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This paper presents a high-level synthesizer to map a complete program effi-
ciently on a dynamically reconfigurable processor (DRP). Initially, we introduce
our DRP architecture, which is suitable for control-intensive programs since it
has a stand-alone finite state machine that switches “contexts” consisting of
many processing elements (PEs). Then, we propose three new techniques op-
timized for our DRP. Firstly, we explain how synthesized control steps are
mapped onto the contexts. Several control steps are combined as a context to
utilize PEs efficiently since each control step does not require the same amount
of operational units. Secondly, we describe a modulo scheduling algorithm
for loop pipelining, considering both spatial and time dimensions of our DRP.
Lastly, we explain a scheduling technique to optimize clock frequency, which
can take advantage of multiplexer, wire and routing switch delays. We have
demonstrated a JPEG-based image decoder example to evaluate our methods.
Experimental results show that high area efficiency is achieved by balancing the
number of PEs between contexts. Despite an overall increase in performance on
pipelining of 3.6 times that without pipelining, the number of operational units
increased by a factor of 2.2. The clock frequency is maximized with accurate
delay estimation.

1. Introduction

A coarse-grained dynamically reconfigurable processor (DRP) has a new pro-
grammable architecture that enables switching of time-multiplexed data-paths.
Each data-path is configured as a “context” consisting of many operational and
storage units and the wire connections between them. This enables the DRP to
execute highly complex and parallel data-paths.

†1 NEC Corporation
�1 This paper is based on Ref. 10).

The continuing growth in the demand for flexible, low power, and high-
performance processors has led to the development of two new types of DRPs.
The first type is a frequent context switching processor, such as Berkeley’s
Garp 9), IMEC’s ADRES 1), and Keio’s MuCCuRA 2), and our DRP 3). These
processors switch the context within one clock cycle, usually with nanosecond
order. The second type, such as Chameleon 4), IPFlex’s DAP/DNA 5), and Pana-
sonic’s (formerly Elixent’s) D-Fabrix, PACT’s XPP 6), switches the context less
frequently. These processors take one or more cycles to switch the context.

The applications of these architectures spend most of their time executing a few
time-critical code segments, typically loops. Most of hardware accelerator-type
processors are designed to accelerate these parallelizable code segments. Because
many of the applications are a mix of parallelizable code segments and control-
intensive code segments, these accelerators are usually used with a CPU, which is
more suitable for the control-intensive segment. A bottleneck of this accelerator
is data transfer between both processors. The performance is decreased if there
are frequent data transfers through a CPU bus. IMEC’s ADRES 1) is tightly cou-
pled with a Very Long Instruction Word (VLIW) processor and a reconfigurable
matrix to solve this bottleneck. We took the other approach that both control-
intensive and parallelizable segments are processed in the same reconfigurable
architecture. There is no need to transfer data between different architectures
with this approach. However, control-intensive segment is difficult to deal with
for most reconfigurable architectures. We solve this problem by effectively com-
bining the context switching mechanism and traditional multiplexing.

There are many control steps in the control-intensive segment. To share re-
sources among control steps, two major methods are used:
• Multiplexing the input of a resource such as an operator
• Changing the operation whose instruction code is fetched from an instruction

memory
The first method is mainly used with a wired logic for a single context device. It

is efficient, especially when the number of multiplexer’s inputs is limited in a few
control steps. The second method is widely used in programmable architectures
such as CPUs, DSPs, SIMD processors, and VLIW processors. A DRP, which
switches the context frequently, can be classified as one of the programmable ar-
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chitectures. The difference between a traditional CPUs and a DRP is data-path
configurability. Not only operations but also wire connections are configurable,
which enables highly complex data-paths. Ideally, all the resources are equally
used in contexts. Although, performance does not depend on the number of con-
trol steps, it is difficult to balance the resources used in contexts, especially with
the control-intensive part. We solve this problem by combining limited control
steps to maximize resources at any one context without exceeding the allowable
maximum for that context. In a context, a resource is shared by multiplexers. A
few control steps at most are combined as a context.

