
IPSJ Transactions on System LSI Design Methodology Vol. 2 180–188 (Aug. 2009)

Regular Paper

Partitioning and Allocation of Scratch-Pad Memory in

Priority-Based Multi-Task Systems

Hideki Takase,†1 Hiroyuki Tomiyama†1

and Hiroaki Takada†1

Energy consumption has become one of the major concerns in modern em-
bedded systems. Recently memory subsystems have become consumed large
amount of total energy in the embedded processors. This paper proposes par-
titioning and allocation approaches of scratch-pad memory in non-preemptive
fixed-priority multi-task systems. We propose three approaches (i.e., spatial,
temporal, and hybrid approaches) which enable energy efficient usage of the
scratch-pad region. These approaches can reduce energy consumption of in-
struction memory. Each approach is formulated as an integer programming
problem that simultaneously determines (1) partitioning of the scratch-pad
memory space for the tasks, and (2) allocation of functions to the scratch-
pad memory space for each task. Our formulations pay attention to the task
periods for the purpose of energy minimization. The experimental results show
up to 47% of energy reduction in the instruction memory subsystems can be
achieved by the proposed approaches.

1. Introduction

Energy minimization has become one of the primary goals in the design of
embedded systems. Reducing energy consumption can extend battery lifetime
of portable systems, decrease chip cooling costs, and increase system reliability.
These days, cache memory is used not only in general-purpose processors but also
in embedded processors. Caches improve performance by exploiting the tempo-
ral and spatial access locality in a program. Caches also contribute to energy
reduction because of decreased accesses to off-chip memory. However, cache has
become one of the most energy-hungry components in embedded processors. For
example, the ARM920T processor dissipates 43% of the power in its cache 1).
Thus, large amounts of studies have addressed cache energy minimization. More

†1 Graduate School of Information Science, Nagoya University

recently, scratch-pad memory (SPM) has attracted attention due to its energy
efficiency.

A number of techniques have been proposed for efficient usage of SPM in terms
of energy consumption and performance, for example in Refs. 2)–11). SPM only
consists of decoding circuits, data arrays and output units. Unlike cache, no tag
comparison on SPM access is necessary. Therefore, SPM consumes less energy
than cache on one access. SPM also contributes real-time predictability because
unanticipated access miss like in cache does not occur. On the other hand,
programmers or compilers need to decide the allocation of program code or data
on SPM since hardware units for allocation management do not exist.

Recently, the scale and the complexity in embedded systems are going to in-
crease. Embedded processors are typically required to execute two or more tasks
concurrently. The task scheduling algorithm under the priority is generally em-
ployed because high responsiveness is important in real-time systems. However,
almost all of previous approaches have focused on the single-task environment.
Applying the previous techniques to the multi-task system will result in non-
optimal energy savings.

This paper proposes three approaches (i.e., spatial, temporal, and hybrid ap-
proaches) which enable energy efficient usage of SPM for multi-task systems. We
target on the real-time systems where tasks are scheduled by non-preemptive
fixed-priority policy. Each approach is formulated as an integer programming
problem. Our approaches solve two problems simultaneously. One is SPM parti-
tioning, which partitions the SPM address space into small regions to be assigned
to the tasks. The other is code allocation, which decides, for each task, the pro-
gram code to be placed in the SPM region. By finding values of decision variables
in proposed formulas, optimal SPM partitioning and code allocation are simulta-
neously determined at static phase. Energy minimization of instruction memory
subsystems can be achieved by proposed approaches.

The rest of this paper is organized as follows. In Section 2, a brief survey on re-
lated works is provided. Section 3 describes our approaches for SPM partitioning
and code allocation in detail. In Section 4, experimental procedure and results
are presented. Finally, Section 5 summarizes the contributions of this paper.

