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Partial Product Generation Utilizing the Sum of

Operands for Reduced Area Parallel Multipliers

Hirotaka Kawashima†1 and Naofumi Takagi†2

We propose a novel method to generate partial products for reduced area
parallel multipliers. Our method reduces the total number of partial product
bits of parallel multiplication by about half. We call partial products generated
by our method Compound Partial Products (CPPs). Each CPP has four candi-
date values: zero, a part of the multiplicand, a part of the multiplier and a part
of the sum of the operands. Our method selects one from the four candidates
according to a pair of a multiplicand bit and a multiplier bit. Multipliers em-
ploying the CPPs are approximately 30% smaller than array multipliers without
radix-4 Booth’s method, and approximately up to 10% smaller than array mul-
tipliers with radix-4 Booth’s method. We also propose an acceleration method
of the multipliers using CPPs.

1. Introduction

Multiplication is a fundamental arithmetic operation used in various appli-
cations. To achieve fast multiplication, recent processors and ASICs are often
equipped with parallel multipliers. Since requirements for multiplier design dif-
fer among applications, it is necessary to offer various construction of parallel
multipliers for various performances. One of the most significant goals of parallel
multiplier design is to reduce the circuit area. In this paper, we propose a novel
method of partial product generation for reducing the area of a multiplier.

In general a parallel multiplier consists of a partial product generator, a partial
product compressor and a final adder 1). Basic multiplication generates partial
products, each of which is a product of a whole multiplicand and a bit of a
multiplier. Radix-4 Booth’s method 2) is well known as a method for reducing the
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number of partial products. The radix-4 Booth’s method recodes the multiplier
represented in binary into radix-4 signed digit representation whose digit set is
{−2,−1, 0, 1, 2}. Since the recoded multiplier is represented in about half of the
number of digits, the number of partial products is reduced by about half. In the
cell based design using recent cell libraries, the area of multipliers often becomes
smaller by using the radix-4 Booth’s method. When small area multipliers are
required, array multipliers using the radix-4 Booth’s method are widely employed.

We propose a new method to reduce the total number of partial product bits by
about half. Our method utilizes the sum of the operands (multiplicand and mul-
tiplier) to generate the partial products. We call each partial product generated
by our method Compound Partial Product (CPP). A CPP has four candidate
values: zero, a part of the multiplicand, a part of the multiplier and a part of
the sum of the operands. Each CPP is obtained by selecting one from the four
candidates. The total number of CPP bits is about half of that of basic partial
product bits. We also propose an acceleration method of the multipliers with the
proposed method. We divide the addition of the operands into multiple sections
to generate CPPs faster and parallelize CPP compression.

Our evaluation shows that the multipliers employing the CPPs are smaller than
array multipliers by approximately 30%, and smaller than array multipliers with
the radix-4 Booth’s method by approximately 10%. Delay of these multipliers
are comparable with that of array multipliers with the radix-4 Booth’s method.

The remainder of this paper is organized as follows: Section 2 proposes partial
product generation utilizing the sum of the operands. Section 3 shows reduced
area multipliers with the proposed method. Section 4 discusses acceleration of
the multipliers with the proposed method. Section 5 evaluates the multipliers
with the proposed method. Section 6 concludes this paper.

2. Partial Product Generation Utilizing the Sum of Operands

First, we describe our method for n-bit unsigned multiplication. We assume the
multiplicand X and the multiplier Y are n-bit unsigned integers and expressed
as [xn−1xn−2 · · ·x1x0] and [yn−1yn−2 · · · y1y0], respectively. The values of X and
Y are

∑n−1
i=0 2ixi and

∑n−1
i=0 2iyi, respectively. We define Xi as [xixi−1 · · ·x1x0]
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and Yi as [yiyi−1 · · · y1y0] for 0 ≤ i ≤ n − 1. Values of Xi and Yi are
∑i

j=0 2jxj

and
∑i

j=0 2jyj , respectively.
We can transform X × Y as follows:

X × Y =

(
n−1∑
i=0

2ixi

)
×
(

n−1∑
i=0

2iyi

)

=
(
2n−1xn−1 + Xn−2

)× (2n−1yn−1 + Yn−2

)
= Xn−2 × Yn−2 + 2n−1(2n−1xn−1yn−1 + xn−1Yn−2 + yn−1Xn−2)

By transforming iteratively, X × Y is calculated as follows:

X × Y = x0y0 +
n−1∑
i=1

2i
(
2ixiyi + xiYi−1 + yiXi−1

)
This equation is used for serial-serial multiplication 3)–5). We call 2ixiyi+xiYi−1+
yiXi−1 the i-th Compound Partial Product (CPP). The i-th CPP is denoted by
Pi. We can obtain the CPPs efficiently utilizing the sum of the multiplicand
and the multiplier. There are four candidates of CPP values according to the
combination of the values of xi and yi. Pi is calculated as follows:

Pi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if (xi, yi) = (0, 0)
Xi−1 if (xi, yi) = (0, 1)
Yi−1 if (xi, yi) = (1, 0)
2i + Xi−1 + Yi−1 if (xi, yi) = (1, 1)

We need to calculate Xi−1 + Yi−1 in the case of (xi, yi) = (1, 1). We define S as
X+Y . S is an (n+1)-bit unsigned integer and expressed as [snsn−1sn−2 · · · s1s0].
We define Si as [sisi−1 · · · s1s0]. We can express Pi in an (i + 2)-bit unsigned
binary representation as follows:

Pi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[ 0 0 0 0 · · · 0 0 ] if (xi, yi) = (0, 0)
[ 0 0 xi−1 xi−2 · · ·x1 x0 ] if (xi, yi) = (0, 1)
[ 0 0 yi−1 yi−2 · · · y1 y0 ] if (xi, yi) = (1, 0)
[ si si si−1 si−2 · · · s1 s0 ] if (xi, yi) = (1, 1)

si indicates the inversion of si. Note that when (xi, yi) = (1, 1), Xi−1+Yi−1 = Si.
Since we can obtain all CPPs from S, we calculate S only once. Our method

(a) Partial products (b) CPPs

Fig. 1 An example of 8-bit unsigned multiplication.

generates only 1
2n2 + 3

2n− 1 bits in total, while a basic n-bit multiplier generates
n2 partial product bits. Our method can reduce the total number of partial
product bits by about half. Finally multiplication is performed as

X × Y = x0y0 +
n−1∑
i=1

2iPi.

We show an example of 8-bit unsigned multiplication in Fig. 1. We assume that
X is [01001110] and Y is [11100101]. S is represented as [100110011]. We
show CPPs in Fig. 1 (b) and basic partial products in Fig. 1 (a). In Fig. 1 (a), each
“L-shaped” area shows a set of partial product bits which correspond to a CPP. In
Fig. 1 (b), each CPP is shown in a circle. For example, since (x3, y3) = (1, 0), P3 is
represented as [00y2y1y0]=[00101]. P4, P5 and P6 are represented as [000000],
[00x4x3x2x1x0]=[0001110] and [s6s6s5s4s3s2s1s0]=[01110011], respectively.
The other CPPs are obtained in the same way.

We can apply the proposed method to signed multiplication by slight modi-
fication. In signed multiplication, X and Y are expressed in two’s complement
representation as [xn−1xn−2 · · ·x1x0] and [yn−1yn−2 · · · y1y0], respectively. The
values of X and Y are −2n−1xn−1 +

∑n−2
i=0 2ixi and −2n−1yn−1 +

∑n−2
i=0 2iyi,

respectively. For i ≤ n − 2, Xi and Yi are expressed in unsigned binary rep-
resentation as [xixi−1 · · ·x1x0] and [yiyi−1 · · · y1y0], respectively. The values of
them are

∑i
j=0 2jxj and

∑i
j=0 2jyj , respectively. We define S as the sum of

the operands X + Y . S is represented in (n + 1)-bit two’s complement binary
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representation.
Signed multiplication is shown as:

X × Y =

(
−2n−1xn−1 +

n−2∑
i=0

2ixi

)(
−2n−1yn−1 +

n−2∑
i=0

2iyi

)

= Xn−2 × Yn−2 + 2n−1(2n−1xn−1yn−1 − xn−1Yn−2 − yn−1Xn−2)

Since x0y0 and the CPPs for i = 1 to n−2 are the same as those of the unsigned
multiplication, Xn−2 × Yn−2 can be calculated in the same way as the unsigned
multiplication. We define the (n − 1)-th CPP for signed multiplication Pn−1 as
2n−1xn−1yn−1−xn−1Yn−2−yn−1Xn−2. There are four candidate values of Pn−1

according to (xn−1, yn−1) as follows:

Pn−1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if (xn−1, yn−1) = (0, 0)
−Xn−2 if (xn−1, yn−1) = (0, 1)
−Yn−2 if (xn−1, yn−1) = (1, 0)
2n−1 − (Xn−2 + Yn−2) if (xn−1, yn−1) = (1, 1).