Although the context switching mechanism works well with the control-
intensive segment, the two dimensional context is basically used for accelerating
the parallelizable segment. We exploit most parallelisms of wired logic, such as
operation, memory, and loop levels. These parallelisms are automatically ex-
tracted by a high-level synthesizer (HLS) from a C source code. We developed a
C-based HLS as a front-end tool for the compilation flow, which is based on our
proprietary HLS for application-specific integrated circuits (ASICs)13),14). The
tool is used to extract operation-level and memory-level parallelism by gener-
ating a control data-flow graph (CDFG) that splits up the description of each
control step based on given constraints. Because the compiler needs to fill the
context not only in two spatial dimensions but also vertically (time-multiplexed),
a modulo scheduling algorithm is incorporated to exploit loop-level parallelism.

Comparing multi-context-type DRPs to single context-type reconfigurable de-
vices such as field-programmable gate arrays (FPGAs), although these two archi-
tectures seem to be different, the performance is not so different for two reasons.
First, custom arithmetic logic operations are only slightly faster than look-up
table (LUT)-based arithmetic operations with dedicated architectural features of
FPGAs 7). Second, and more importantly, wire delay is a dominant factor in this
type of reconfigurable device. FPGAs and DRPs have a wiring structure with
many switches between segmented wires. If there is no limitation on the area
and with using the same process technology, the performance of the same circuit
design would not be the same but not quite different. Their performances mainly
depend on parallelizing techniques used in a circuit design. These techniques are
generally applicable to any wired logic devices including FPGAs and DRPs.

It is difficult to predict the delay at HLS level for fine grained architectures such
as FPGAs. The delay on a critical path mainly depends on the level of a look-up
table, but its level is subject to change in logic optimization. On the other hand,
a coarse-grained architecture might control the delay more accurately. To reduce
the configuration memory size, all the introduced architectures 1)–6),9) are coarse-
grained, although their granularities depend on the application on which they
focus. The processing element (PE) level in an HLS can be constrained since
few logic optimization techniques can be applied. There are still error factors in
placement and routing that are not necessary to add.

In this paper, we mainly focus on three points. The first point is obtaining
high area efficiency by context compaction. The second point is reducing cycle
count by exploiting loop-level parallelism. The third point is improvement of
delay estimation accuracy.

2. Dynamically Reconfigurable Processor

A DRP is a coarse-grained, multi-context, reconfigurable core that can be inte-
grated with an ASIC. Some other reconfigurable architectures, including FPGAs,
use data-paths to synthesize a sequencer 8), making it difficult to control the se-
quencer from outside the chip. In some DRP architectures, an embedded CPU
is used instead of a sequencer 5), but a CPU is too slow to handle the state tran-
sition of data-paths. One architectural characteristic of our DRP 4) is that the
sequencer is not synthesized using data-paths; it is a stand-alone unit. Therefore,
it is fast enough and is controllable thorough a bus. Many PEs and memory units
are arranged on a DRP. Both the operations and the wires to use between the
PEs and other resources, such as the on-chip memories and external ports, are
selected based on configuration codes stored in each PE. The configuration is
selected within one clock cycle (less than a nanosecond) by the sequencer, which
is called a “state transition controller (STC)”.

A primitive DRP unit is called a “tile”, and a DRP core consists of an arbitrary
number of tiles. In our second generation chip “DRP-2”, there are four tiles on the
chip. As shown in Fig. 1, each tile consists of 64 PEs, an STC, one- or two-port
on-chip embedded memory units, and 16-bit multiplier units around the edge.
A VMEM is an 8-bit, 512-word synchronized memory with two data inputs and
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Fig. 1 Tile structure of DRP-2. Each tile consists of processing elements (PEs), a state transi-
tion controller (STC), 2-port memory units (VMEMs), 1-port memory units (HMEMs)
and multiplier units (MULs).

outputs. A HMEM is an 8-bit, 4096-word synchronized memory unit with one
data input and output. Both the bit width and the depth can be expanded using
four units without occupying any PEs. The STC, located at the center of the
tile, controls both the context and state transition based on an internal state
transition table. Our DRP can execute multiple processes concurrently up to the
number of tiles.