180 c© 2009 Information Processing Society of Japan

181 Partitioning and Allocation of SPM in Priority-Based Multi-Task Systems

2. Related Works and Our Strategy

A considerable amount of research on SPM has been conducted so far for
energy or performance optimization. Banakar et al. proposed a technique for se-
lecting an on-chip memory configuration from various size of cache and SPM 2).
They indicated that the energy consumption of SPM-based systems is less than
that of cache-based systems by 40% on average. In Ref. 3), a compiler-oriented
optimization technique to allocate data variables to SPM for performance im-
provement was proposed. The authors of Ref. 4) formulated the energy optimal
code/data allocation to SPM as a 0/1 integer programming problem based on
the size of SPM and the energy consumption on each function. Since 0/1 integer
programming model is an NP problem in general, several heuristic algorithms
were proposed in Refs. 5), 6). The authors of Ref. 5) proposed a data allocation
method for SPM based on the value of total conflict factor (TCF). TCF indicates
the possibility of data cache conflicts, and a data variable with high TCF value
is allocated to SPM in order to minimize cache conflicts. In Ref. 6), a dynamic
programming algorithm for allocating code/data to SPM with a polynomial-time
complexity was proposed.

Dynamic SPM management techniques were proposed in Refs. 7)–9). The au-
thors of Ref. 7) introduced a hardware mechanism for efficient overlay of SPM at
runtime. In Ref. 8), the customized instructions for transferring program code
between SPM and main memory were proposed. Reference 9) proposed hard-
ware/software concerted approach of managing SPM content dynamically. In
Ref. 10), the use of SPM in multiprocessor systems is studied. However, these
previous techniques are only applicable to single-task systems.

Verma, et al. proposed the SPM region management scheme which can be
applied to the multi-task environment 11). Each task shares the SPM region in
a given way for the purpose of energy minimization. However, the proposed
approach in Ref. 11) targets on the time-sharing systems whose tasks are sched-
uled by the round robin manner. In real-time embedded systems, the round
robin manner is not generally adopted because high real-time performance is re-
quired. The priority-based scheduling policy is employed to satisfy task deadline
constraints. In addition, a phased exhaustive search algorithm was conducted

in Ref. 11) for searching effective SPM partitioning and code/data allocation.
Thereby, the computation time might become huge as the number of input to
the algorithm increases.

Our approaches can apply to multi-task environments whose tasks are sched-
uled based on fixed-priority. This means that energy efficient utilization of SPM
can be achieved in the real-time systems. Moreover, the integer programming
problems we formulate can obtain the optimal solution at a practical computation
time.

3. SPM Partitioning and Code Allocation Approaches

In this section, details of the proposed approaches that can be applied to
priority-based multi-task systems are described. We present three approaches:
spatial, temporal, and hybrid approaches. The spatial approach statically par-
titions SPM region to among tasks. In the temporal approach, the entire SPM
region is assigned to the running task. The hybrid approach combines the prior
two approaches. Each approach is formulated as an integer programming problem
which simultaneously determines optimal SPM partitioning and code allocation
in terms of the energy efficiency. It is noted that this work focuses on the energy
reduction for instruction access and code allocation is performed at a function-
level granularity �1.

3.1 Target System Organization
We target an environment where two or more tasks are executed on a single

processor. Tasks take dormant, ready and running state as shown in Fig. 1.
There are neither an inter-task communication nor synchronization, that is, each
task executes independently. All tasks are cyclically activated and the periods of
tasks are statically decided.

The tasks are scheduled according to the fixed-priority based policy. The high-
est priority one among the ready state tasks transits to the running state when
no task is running. Also, no task preemption is assumed to be occurred.

�1 This paper assumes that programs are written in the C language, and term “function”
denotes a function of a C program. Note that, in most C programs, the size of a function
is much smaller than the size of SPM.

IPSJ Transactions on System LSI Design Methodology Vol. 2 180–188 (Aug. 2009) c© 2009 Information Processing Society of Japan

182 Partitioning and Allocation of SPM in Priority-Based Multi-Task Systems

Fig. 1 Task state transition diagram.

Table 1 Definitions of symbols.