Pn−1 is also calculated using the sum of the operands. S is required only when
(xn−1, yn−1) = (1, 1). Note that when (xn−1, yn−1) = (1, 1), Xn−2 + Yn−2 =
Sn−1, and that −Sn−1 = −2n + Sn−1 + 1, where Sn−1 indicates the bitwise
inversion of Sn−1. We treat Sn−1 as an n-bit unsigned integer. Then Pn−1 =
−2n + 2n−1 + Sn−1 + 1. We define P ∗

n−1 as Pn−1 − 1. Then, P ∗
n−1 is expressed

in an (n + 1)-bit two’s complement binary representation as follows:

P ∗
n−1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[ 1 1 1 1 · · · 1 1 ] if (xn−1, yn−1) = (0, 0)

[ 1 1 xn−2 xn−3 · · · x1 x0 ] if (xn−1, yn−1) = (0, 1)

[ 1 1 yn−2 yn−3 · · · y1 y0 ] if (xn−1, yn−1) = (1, 0)

[sn−1sn−1 sn−2 sn−3 · · · s1 s0 ] if (xn−1, yn−1) = (1, 1)

Finally, signed multiplication is performed as

X × Y = x0y0 +

(
n−2∑
i=1

2iPi

)
+ 2n−1Pn−1

Fig. 2 An example of singed multiplication.

= x0y0 +

(
n−2∑
i=1

2iPi

)
+ 2n−1P ∗

n−1 + 2n−1.

The total number of CPP bits is 1
2n2 + 3

2n − 1. CPPs and x0y0 are represented
in 1

2n2 + 3
2n bits in total.

We show an example of 8-bit signed multiplication in Fig. 2. We assume that
X is [01001110] and Y is [11100101]. Both X and Y are represented in two’s
complement representation. x0y0 and CPPs from P1 to P6 are the same as
the unsigned multiplication shown in Fig. 1. In this example (x7, y7) = (0, 1),
therefore P ∗

7 is represented as [11x6 x5 · · ·x1 x0] = [110110001].
The proposed method performs multiplication and addition simultaneously,

i.e., X × Y and X + Y are obtained simultaneously. Therefore the proposed
method can be used more effectively on applications that require both a product
and a sum of the same pair of operands.

3. Reduced Area Multipliers Employing the CPPs

In this section, we show a design of a multiplier employing the CPPs. A block
diagram of an 8-bit unsigned parallel multiplier employing the CPPs is shown in
Fig. 3. The multiplier consists of an operand adder, an operand recoder, a CPP
generator, a CPP compressor and a final adder. The operand adder is a carry
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Fig. 3 A block diagram of an 8-bit unsigned multiplier employing the CPPs.

propagate adder for calculating the sum of the operands. The operand recoder
generates xi ∧ yi, xi ∧ yi and xi ∧ yi for 0 ≤ i ≤ n − 1. The CPP generator
consists of 1

2n2 + 3
2n − 1 selector cells. Each selector cell generates a CPP bit

from (xj , yj , sj) and (xi∧yi, xi∧yi, xi∧yi). The CPP compressor compresses the
CPPs into two numbers by carry save additions. Structures of partial product
compressors such as array structure and Wallace tree 6) are applicable for the
CPP compressor. The final adder is a carry propagate adder, which sums up the
two numbers.

Here, we show the function of the selector cells for unsigned multiplication. We
define pi,j as the j-th least significant bit of Pi. The selector cells calculate pi,j ,
pi,i and pi,i+1 where 1 ≤ i ≤ n − 1 and 0 ≤ j ≤ i − 1 as follows:

pi,j = ((xi ∧ yi) ∧ xj) ∨ ((xi ∧ yi) ∧ yj) ∨ ((xi ∧ yi) ∧ sj)
pi,i = (xi ∧ yi) ∧ si

pi,i+1 = (xi ∧ yi) ∧ si

In Fig. 3, white, gray and black squares indicate the selector cells for pi,j , pi,i and
pi,i+1, respectively. For signed multiplication, we define p∗n−1,j as the j-th least
significant bit of P ∗

n−1. P ∗
n−1 is calculated as follows, where 0 ≤ j ≤ n − 2:

(a) CPPs for unsigned multiplication (b) CPPs for signed multiplication

Fig. 4 Rearrangement of the CPPs.