As mentioned in the introduction, to reduce the size of configuration memory,
our DRP consists of 1/8/16-bit granularity architecture. As shown in Fig. 2, each
PE has an 8-bit arithmetic logic unit (ALU), a data manipulation unit (DMU)
for both 8-bit shift/mask operations and 1-bit logic operations, two 8-bit register
file units (RFUs), and wire switches. By combining both the ALU and the DMU
in the PE, an operand is extended for a 16-bit adder or 4-to-1 multiplexer (8-bit).
Up to 32 different configuration codes are stored on-chip. Additional codes can
be downloaded on-the-fly from external memory.

3. High-level Synthesis for DRP

As silicon process technology progresses, it has become a challenge to design

Fig. 2 PE architecture. Each PE has an arithmetic unit (ALU), a data manipulation unit
(DMU), 2 register file units (RFUs), and wire switches.

complex logic circuits. High-level synthesis has attracted much attention for
handling the complex design of reconfigurable chips 11). Some of them use C
compiler for a CPU as a front-end phase of compilation 12). Compared to a
register-transfer-level (RTL) design, there are several advantages to use a C-
based HLS in the compilation flow for a DRP. Designers can write a code more
efficiently by using a higher abstraction-level language. When a C compiler
for a CPU is used during design verification flow, behavioral-level simulation
is faster than RTL simulation. The C-source code can be debugged functionally
using a sophisticated source-level debugger for a CPU. It is more important for
reconfigurable chips to shorten the design turn-around time than ASICs, which
takes longer time to fabricate.

However, existing compilers for dynamically reconfigurable processors do not
adequately meet these challenges. Some use schematic entry, one uses its own
proprietary language at the RTL, and a limited “C language” can be used only
for data-path generation 8). A designer who uses these tools still has to deal
with traditional problems such as meeting timing and area constraints, as well as
the additional problem of using the resources not only two dimensionally but also
vertically (time-multiplexed). It should be noted that we had reported a compiler
for our first generation chip DRP-1 10). In this paper, we supported the DRP-2
and added new features including pipelining and context switch reduction.

We have developed an integrated C compiler for our DRP. Like a C compiler
for a microprocessor, our compiler includes the entire system environment. It
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Fig. 3 Compilation flow (left) and design environment (right) for DRP.

includes a HLS, a technology mapping tool, a place and route (P&R) tool, an
on-chip source-level debugger, and an integrated development environment (IDE)
with a graphical user interface, as shown in Fig. 3.

Unlike microprocessors, the clock frequency of our DRP varies since each re-
source has its own delay, and the PEs can be chained without inserting a register
or memory. Therefore, a HLS with an automatic scheduler is useful for controlling
delays on the data-paths. Moreover, a HLS usually extracts both data-paths and
finite state machine (FSM) from the description. This corresponds to the DRP
architecture in which the data-paths and STC are handled separately. Right from
the start, we designed our DRP architecture with this C-based HLS in mind.

3.1 Allocating Multiple Contexts
Our DRP compiler inputs C, or behavioral design language (BDL), and out-

puts the downloadable configuration code (STC Code and PE Code shown in
Fig. 3). The BDL is a subset/superset of standard C language. For example,
hardware-specific notation, input and output port declarations, bit-level extrac-
tion, and concatenation are all BDL extensions. There are some restrictions
which are difficult to realize on hardware such as recursive call and dynamic

Fig. 4 Basic relationships between steps and contexts.

memory allocation. Some types of pointer are supported if they are statically
analyzable.

Our DRP HLS is a front-end tool that generates a “multi-context Verilog”, in
which the contexts are divided into separate modules. Although the generated
Verilog code cannot be synthesized using generic logic synthesizers, it can be
simulated using an RTL simulator. Figure 4 shows the communication path
between the data-flow graph and the DRP resources. A FSM generated with
our HLS is mapped onto the STC. Basically, the control steps have a one-to-one
relationship with the contexts. We can treat the context switching mechanism
as a state transition, because the STC is fast enough. However, a function that
combines multiple control steps into a single context obtains better area efficiency,
as described below.

An operator is mapped onto either the ALU or DMU as an instruction for
that unit. A register is mapped onto the RFU, and an array is mapped to the
embedded memory unit (VMEM, HMEM), which is automatically selected based
on its depth.