Names Definitions
taski The i-th task. 1 ≤ i ≤ M

periodi The activate interval of taski
funci,j The j -th function in taski . 1 ≤ j ≤ N
fetchi,j The total number of executed instructions in funci,j per execution of taski
sizei,j The code size of funci,j

Esavingi,j The energy reduction if funci,j is allocated to SPM
Eoverheadi,j The energy for transferring funci,j from main memory to SPM

ESPMgain
The difference of energy consumption between
SPM and cache on read access

ECache read The energy on read access to cache
ESPM read The energy on read access to SPM
ESPM write The energy on write access to SPM
EMM read The energy on read access to main memory
SPMsize The total size of SPM

hyperperiod The least common multiple of all task period
xi,j , yi,j 0/1 variables. 1 if funci,j is allocated to SPM, otherwise 0.

3.2 Definitions
Table 1 describes definitions of symbols used in our integer programming

formulation. In our work, the values of fetchi,j are obtained by profiling based
on instruction-level simulation. However, fetchi,j may be varied depending on
input data to the task. In that case, their expected values are obtained by giving
a set of representative input data and running the task multiple times at the
profiling phase.

3.3 Spatial Approach
The spatial approach partitions the SPM region for the tasks. Each task exclu-

sively uses the given SPM region. Figure 2 shows the example for partitioning

Fig. 2 The spatial approach.

of SPM into three disjoint regions. The amount of SPM region partitioning to
the task depends on access frequency in its functions. The SPM partitioning for
the tasks and the code allocation to SPM are statically determined. The contents
of SPM are not changed at runtime.

In the spatial approach, many codes with high frequently access become to be
allocated to SPM by using the task periods as information. As a result, more
efficient usage of SPM space is conducted. Since the functions in a short period
task raise frequent execution, the given SPM space to task becomes large. For
example, Task1 which takes the shortest period in Fig. 2 occupies large SPM
region.

The partitioning of SPM region for the tasks and the allocation of function
to the SPM for each task in the spatial approach are formulated as a following
integer programming problem.

Maximize : Esaving =
∑

i

∑

j

Esavingi,j × xi,j

Esavingi,j = fetchi,j × hyperperiod
periodi

× ESPMgain

ESPMgain = ECache read − ESPM read

s.t. :
∑

i

∑

j

sizei,j × xi,j ≤ SPMsize

IPSJ Transactions on System LSI Design Methodology Vol. 2 180–188 (Aug. 2009) c© 2009 Information Processing Society of Japan

183 Partitioning and Allocation of SPM in Priority-Based Multi-Task Systems

Fig. 3 The temporal approach.

fetchi,j , that is, the total number of executed instructions on each function per
one execution of taski , is weighted by the task period periodi . By finding xi,j ’s
value, the optimal SPM partitioning and code allocation can be determined at
the same time.

3.4 Temporal Approach
As shown in Fig. 3, whole SPM address space is assigned to the currently run-

ning task. It is necessary to transfer the program code from main memory to SPM
whenever a task transits to the running state (‘MM-SPM copy’ at Fig. 3). The
functions allocated to SPM are decided in consideration of the energy consump-
tion on this transferring. The transfer overheads are proportional to the code
size of a function. For this reason, a function with not only larger executions but
also smaller size is likely to be allocated to SPM space.

An integer programming formulation to decide code allocation in the temporal
approach is as follows.

Fig. 4 The hybrid approach.

Maximize : Esaving =
∑

i

∑

j

Esavingi,j × yi,j

Esavingi,j = fetchi,j × ESPMgain − Eoverheadi,j

ESPMgain = ECache read − ESPM read

Eoverheadi,j = sizei,j × (ESPM write + EMM read)

s.t. : ∀i .
∑

j

sizei,j × yi,j ≤ SPMsize

Eoverheadi,j denotes the energy consumption for transferring funci,j . The max-
imization of Esaving is performed under the consideration of Eoverheadi,j .

3.5 Hybrid Approach
As shown in Fig. 4, the hybrid approach is a mixture of previous approaches.

The amount of SPM capacity used by the spatial approach and the temporal one
is given by each partitioning so that the total energy reduction Esaving becomes
the largest. This can achieve more flexible use of the SPM region and more
reduction of energy consumption. SPM region where a certain task can use
becomes a total of the region partitioned from the spatial region and the region
of the temporal approach. An integer programming problem formulated in the
hybrid approach is as follows.