p∗n−1,j = ((xn−1 ∧ yn−1)∧xj)∨ ((xn−1 ∧ yn−1)∧ yj)∨ ((xn−1 ∧ yn−1)∧ sj)

p∗n−1,n−1 = sn−1 ∨ (xn−1 ∧ yn−1)
p∗n−1,n = pn−1,n−1

We discuss the delay of the multipliers employing the CPPs. Both the basic
partial product generation and the radix-4 Booth’s method generate partial prod-
ucts in constant time. The delay of partial product generation does not depend
on the bit width of the operands. On the other hand, CPP generation requires a
carry propagate addition, whose delay depends on the bit width of the operands.
It could be a disadvantage of the delay of multipliers. Generally S is obtained
in order from the least to the most significant bit. For 1 ≤ i ≤ n − 1 and for
0 ≤ j ≤ i− 1, pi,j depend on sj . Therefore CPP bits are also generated in order
from the least to the most significant bit, i.e., from the right side to the left side of
each CPP in Fig. 1 (b) and Fig. 2. On the other hand, array-type CPP compres-
sor works from the top to the bottom of the figure. We rearrange the alignment
of CPP bits to overcome the disadvantage. We place the CPPs diagonally so that
CPP bits are generated from the top to the bottom of the figure. The alignment
of CPP bits of unsigned and signed multiplication are shown in Fig. 4 (a) and
Fig. 4 (b), respectively. When we place CPPs diagonally, the j-th least signifi-
cant bits of all CPPs are placed on the j-th row. The j-th least significant bit
of CPPs depends on sj , and therefore all CPP bits generated simultaneously are
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Table 1 Comparison between horizontal and diagonal placement of CPPs for unsigned
multipliers.

Rohm 0.18 µm STARC 90 nm
area delay area delay

16-bit horizontal 20,070.1 13.08 4,592.3 7.04
diagonal 19,459.4 11.35 4,039.6 5.63

32-bit horizontal 73,484.7 25.76 16,895.9 14.17
diagonal 72,165.1 22.20 15,351.0 10.21

64-bit horizontal 280,449.5 49.99 64,765.3 28.46
diagonal 279,052.3 43.07 59,750.9 20.89

in the same row. As indicated above, the array-type CPP compressors compress
CPP bits in order from the 0th row to the (n − 1)-th row. When the array-type
CPP compressor is used, CPP bits are compressed as soon as they are generated.
Therefore, the delay of the operand addition has little impact on the delay of the
entire multiplier. Finally the delay of the multiplier using diagonal alignment
and array-type CPP compressor is expected to be comparable with that of array
multipliers.

We show the effectiveness of placing the CPPs diagonally. We design multipli-
ers using the proposed method and optimize them under area constraint and no
delay constraint. Design conditions are the same as the conditions that we will
show in Section 5. We compare two constructions of multipliers, i.e., the one plac-
ing CPPs diagonally and the other horizontally. We name them diagonal and
horizontal, respectively. We show the area and the delay of diagonal and hor-
izontal optimized under area constraint in Table 1. diagonal are faster than
horizontal by approximately 13% and 20% for Rohm 0.18µm and STARC 90 nm
process, respectively. diagonal are slightly smaller than horizontal. For signed
multipliers, we have almost the same results as the unsigned multipliers. In the
rest of this paper, we use diagonal placement for the multipliers using the CPPs.

4. Acceleration of the Multiplier Employing the CPPs

In this section we show a method for accelerating the multipliers described in
Section 3. We accelerate the multipliers by dividing the operand addition into
multiple sections and parallelize CPP compression. As an example, we explain
the case of dividing the operand addition into two sections. Here, we assume that

(a) CPPs in the case of dividing the addition
into two sections

(b) CPPs filled up into the �n
2
� + 1 rows

Fig. 5 An example of CPPs using the acceleration.

X and Y are n-bit unsigned integers and n is even for simplicity of explanation.
We define XL,XH , YL and YH as follows:

XL : [xn
2 −1xn

2 −2 · · ·x1x0]

XH : [xn−1xn−2 · · ·xn
2 +1xn

2
]

YL : [yn
2 −1yn

2 −2 · · · y1y0]

YH : [yn−1yn−2 · · · yn
2 +1yn

2
].