3.2 High-level Synthesis Flow
A block diagram of our HLS is shown on the left in Fig. 5. To shorten the

synthesis time, the flow is straight forward. The C/BDL description is translated
into a tree-structured control-flow graph (tCFG). Some optimizations, such as
constant propagation, common sub-expression elimination, loop unrolling, in-
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Fig. 5 Flow of HLS and additional features for DRP.

line procedure expansion, and dead code elimination, are applied to the tCFG.
A CDFG is generated from the tCFG. Scheduling, data-path allocation, module
binding, and control synthesis are processed using the CDFG. A condition vector
list scheduling (CVLS) algorithm is used to efficiently allocate resources under
the given constraints 15),16). Other optimizations, such as redundancy elimination,
are applied to the RTL tCFG. Finally, the internal format is translated into an
RTL language.

4. Optimization Techniques for DRP

Some otherwise unimportant issues for ASICs could become critical problems
for our DRP. Still, some problems must be anticipated. Table 1 summarizes the
differences between a HLS for ASICs and that for the DRP. Most of the differences
are caused by our DRP’s coarse-grained architecture. Sharing rules have changed
because the delay of selector instruction (2-input multiplexer) is not negligible. In
operator level, ALU/DMU unit-level decomposition is necessary. Area constraint
must be based on number of units. Other differences are caused by the multi-

Table 1 Differences between HLS for ASICs and for our DRP.

context architecture. The following circuit-size variance is one example.
4.1 Context Compaction Technique
Circuit-size variance between control steps is one potential problem. While this

is not an issue for ASIC designs, the variance in the number of PEs used among
control steps becomes a problem in our DRP, especially if we assume a one-to-one
relationship between control steps and contexts. This assumption increases the
number of unused PEs in the context. We implemented a synthesis technique
called multiple-step-allocation to achieve higher area efficiency by utilizing the
benefit of having multiple contexts.

If a specified description is scheduled using only a delay constraint, the number
of PEs used in the control step might vary. If the upper limit of the number of
PEs is constrained in the control step, an operation that exceeds the limit slides
to the next control step. However, the control step might be changeable without
reaching the limit. For instance, since only one access in a clock cycle for each
data-port is permitted using synchronous memory, and if any output data of an
array has a data dependency on the same memory’s input address, the control
step is changed because of that data dependency, even though it does not push
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the limits of any of the constraints. In this case, the context might only have a
few memory accesses, and most of the PEs are not used. There are several causes
of state transition (in order of descending priority):
• Control statements including loops, such as “while” or “goto”
• Access to synchronous resources, such as memory or external ports
• Delays and area constraints
The multiple-step-allocation technique helps reduce the number of contexts,

in which several control steps are combined based on the number of PEs in
the control step and other constraints. Similar to single-context devices, this
technique uses a multiple-input multiplexer for sharing resources, such as register
units, memory units, and the external ports between the control steps. For the
memory units and external ports, the number of multiplexer’s inputs is equal to
the number of data inputs. For the number of register units, it is basically equal
to the number of data inputs plus one with self-feedback. Because the RFU has
its own write enable (WE) controlled as a part of the instruction set, the input
with self-feedback can be eliminated if the register is not alive in the control
steps. The scheduler provides lifetime information for these resources.

A step activation signal for the multiplexer is sent from the STC, in which
a table of the relationships between control steps and contexts is stored. This
technique enables our DRP to store more control steps than the number of con-
texts, which is limited by the size of the configuration memory in a PE. Special
care must be taken not to increase the delay of the circuit when inserting the
multiplexer. It should not be inserted into a critical path. Other control steps
that are not on the longest path can be combined unless doing so creates a path
with a delay that exceeds that of the critical path. Of course, the number of
PEs has to be within the available PEs in the context. Therefore, the number
of multiplexers is estimated each time when combining control steps into various
possible combinations. To obtain the initial data-path information, this tech-
nique is applied to the translator for the RTL tCFG after the shared resources
are allocated (Fig. 5).

There are two basic methods for combining the control steps:
• Combine consecutive control steps and change the context when the con-

straint limits are hit.

Fig. 6 Combining consecutive steps from inner loops.

• Combine as many control steps as possible until limits are hit, regardless of
whether they are contiguous.