IPSJ Transactions on System LSI Design Methodology Vol. 2 180–188 (Aug. 2009) c© 2009 Information Processing Society of Japan

184 Partitioning and Allocation of SPM in Priority-Based Multi-Task Systems

Maximize : Esaving = Esaving spt + Esaving tmp

Esaving spt =
∑

i

∑

j

Esaving spti,j × xi,j

Esaving tmp =
∑

i

∑

j

Esaving tmpi,j × yi,j

Esaving spti,j = fetchi,j × hyperperiod
periodi

× ESPMgain

ESPMgain = ECache read − ESPM read

Esaving tmpi,j = (fetchi,j × ESPMgain − Eoverheadi,j) × hyperperiod
periodi

Eoverheadi,j = sizei,j × (ESPM write + EMM read)

s.t. : SPMsize spt + SPMsize tmp ≤ SPMsize

s.t. :
∑

i

∑

j

sizei,j × xi,j ≤ SPMsize spt

s.t. : ∀i .
∑

j

sizei,j × yi,j ≤ SPMsize tmp

s.t. : ∀i , ∀j . xi,j + yi,j ≤ 1

Here, the decision variables are SPMsize spt , SPMsize tmp, xi,j , and yi,j .
SPMsize spt and SPMsize tmp denote the SPM capacity used by the spatial
and temporal approaches, respectively. xi,j denotes a 0/1 variable whose value is
1 if funci,j is allocated to the spatial region, and yi,j denotes that of the temporal
region. In formulas on the hybrid approach, the partitioning of SPM into the
spatial region and the temporal one, the partitioning of the spatial region for
the tasks, and the allocation of the function to the SPM region for each task are
simultaneously determined by finding these values.

4. Evaluation and Experimental Results

4.1 Experimental Procedure and Tools
Our experimental procedure is depicted in Fig. 5. Each task code is cross-

compiled into a binary code, which is fed to an instruction-set simulator to gen-
erate instruction access traces. We assumed a single-issue ARM processor as our
target CPU, and the SimpleScalar/ARM simulator 12) is used for the instruction-

Fig. 5 Experimental procedure.

Table 2 Energy consumption on a memory access.

Memory Read access [pJ] Write access [pJ]
cache 5.881 2.279

SPM

4 KB 1.545 0.435
8 KB 1.617 0.606
12 KB 2.231 0.638
16 KB 2.033 0.778

SDRAM 1.002 × 104 —

level simulation. The instruction memory subsystem consists of cache and SPM
as on-chip memory, and SDRAM as off-chip main memory. The cache organi-
zation is 16 KB in size and 4-way in associatively. The size of SPM is selected
from 4, 8, 12, and 16 KB. Access power for cache and SPM is calculated based on
the CACTI 4.213), and that for SDRAM is on the Micron System Power Calculator 14).
The amount of energy consumption on one read/write access to each memory is
presented in Table 2. Also, we do not consider static energy consumptions.

We selected ten benchmark programs from MiBench suite 15) as task code shown
in Table 3. The second and third rows denote the number of functions and total
code size in bytes within each task, respectively. The fourth row denotes the total
number of executed instructions per one execution of the task. Note that only the
functions which is actually executed are included in Table 3. For each task, the
same input data is used for both profiling and evaluation phases. The proposed
approaches are evaluated on a synthetic task set as presented in Table 4.

In our experiments, the periods of tasks are set according to the following two

IPSJ Transactions on System LSI Design Methodology Vol. 2 180–188 (Aug. 2009) c© 2009 Information Processing Society of Japan

185 Partitioning and Allocation of SPM in Priority-Based Multi-Task Systems

Table 3 Task features.

