, the wind
have an effect to ud, and change the direction and the velocity.
Therefore, the direction of ud should head in such a way that the
synthetic vector u′ head towards the vector Vi1,i2. In this example,
we are given uw and Vi1,i2 as well as the velocity of drone vd. From
a customer to another customer, we need to find the direction of
ud and the flight time for calculating energy consumption.

Let θw denote the angle between uw and Vi1,i2. The relationship
between uw and Vi1,i2 is expressed with the internal product of
these vectors.

cos θw =
uw · Vi1,i2

|uw||Vi1,i2| (12)

Let θd denote the angle with ud and Vi1,i2. In order to direct the
drone to head towards Vi1,i2, the following formula must be met:

|ud | sin θd = |uw| sin θw (13)

The norm of the synthetic vector u′ of uw and ud can be ex-
pressed as follows:

|u′| = |ud | cos θd + |uw| cos θw (14)

According to formulas (13) and (14), the scalar of the vector u′

is led in the following formula:

|u′| = |ud | cos(arcsin
|uw| sin θw
|ud | ) + |uw| cos θw (15)

Finally, we can obtain the velocity vector of the drone u′ as
referred to the formulas (12) and (15). Based on the formulas
presented above, unlike the formulas presented in Section 3, the
routing problem presented in this section is necessary to be rede-
fined with taken into account the wind effect. Thus, the energy
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Fig. 6 Energy consumption of the routes.

consumed by the drone flight under the wind is redefined as fol-
lows:

e(w, d, u′) ∝ p(w) × t(d, u′) (16)

Similar to Section 3, Let S denote a set of customers who are
already visited, and let i be the last-visited customer in S. Also,
where t(d, u′) is flight time between the customers. Given i as the
latest customer in S and i′ as the second latest customer, E(S\i, i′)
is the minimum energy consumption for flying from the depot to
i′. e(p(W ′(S̄) + w(i)), t(d(i′, i), u′)) is the energy consumption for
flying from i′ to i. p(W ′(S̄) + w(i)) represents the power con-
sumption dependent on the total weight of items and the drone.
W ′(S̄) denotes the total weight of items which are not yet deliv-
ered. t(d(i′, i), u′) is the flight time from i′ to i under windy con-
ditions. Now, the recurrence formula (8) presented in Section 3 is
formulated to take into account the wind as follows:

E(S, i) = max{ E(S\i, i′) + e(p(W ′(S̄) + w(i)), t(d(i′, i), u′))
| i′ ∈ S\i } (17)

The additional complexity for considering the wind is O(N2)
since flight speed needs to be recalculated for any two customers.
Therefore, the overall computational complexity of our dynamic
programming algorithm is still O(N2 × 2N).

4.3 Experiments
In order to evaluate the extended problem to take into account

windy conditions, this section presents experiments that have
been conducted in terms of energy consumption, flight time, and
distance.
4.3.1 Experimental Setup

The weight of a drone is assumed to be 300 and the maximum
load is set to 48. For the comparison, a total of 320 instances of
EMVRP are randomly generated, where the number of customers
is varied from 5 to 20. In other words, twenty problem instances
are included for each number of customers. The default velocity
of a drone is set to 1. The wind is assumed to blow in random di-
rections, and the speed of the wind sets to 0.25 and 0.5 of drone’s
speed.

In order to evaluate differences between the problems, dynamic
programming is utilized to the problems. In the experiments, the
following nine techniques are employed:

TSP-DP: A DP-based algorithm for TSP [10] without the wind.
EM-DP: A DP-based algorithm for EMVRP without the wind.
TSPW-DP-25: A DP-based algorithm for TSP with the wind.

The wind speed is set to 0.25.
EMW-DP-25: A DP-based algorithm for EMVRP with the

wind. The wind speed is set to 0.25.
TSPW-DP-50: A DP-based algorithm algorithm for TSP [10]

with the wind. The wind speed is set to 0.5.
EMW-DP-50: A DP-based algorithm for EMVRP with the

wind. The wind speed is set to 0.5.
4.3.2 Effects of Windy Conditions on Energy Consumption

This section evaluates the energy consumption obtained by
TSP-DP, EM-DP, TSPW-DP-25, EMW-DP-25, TSPW-DP-50,
and EMW-DP-50.