The first method can be used to reduce the amount of context switching, which
consumes one third to half of the power for this kind of DRP. This method usually
uses more multiplexers than the second method because there is a trend to use
the same resources near the control step. The amount of context switching can be
further reduced by combining the consecutive control steps from the inner loops
(Fig. 6). Two or more loops can be combined as a single context if the number
of control steps in the loops is limited. The second method provides better area
efficiency and reduces the number of PEs more than the first by optimizing the
control step selection process. The best case is that no multiplexer is inserted.

4.2 Pipelining
Pipelining is an effective technique for parallelizing data-paths. Most HLSs

or compilers for this type of processor have some restrictions for describing in a
loop to be pipelined 17),18). Our HLS removes these restrictions such as function
call, branches, and multiple loop-breaks. A modulo scheduling algorithm 19) is
incorporated in our HLS for using the context switching mechanism effectively.

The same number of contexts as that of the data initiation interval (DII) is
used. The control steps are folded by the number of DII and are combined as
contexts. For example, there are four control steps in a loop after scheduling.
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Fig. 7 Example illustration of pipelining (DII = 2).

The state transition is shown as (a) in Fig. 7. When DII = 2, the control steps
are folded in the middle of the control steps (b). In this case, step 1 is the first
stage and step 3 is the second stage in context 1 (c). The multiplexers for both
conditional register writes and port outputs are controlled by stage activation
signals provided by the STC.

The number of DIIs is increased until there are no pipeline hazards. Data
hazards are avoided by a register forwarding technique in the scheduler to the
maximum extent. To avoid many small state machines from being generated in
the PE array, a generated pipeline does not stall at the stage level. All pipeline
stages are stalled one at a time by the STC. When a pipeline stall can not be
avoided, e.g. handshaking for I/Os in the loop, the STC halts the state transition.
The STC has a special input to stop its behavior from the PE array. Thanks
to this stall support, there is no need to insert multiplexers to all the shared
resources. Only port output and conditional register write require multiplexers
and furthermore, some multiplexers for the first stage can be eliminated.

We also use the STC to control stages for the prologue and epilogue. There
are two options for controlling pipeline stages for prologue and epilogue:
• Use dedicated contexts, which only contain active stages.
• Use a multiplexer in the PE for shared resource access.
Although the first option can reduce the number of PEs in a context, our HLS

incorporates the latter stage control for two reasons. The first reason is that
limited contexts are stored in on-chip configuration memory. The second reason

Fig. 8 Control step reassignment for prologue and epilogue.

is that most of the multiplexers can be eliminated because there is hardware
support for a pipeline stall.

Although we do not allow dedicated contexts for the prologue and epilogue,
we use the STC in a different way similar to the multiple-step-allocation in the
previous section. Figure 8 shows control step reassignment for the prologue
and epilogue. The first stage is activated in new-steps 1 and 2, which belong to
contexts 1 and 2, respectively. All stages are activated in new-steps 3 and 4 in
a pipelined loop body. In this case, new-step 4 will never transit to the epilogue
because the first iteration is already finished after step 2 in the second iteration is
executed. Therefore, no new-step is assigned for the epilogue in context 1. There
is no need to insert multiplexers in context 1, because the first stage is always
active.

If there are two or more breaks in a loop, the break in an earlier iteration has
a priority. For example, if there are breaks in the steps 1 and 3, the latter step
3 in the first iteration has the priority. All possible breaks in the new-steps are
shown in Fig. 8.

4.3 Delay Consideration
4.3.1 Wire Delays and PE Granularity
In general, the wire delays of reconfigurable devices are much longer than the

operational delays because they include both metal-wire and buffer and tri-state
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route-switching delays. Wire delays can account for up to 60% of the overall de-
sign delays in FPGAs 20) and are a dominant factor in the performance of a DRP.
Even in a HLS for ASICs, wire delays cannot be ignored, especially for deeper
submicron processes. However, accurate wire delays can only be obtained after
the P&R tool has finished the static timing analysis. Layout-driven scheduling-
binding synthesis reportedly can avoid time consuming iterations of the design
process 21). IPFlex 5) avoids this issue architecturally by guaranteeing the worst-
case delay between two operators in any location and prohibiting PE chaining.
By utilizing coarse-grained data-paths, our DRP HLS can control the delay of
the circuit at the PE level.