Name # of func.
Code size # of executed
[bytes] instr. [×104]

bitcnts 123 44476 4966
bf 103 17912 5240
cjpeg 248 52008 2811
crc 112 33092 6166
dijkstra 112 50204 6492
ispell 162 60044 837
qsort 113 48312 4360
rawcaudio 82 28616 3769
sha 113 33972 1354
tiff2rgba 882 42452 3694

Table 4 Task sets.

of task Tasks included

TasksetA 2 bf, tiff2rgba
TasksetB 4 cjpeg, crc, qsort, tiff2rgba
TasksetC 6 bitcnts, cjpeg, dijkstra, ispell, rawcaudio, sha
TasksetD 8 bitcnts, bf, crc, dijkstra, ispell, qsort, rawcaudio, sha

TasksetE 10
bitcnts, bf, cjpeg, crc, dijkstra, ispell, qsort, rawcaudio,
sha, tiff2rgba

rules; The periods are proportional to their execution times; The total CPU
utilization is 60%. The reason for the latter rule is to guarantee the schedula-
bility of the tasks. It is noted that the total CPU utilization does not affect the
effectiveness (in terms of energy saving ratio) of our proposed approaches.

Based on these data, SPM partitioning and code allocation are decided by the
proposed approach described in Section 3. The integer programming problems
proposed in this paper are solved with an ILP solver glpsol 4.23 15)�1. Task
scheduling and cache simulations are performed to measure the number of cache
hits and misses. In this paper, the task with shorter period is given to higher
priority. We derive the total energy consumption of the task sets from these
pieces of information.

4.2 Results and Discussion
We brought a simple approach as baseline to evaluate and compare the benefits

�1 In our experimental environment, all integer programming problems for SPM partitioning
and code allocation were solved within 10 seconds.

of proposed approaches because of lacking a previous approach for priority-based
multi-task systems. In this approach, the capacity of SPM is partitioned evenly
for each task at first, and then code allocation to SPM about each task is decided
by a knapsack problem presented in Ref. 4).

Figure 6 shows the experimental results. The bars show the energy con-
sumption in mJ. The amount of energy consumed in the memory subsystem
are analyzed into four factors; access energy of cache hits, that of cache misses
(including access energy on the main memory), that of SPM hits, and energy
overhead on MM–SPM copy, respectively. ‘xK’ in the x-axis denotes the size
of SPM. ‘Smp’, ‘Spt’, ‘Tmp’, and ‘Hyb’ denote the energy consumption of the
simple approach, that of the spatial approach, that of the temporal approach,
and that of the hybrid approach, respectively.

From these figures, the effectiveness of the proposed approaches is confirmed.
Compared with the simple approach, energy savings can be achieved in all sit-
uations. At maximum of each task set and each SPM capacity, 28% of energy
reduction by the spatial approach, 47% by the temporal and hybrid one was
achieved. On average, 12% of energy by the spatial approach, 22% by the tem-
poral one, and, 23% by the hybrid one was reduced.

Next, we focus on an influence exerted by the number of tasks. In TasksetE
which includes 10 tasks, the effectiveness of the temporal and hybrid approaches
rose when the size of SPM is limited small because of occupation to SPM by the
currently running task. In addition, the larger SPM size was, the less energy
consumption of the hybrid approach that can combine use of the spatial and
temporal approach. Note that total energy consumption of MM–SPM copy is
not trivial. A similar tendency was appeared in Fig. 6(c) and Fig. 6(d). Thus, if
the number of task is large, both the temporal and hybrid approach where the
running task can occupy parts of SPM region becomes the most effective. On
the other hand, the spatial and hybrid approach was more effective in the case
that the number of task is small shown in Fig. 6(a) and Fig. 6(b). This implies
SPM–MM transferring is not necessarily needed when the total code size of task
set is small.

Additionally, when the proposed approaches applied, 8 KB in SPM size achieve
the least energy consumption in any task set. In other words, increasing SPM size

IPSJ Transactions on System LSI Design Methodology Vol. 2 180–188 (Aug. 2009) c© 2009 Information Processing Society of Japan

186 Partitioning and Allocation of SPM in Priority-Based Multi-Task Systems

(a) TasksetA (b) TasksetB (c) TasksetC

(d) TasksetD (e) TasksetE

Fig. 6 Experimental results.

is not always the best way to reduce energy consumption. Note that increasing
SPM size introduces an extra energy on not only MM–SPM transfer but also
each read access to SPM if code allocation was enough to perform on small SPM
size. The proposed integer programming problems in this paper treat SPM size
as an input value of constant. This implies the possibility that SPM size should
be decided appropriately for the purpose of energy minimization.