XL, XH , YL and YH have values
∑ 1

2 n−1
j=0 2jxj ,

∑n−1
j= 1

2 n 2jxj ,
∑ 1

2 n−1
j=0 2jyj and∑n−1

j= 1
2 n 2jyj , respectively. We define SL and SH as follows:

SL = XL + YL

SH = XH + YH

SL and SH are represented as [ln
2
ln
2 −1 · · · l1l0] and [hn

2
hn

2 −1 · · ·h1h0], respec-
tively. Note that SL +2

n
2 SH = S. We generate the CPP bits with higher weight

using the bits of SH instead of the higher bits of S. Then, for i ≥ n
2 , two shorter

CPPs, PLi and PHi, corresponding to Pi are generated. PLi depends on SL

and consists of n
2 + 1 bits. PHi depends on SH and consists of i + 2 − n

2 bits.
Note that PLi + 2

n
2 PHi = Pi. A bit diagram of CPPs in this case is shown in

Fig. 5 (a). The bits above the dashed line belong to PLi’s and those below the
dashed line belong to PHi’s. Thus, PHi and PLi are generated in parallel. We
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divide CPP compressor into two sections, i.e., one for PHi’s and the other for
PLi’s, and parallelize CPP compression. The total number of CPP bits increases
by 1

2n bits due to the acceleration method. Since the acceleration method divides
the operand addition, an additional bit l 1

2 n, i.e., the carry-out bit of SL, appears
in the sum of the operands. CPP bits corresponding to each row of Fig. 5 (a)
depend on each bit of the sum of the operands. Therefore, there are additional
CPP bits corresponding to l 1

2 n. The number of additional CPP bits is 1
2n. The

additional CPP bits are shown on the fifth row in Fig. 5 (a).
We discuss the delay and the area of multipliers with the acceleration. When

operand addition is divided into two sections, input width of each operand ad-
dition is n

2 . Therefore the widths of divided CPPs are also smaller than n
2 + 1.

We can place the entire CPP bits in �n
2 � + 1 rows for unsigned multiplication.

We show the alignment of CPP bits in Fig. 5 (b). For signed multiplication, the
number of rows is �n

2 �+ 2. CPP bits are generated in order from the first row to
the �n

2 �+ 1-th row. As discussed in Section 3, when array-type CPP compressor
is used, the delay of the operand addition has little impact on the delay of the en-
tire multiplier. Therefore the delay of the entire multiplier is mostly determined
by the delay of the CPP compressor and the final adder. The delay of the mul-
tipliers using CPPs and the acceleration method is expected to be comparable
with that of the array multipliers using radix-4 Booth’s method whose number
of partial product is �n

2 � + 1.
Note that we can divide the addition into any number of sections at any points.

If operand addition is divided into more sections, the calculation becomes faster
and the number of the additional CPP bits increases.

5. Evaluation

We designed the multipliers using the cell libraries for Rohm 0.18µm 5-metal
CMOS technology and Semiconductor Technology Academic Research Center
(STARC) 90 nm 6-metal CMOS technology. Both libraries are provided by VLSI
Design and Education Center (VDEC), the University of Tokyo. We optimized
the multipliers with Synopsys Design Compiler. We used Cadence SoC Encounter
and Synopsys Astro for the physical design with the 0.18µm cell library and the
90 nm cell library, respectively. All cells and wires of the multipliers are placed

and routed with over 95% core utilization.
We evaluate the multipliers employing the CPPs by comparing their circuit

area and delay with those of conventional multipliers. Input widths are 16-bit,
32-bit and 64-bit. We evaluate two constructions of the multipliers with the
proposed method.

CPP+array : Multipliers using an array-type CPP compressor. The
operand addition is not divided.

CPP+div2+array : Multipliers using an array-type CPP compressor.
The operand addition is divided into two sections.

We compare these multipliers with the following two multipliers.
array : array multipliers without radix-4 Booth’s method
array+Booth : array multipliers with radix-4 Booth’s method

Table 2 shows the area and the delay of multipliers optimized under only area
constraint. In this condition, we minimize the area of the multipliers and use
no delay constraint. As a result, all adders used in the multipliers are ripple
carry adders. Table 3 shows the area and the delay of multipliers optimized
under both area and delay constraint. In this condition, we try to minimize the
delay of the multipliers. However, if we minimize the delay exactly, the area
of the multipliers increases explosively. Therefore, we relax the delay constraint
slightly from the minimum delay so that the area can take a reasonable value. All
adders used in the multipliers are the adder module DW01 add from DesignWare
IP Library, Synopsys, Inc.