We focus on wire delays since they are dominant. A typical wire delay between
PEs was added to each operational delay. It was calculated based on previous
experimental measurement using the P&R tool. Other pre-measured delays were
added to the setup and delay of the embedded memory units and the delay of
external ports because their placements on the chip are more restricted than
those of the PEs.

PE-level decomposition during the pre-scheduling translation stage takes into
account the coarse-grained architecture of our DRP. Although our DRP basi-
cally has an 8/16-bit granularity architecture, both the ALU and DMU have 1-bit
inputs and output. They are used for carry-in and carry-out flags, comparison
result flags, logical operations, etc. A 32-bit adder, for instance, is decomposed
into two cascaded 16-bit adders, each of which has a wire delay. Without this
decomposition, the original 32-bit adder, which has longer wire delays for two
wire legs cannot be scheduled unless it fits within the timing constraint. This de-
composition is applied to C-operators, which are decomposed into more than one
PE level during the pre-scheduling translation stage. These operators include an
adder, a subtractor, comparators, and a barrel-shifter. With this decomposition,
the scheduler more precisely controls the delay at each PE level, reducing the
number of control steps required.

Care must be taken when there is bit-level extraction or concatenation. Since
these operations become the wiring connection in an ASIC, they do not have to
be considered in the scheduler. The DRP requires a shift/mask instruction in the
DMU, and the delay and area for this instruction must be carefully considered.

In our DRP HLS, bit-level extraction or concatenation that does not align to
one or eight bits is transformed into a shift/mask instruction during the pre-
scheduling translation stage; this instruction is then treated the same as any
other instruction by the scheduler.

4.3.2 Multiplexer Delays in Context Switching
A HLS for single-context devices, such as ASICs or FPGAs, treats the data-

path and FSM separately. A generated RTL FSM is merged into the data-
path using a logic synthesizer. On the other hand, multiple contexts must be
considered in our DRP HLS, in which the STC is a stand-alone module that
handles context transition and is outside the PE array. This separation enables
the DRP scheduler to treat multiplexing with a completely new approach.

There are two types of multiplexers: those for resource sharing among control
steps and those for conditional branching. The two types are usually merged for
a single-context device. However, this can prevent accurate timing estimation
in the scheduler because the number of inputs for a multiplexer is difficult to
predict only from the CDFG, especially if resources are shared among several
control steps. Operator sharing is an effective technique for optimizing the data-
path. Therefore, except for the primitive logical operators, which are smaller
than a multiplexer, operators are shared using the CVLS algorithm in our ASIC
HLS. Although the delay of a multiplexer with only few inputs is negligible in
an ASIC, the scheduling of such multiplexers is difficult because the resources
are actually shared among the control steps during the “Data-path Allocation”
or “Register Binding” stages (see Fig. 5). An example illustration of resource
sharing is shown in Fig. 9. If the adders in steps 2 and 3 are shared, assuming
registers A and C are the same, a two-input multiplexer is needed only if both
registers B and D are not shared. If all adders including the two in step 4 are
shared, a multiplexer with more input may be needed. However, the number of
inputs is difficult to predict during the scheduling stage because registers must
be optimally assigned simultaneously.

For our DRP, a multiplexer for sharing resources among control steps is hidden
in the fast context switching mechanism with a fixed delay. Because the RFU has
its own write-enable flags as a configuration bit, a multiplexer for preserving the
value of a flip-flop for more than one step is not necessary. The context is switched
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Fig. 9 Example illustration of resource sharing.

by changing both the wire connection and the operational code without using a
selector instruction (SEL) in either the ALU or DMU. The SEL is conventionally
used for conditionally selecting signals in a control step.

In our DRP HLS, a SEL is treated the same as the other instructions. For
example, although the operational delay of a SEL and an adder are not the
same, the delay for each PE level differs slightly since wire delay is the dominant
factor in a reconfigurable device. From the perspective of PE usage, both a
SEL and adder are the same ALU instruction, although their actual areas on the
silicon differ. For these reasons, the operators are shared in a context only if both
the number and the level of the PE do not increase. In Fig. 9, because the two
adders in step 4 are exclusively used, they should be shared only if registers F
and I are the same. Although this sharing does not reduce the PE level because
it simply moves the multiplexer to be inserted from the input of the adder to the
output, the number of operational units is reduced from three (two adders and
one selector to select the adders) to two (one adder and one selector to select
register G or H).