Finally, we focus on the feature of the hybrid approach. As described in Sec-
tion 3.5, the hybrid approach is a combination of the spatial and temporal ap-
proach. Therefore, the amount of energy reduction by hybrid approach should be
the maximum among proposed three approaches. However, the hybrid approach

was not always show the best result, for example in 4K SPM of Fig. 6(d). We
thought this is mainly attributed to the influence on access to cache. Since
run-time analysis is required to calculate the number of cache misses, dynamic
behavior on cache access was neglected in the integer programming problem we
formulated. Nevertheless, it is remarkable contribution that the hybrid approach
can achieve the stable energy reduction in all SPM size of all task sets.

5. Conclusions

In this paper, three approaches for partitioning and allocating of SPM in the
fixed-priority multi-task systems were proposed. Our approaches give the benefit

IPSJ Transactions on System LSI Design Methodology Vol. 2 180–188 (Aug. 2009) c© 2009 Information Processing Society of Japan

187 Partitioning and Allocation of SPM in Priority-Based Multi-Task Systems

on energy reduction in the instruction memory, and are applicable to real-time
environments. For each approach, we formulated the integer programming prob-
lem. By deriving its solutions, optimal SPM partitioning and code allocation can
be simultaneously determined. Experimental results showed the effectiveness of
our approaches. Additionally, the hybrid approach that exploits both the spatial
and temporal approaches together obtained the best result especially when the
number of tasks is large.

SPM partitioning and code allocation are statically decided in our approaches.
However, if they were changed dynamically, more energy reduction can be
achieved. In future, a dynamic solution to decide SPM partitioning and code
allocation will be studied. Also, we intend to extend the approaches for data
memory subsystems and preemptive multi-task environments.

Acknowledgments We thank Prof. Tohru Ishihara, Dr. Gang Zeng, and
Dr. Tetsuo Yokoyama for suggesting our experiments. This work is supported in
part by Core Research for Evolutional Science and Technology (CREST) from
Japan Science and Technology Agency.

References

1) Segars, S.: Low Power Design Techniques for Microprocessors, IEEE International
Solid-State Circuits Conference (Tutorial) (2001).

2) Banakar, R., Steinke, S., Lee, B.-S., Balakrishnan, M. and Marwedel, P.: Scratch-
pad Memory : A Design Alternative for Cache On-chip memory in Embedded Sys-
tems, Proc. International Symposium on Hardware/Software Codesign (CODES),
Estes Park, Colorado (2002).

3) Avissar, O., Barua, R. and Stewart, D.: An Optimal Memory Allocation Scheme
for Scratch-Pad-Based Embedded Systems, ACM Trans. on Embedded Computing
Systems (TECS), Vol.1, No.1, pp.6–26 (2002).

4) Steinke, S., Wehmeyer, L., Lee, B. and Marwedel, P.: Assigning Program and
Data Objects to Scratchpad for Energy Reduction, Proc. Conference on Design,
Automation and Test in Europe (DATE), Washington, DC, USA, pp.409–415, IEEE
Computer Society (2002).

5) Panda, P.R., Nicolau, A. and Dutt, N.: Memory Issues in Embedded Systems-on-
Chip: Optimizations and Exploration, Kluwer Academic Publishers, Norwell, MA,
USA (1998).

6) Angiolini, F., Benini, L., and Caprara, A.: An Efficient Profile-Based Algorithm
for Scratchpad Memory Partitioning, IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, Vol.24, No.11, pp.1660–1676 (2005).

7) Janapsatya, A., Ignjatovic, A. and Parameswaran, S.: Exploiting Statistical Infor-
mation for Implementation of Instruction Scratchpad Memory in Embedded Sys-
tem, IEEE Trans. on Very Large Scale Integration (VLSI) Systems, Vol.14, No.8,
pp.816–829 (2006).

8) Steinke, S., Grunwald, N., Wehmeyer, L., Banakar, R., Balakrishnan, M. and Mar-
wedel, P.: Reducing Energy Consumption by Dynamic Copying of Instructions onto
Onchip Memory, Proc. 15th International Symposium on System Synthesis (ISSS),
Kyoto, Japan (2002).