The experimental results for the comparison of energy con-
sumption are shown in Fig. 6. Figure 6 shows the energy con-
sumption with the compared techniques. The X-axis represents
the number of customers to deliver, and the Y-axis represents the
energy consumption normalized to TSP-DP.

According to the results, EM-DP, EMW-DP-25, and EMW-
DP-50 totally obtain the lower energy consumption than TSP-DP,
TSPW-DP-25, and TSP-DP-50, respectively. Compared to TSP-
DP, EM-DP achieves the lower energy consumption by 23.6% on
average. EMW-DP-25 also reduces the energy consumption by
up to 20.8% towards the results of TSPW-DP-25. In the cases
with 0.25 of the wind speed, EMW-DP-25 reduces the energy
consumption by 36% on average towards TSP-DP, and the wind
effect may imply to degrade the performance of routing problems
for energy minimization. On average, the energy consumption
tends to increase in the cases where the wind blows hard. Com-
pared with TSPW-DP-50 and EMW-DP-50, the results are differ-
ent by 25.9% on average.
4.3.3 Flight Distance Comparison

This section compares the total flight distance of the TSP and
the EMVRP under windy conditions.
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Fig. 7 Total flight distance of the routes.

Fig. 8 Total flight time of the routes.

Figure 7 shows the results of the total flight distance. Since the
objective of the TSP is to minimize the total distance, the obtained
distance by TSP-DP, TSPW-DP-25, and TSPW-DP-50 should be
the shortest. Therefore, when normalizing the results, the results
of TSP are shown as 1, and the results of TSP are superior to EM
for all the cases. On average, the results of EM-DP are longer by
15.5% than TSP-DP. The result of EMW-DP-25 for 10 customers
is achieved by 15.8% of the long distance compared with TSPW-
DP-25. Compared TSPW-DP-50 when the wind speed is 0.5,
EMW-DP-50 obtains 16.0% longer routes. Despite the longer
distance in these results, EM-based problems are totally superior
to TSP in terms of energy consumption. Therefore, the energy
consumption is significantly attributed not to the flight distance
but to the flight time and the delivery order.
4.3.4 Flight Time under Windy Conditions

This section shows the results of the flight time for TSP and
EMVRP under windy conditions.

Figure 8 shows the flight time for each number of customers
from 5 to 20. As shown the results, the total flight time become
long when the wind strongly blows. In particular, the results of
EMW-DP-50 are obviously longer than TSPW-DP-50 by 19.6%

on average. EMW-DP-25 also obtains the longer flight time by
up to 17.2% for 6 customers, compared with TSPW-DP-50. TSP
aims to simply minimize the total distance so that the route does
not change if there is headwind against the direction drone head-
ing. On the other hand, EM find a energy-minimum route, and
both delivery order of packages and the total flight time should
be in mind. However, regarding the energy consumption in Fig. 6,
the results imply that long flight time does not affect the energy
consumption.

Therefore, the delivery order and the weight of loads have sig-
nificantly impact on the energy consumption.

5. Conclusions

In this paper, we have presented a dynamic programming al-
gorithm for an energy-minimizing routing problems for delivery
drones, and extended the problems to take into account windy
conditions. The wind is assumed to be steady, and does not
change during delivery operation.

Our experimental results show that the dynamic programming
based algorithm for the EMVRP can efficiently find optimal
routes with a significant reduction of the energy consumption.
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In terms of the results of total flight distance, the experimental
results imply that the wind may have strong impact on the length
of flight routes.

The routing problem addressed in this paper is static that a
set of items to deliver and the windy condition are fixed in ad-
vance. However, in the real world, the windy condition generally
changes even during delivery operation. In future, we plan to fur-
ther extend to dynamic problems where delivery orders arrive at
the depot next from next over time under dynamically changing
windy conditions.
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