Eventually, only a SEL for conditional use of an operational, register, or mem-
ory unit or external port in a control step must be scheduled. This helps the
scheduler more precisely estimate the conditional delay. A SEL placed before
either an operational or register unit is depicted as a node in the CDFG. Our
DRP HLS treats this selector node as an operator node which has a delay. In

Fig. 9, if the total delay of both a selector node and the adders in step 4 is more
than the designed delay, the selector node is moved to step 5, like the other
operator nodes. A selector node with only one input can be ignored for a reg-
ister or operator but is necessary for an external or memory port. These ports
are depicted as more than one node in a control step on the CDFG when they
are conditionally used. For these types of resources, we add the SEL delay into
the node. We must carefully treat a SEL for the data input port of a memory
unit, because the unit has a write or read-enabling signal, which also works as a
selector.

This new multiplexer handling also simplifies the work of the P&R tool. Be-
cause most operational instructions are not shared in a context or among con-
texts, there is no restriction on the multiplexer location. Essentially, this means
the operational instructions including the SELs are bound at placement. There-
fore, a faster data-path with fewer wire connections can be synthesized.

5. Evaluation

We evaluated the performance of our DRP HLS by using a JPEG-based image
decoder. All functions of the decoder are compiled and stored in the configuration
memory of the DRP-2. We manually divided the decoder program into three
processes, an inverse discrete cosine transform (IDCT) with an inverse quantize
(IQ) and two variable length decoders (VLDs). The VLDs are control-intensive
codes and the IDCT/IQ is a parallelizable code. Many loops in the IQ/IDCT
are pipelined. The IQ/IDCT process uses two tiles, and each of the VLDs uses
one. These processes use their own STCs (as FSMs) and work simultaneously.
Any two processes are connected by VMEMs, which works as FIFOs.

It should be noted that we had compared the performance to CPUs and DSPs
on several stream applications 22) and several encryption algorithms 23).

5.1 Effect of Context Compaction
The numbers of operational units allocated in each context of the VLD’s sec-

ondary process using the following three allocation rules were counted and sorted
numbers are shown in Fig. 10. This process achieves the best context compaction
effect in the three processes. The summary of the effect for all process are shown
in the next section. Because two operational units, the ALU and DMU, com-
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Fig. 10 Number of operational units assigned in each context of VLD’s secondary process.

Table 2 Comparison between step-allocation rules of VLD’s secondary process.

prise a PE, we took the larger of these counts as a result. The total number of
contexts, rate of context switch, maximum number of units, and total number of
units are listed in Table 2. The rate of context switch is calculated as 1 if the
context switches every cycle.
• Single-step-allocation (SSA)

Allocating the single-step to single-context rule results in several contexts
having many operational units. Some of the other contexts use only a few
operators.

• Consecutive-step-allocation (CSA)
Allocating the consecutive-steps to single-context rule results in a reduc-

tion in the total number of contexts although it still exceeds 32, which is

the number of contexts that can be stored in the DRP-2. The rate of con-
text switch is reduced by 20%. The maximum number of operational units
slightly increases because multiplexers are inserted to share the resources.

• Multiple-step-allocation (MSA)
Allocating the multiple-steps to single-context rule results in a reduction

in the total number of contexts to approximately half compared to that of
the single-step-allocation rule. This rule combines control steps regardless
of whether they are contiguous. The number of operational units is well
balanced between contexts. More context compaction is possible but will
increase the total number of operational units for the multiplexer insertion.
Because the increase of the unit leads to wire congestion, the total number
of context is set to 32.

5.2 Volume Efficiency
Two criteria, context and area, are used to evaluate “area efficiency” for multi-

context devices. Therefore, it should be renamed “volume efficiency” for this
type of architecture.

To evaluate the previous context, we defined the context usage rate Crate =
C/32, where C is the number of contexts used and 32 is the number of contexts
that can be stored in the configuration memory of the DRP-2. If Crate exceeds
1, all the contexts cannot be stored simultaneously. With the MSA rule, all the
processes are successfully stored in the configuration memory (Fig. 11). Because
there is no need to spare the context, the number of contexts is constrained to
no less than 32.