9) Janapsatya, A., Parameswaran, S. and Ignjatovic, A.: Hardware/Software Man-
aged Scratchpad Memory for Embedded System, Proc. 2004 IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD ’04), Washington, DC,
USA, pp.370–377, IEEE Computer Society (2004).

10) Kandemir, M., Kadayif, I., Choudhary, A., Ramanujam, J. and Kolcu, I.:
Compiler-Directed Scratch Pad Memory Optimization for Embedded Multiproces-
sors, IEEE Trans. on Very Large Scale Integration (VLSI) Systems, Vol.12, No.3,
pp.281–287 (2004).

11) Verma, M., Petzold, K., Wehmeyer, L., Falk, H. and Marwedel, P.: Scratchpad
Sharing Strategies for Multiprocess Embedded Systems: A First Approach, Proc.
IEEE 3rd Workshop on Embedded System for Real-Time Multimedia (ESTIMedia),
Jersey City, USA, pp.115–200 (2005).

12) SimpleScalar LLC. http//www.simplescalar.com/ (accessed 2009-01-27)
13) Wilton, S.J.E. and Jouppi, N.P.: CACTI: An Enhanced Cache Access and Cycle

Time Model, IEEE Journal of Solid-State Circuits, Vol.31, No.5, pp.677–688 (1996).
14) The Micron System Power Calculator. http://www.micron.com/support/

designsupport/tools/powercalc/powercalc (accessed 2009-01-27)
15) Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T. and Brown,

R.B.: MiBench: A Free Commercially Representative Embedded Benchmark Suite,
Proc. IEEE International Workshop on the Workload Characterization (WWC),
Washington, DC, USA, pp.3–14 (2001).

16) GLPK (GNU Linear Programming Kit). http://www.gnu.org/software/glpk/ (ac-
cessed 2009-01-27)

(Received November 17, 2008)
(Revised February 20, 2009)
(Accepted March 13, 2009)
(Released August 14, 2009)

(Recommended by Associate Editor: Yuichi Nakamura)

IPSJ Transactions on System LSI Design Methodology Vol. 2 180–188 (Aug. 2009) c© 2009 Information Processing Society of Japan

188 Partitioning and Allocation of SPM in Priority-Based Multi-Task Systems

Hideki Takase received the M.S. in Information Science from
Nagoya University in 2009. Currently he is a Ph.D. candidate
at the Information Science from Nagoya University. His research
interests include compilers, real-time operating systems, and low
energy design for embedded systems. He received the Incentive
Award from Computer Science group of IPSJ in 2008.

Hiroyuki Tomiyama received his Ph.D. degree in computer
science from Kyushu University in 1999. From 1999 to 2001, he
was a visiting postdoctoral researcher with the Center of Embed-
ded Computer Systems, University of California, Irvine. From
2001 to 2003, he was a researcher at the Institute of Systems
& Information Technologies/KYUSHU. In 2003, he joined the
Graduate School of Information Science, Nagoya University, as an

assistant professor, where he is now an associate professor. His research inter-
ests include design automation, architectures and compilers for embedded sys-
tems and systems-on-chip. He currently serves as an editorial board member
of IPSJ Transactions on SLDM, IEEE Embedded Systems Letters, and Interna-
tional Journal on Embedded Systems. He has also served on the organizing and
program committees of several premier conferences including ICCAD, ASP-DAC,
DATE, CODES+ISSS, and so on. He is a member of ACM, IEEE and IEICE.

Hiroaki Takada is a Professor at the Department of Infor-
mation Engineering, the Graduate School of Information Science,
Nagoya University. He received his Ph.D. degree in Information
Science from the University of Tokyo in 1996. He was a Research
Associate at the University of Tokyo from 1989 to 1997, and was
an Assistant Professor and then an Associate Professor at Toy-
ohashi University of Technology from 1997 to 2003. His research

interests include real-time operating systems, real-time scheduling theory, and
embedded system design. He is a member of ACM, IEEE, IEICE, and JSSST.

IPSJ Transactions on System LSI Design Methodology Vol. 2 180–188 (Aug. 2009) c© 2009 Information Processing Society of Japan