The area is primarily resolved using the number of PEs for a process, 128 PEs
in two tiles for the IDCT/IQ for example. Let the number of operational units
allocated in context i be OPE i, where 64 is the number of PEs in a context,
the filling rates of operational unit OPErate are defined as follows and shown in
Fig. 12.

OPErate =

C∑
i=0

OPEi

64C ·
⌈

max{OPEi}
64

⌉ .

A higher filling rate is better for efficient area usage. The MSA offers the best
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Fig. 11 Context usage rates.

Fig. 12 Operational unit filling rates.

from the standpoint of “volume efficiency”.
5.3 Estimated Delay and Cycle Count
Figure 13 shows the relationship between the delay estimated with our HLS

and the delay obtained by static timing analysis in the P&R tool of all three
processes with the MSA rule. The close delay estimation between the results
shows that both of our PE-level wire-delay and multiplexer-delay controls works
well. Because of wire congestions, the delay of the P&R slightly increased from
that of the HLS in IQ/IDCT and the secondary VLD process. Both processes
have higher unit filling rates than the primary VLD process. The slowest delay

Fig. 13 Delay estimation.

Table 3 Pipelining effect on IQ/IDCT process.

is the actual delay since there is only one clock domain in the DRP-2.
The circuit throughput depends on both the delay and the number of cycles it

takes to execute test data. The cycle is determined by the number of scheduled
control steps and by the sequence of FSM generated with the HLS. The IQ/IDCT
process has 13 pipelined loops, 6 loops are DII = 1 and 7 loops are DII = 2. The
number of cycles for a macro-block and the number of operational units are
listed in Table 3. The macro-block consists of 6 blocks, each with 64 (= 8
x 8) elements. Despite the number of cycles is reduced to less than 1/3 with
pipelining, the maximum number of units is increased by the factor of 2.2. The
total number of units increases only 7% for the multiplexer, which is required for
pipelining. The fewer increase is better from the point of wire congestion. Note
that total number of units with MSA increases because the IDCT/IQ process
has higher data bandwidth than the other two processes.
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Accurate delay estimation of our HLS enables the optimal throughput to be
found more quickly without running the P&R tool. This is especially valuable
when trying to identify the best optimization options and constraint combina-
tion in a reasonable amount of time. Since there are many combinations of the
numbers to be constrained, there is an iterative optimization function in the inte-
grated development environment (see Fig. 3) to support the designer. It automat-
ically tries all combinations of constraints, which are the number of operational
units and the delays, in the given ranges. Our HLS also automatically attempts
many compiler options such as the multiple-step-allocation, pipelining, a loop
unrolling and a function inlining with the support of the iterative optimization
function. Along with design productivity, this is one of the key advantages of
a HLS compared to designing in RTL language. Moreover, it fits well with the
nature of our DRP, which offers a trade-off between the best throughput (by in-
creasing circuit parallelization) and the minimum area (by dynamically switching
the contexts).

6. Conclusions and Future Work

We have developed a C-based compiler for our DRP, using C language in all
phases of development; algorithmic-level optimization, circuit optimization con-
sidering hardware architecture, functional-level simulation, and on-chip debug-
ging. Using a short turn-around-time tool set, the designer can take full advan-
tage of the reconfigurable processor, for example, by starting a design before the
functional specifications have been fixed or by designing using with one or a few
developers. By making use of multi-context and coarse-grained data-paths of our
DRP architecture, our HLS can control delay at the PE level and properly con-
strain the number of elements properly. A more accurate delay estimation, which
takes care of the routability, will increase performance. Although the techniques
introduced in this paper are primarily for our DRP, most can be applied to other
coarse-grained reconfigurable processors.

Although, the compiler which converts a high-level description into logic-level
coding can deal with a wide range of parallelization, a source code optimization
process is needed. To overcome the disadvantages of adopting a high-level lan-
guage, more parallelizing techniques are needed to expand the synthesis search

space. To exploit concurrent loop-level parallelism, an automatic multiple pro-
cessing is needed since we manually divide the application into several processes.
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