Our experimental results show the following two features. One is that the
area of multipliers employing the CPPs are smaller than that of conventional
multipliers under area constraint. The area of CPP+array is approximately
20%, 30% and 35% smaller than array for 16-bit, 32-bit and 64-bit, respectively.
Compared with array+Booth, the area of CPP+array is approximately 10%
smaller for both Rohm 0.18 µm and STARC 90 nm. The other feature is that the
multipliers employing the CPPs are smaller and slightly slower than the array
multipliers using the radix-4 Booth’s method under area and delay constraint.
As described above, CPP+div2+array is slightly slower than array+Booth.
CPP+div2+array is up to 22.7% and 12.2% smaller than array+Booth for
Rohm 0.18 µm and STARC 90 nm, respectively. These features show the useful-
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Table 2 Area (µm2) and delay (ns) of multipliers under area constraint.

Rohm 0.18 µm STARC 90 nm
area delay area delay

unsigned 16-bit array 24,946.8 11.47 5,790.6 6.70
array+Booth 22,902.3 13.37 4,522.5 5.98

CPP+array 19,459.4 11.35 4,039.6 5.63
CPP+div2+array 20,470.9 11.42 4,311.2 6.44

32-bit array 103,775.1 23.67 24,127.1 14.09
array+Booth 84,552.3 22.37 17,362.1 10.84

CPP+array 72,165.1 22.20 15,351.0 10.21
CPP+div2+array 74,397.7 22.58 15,911.3 10.70

64-bit array 423,104.6 48.00 98,448.4 28.95
array+Booth 322,622.9 41.93 66,727.6 20.84

CPP+array 279,052.3 43.07 59,750.9 20.89
CPP+div2+array 283,645.9 43.41 60,298.5 20.79

signed 16-bit array 24,753.1 11.61 5,748.2 6.73
array+Booth 21,618.5 13.08 4,251.6 5.59

CPP+array 19,615.9 11.40 4,057.2 5.62
CPP+div2+array 21,652.1 11.42 4,384.6 5.92

32-bit array 103,362.3 23.83 24,037.2 14.21
array+Booth 81,821.4 23.36 16,651.1 10.77

CPP+array 72,483.0 22.39 15,385.6 10.65
CPP+div2+array 76,746.4 22.24 16,052.4 10.86

64-bit array 422,256.8 48.18 98,264.0 28.90
array+Booth 317,325.6 41.25 65,437.1 20.25

CPP+array 279,697.0 43.20 59,750.9 20.94
CPP+div2+array 288,414.8 43.61 61,196.7 22.24

ness of the proposed method as the small area multipliers and that the multipliers
using CPPs can be an alternative to the array multipliers using radix-4 Booth’s
method.

In Section 3 and Section 4, we pointed out that the delay of CPP+array
and CPP+div2+array are expected to be comparable with that of array and
array+Booth, respectively. Here, we can see it from the experimental results.
The delays of array and CPP+array indicate very close values. Differences
of the delay between CPP+div2+array and array+Booth are almost within
10%.

Here, we discuss the effect of the acceleration method proposed in Section 4.
The acceleration method is not effective under the area constraint and no delay
constraint in Table 2. In this condition, it is considered for the final adders

Table 3 Area (µm2) and delay (ns) of multipliers under both area and delay constraint.

Rohm 0.18 µm STARC 90 nm
area delay area delay

unsigned 16-bit array 27,478.9 8.15 12,954.8 2.71
array+Booth 35,103.0 5.72 11,379.9 1.85

CPP+array 24,423.4 7.42 10,245.3 2.18
CPP+div2+array 27,122.5 5.88 10,358.2 1.95

32-bit array 108,445.4 15.73 51,755.8 5.45
array+Booth 105,590.0 9.80 35,140.3 3.55

CPP+array 83,170.4 13.49 28,034.9 4.48
CPP+div2+array 89,573.8 10.30 33,225.3 3.63

64-bit array 432,733.4 31.22 192,510.3 11.43
array+Booth 383,888.0 18.14 115,831.3 6.73

CPP+array 301,362.8 26.54 102,784.1 8.99
CPP+div2+array 319,258.6 18.80 112,801.5 7.13

signed 16-bit array 27,262.8 8.29 12,859.6 2.61
array+Booth 35,041.5 6.42 12,294.4 1.90

CPP+array 24,865.6 7.14 9,796.6 2.26
CPP+div2+array 27,214.4 6.37 10,790.7 2.08

32-bit array 108,288.2 15.88 51,882.8 5.44
array+Booth 107,904.9 10.73 33,841.3 3.53

CPP+array 86,848.3 13.13 30,380.3 4.35
CPP+div2+array 91,805.6 10.48 32,262.9 3.70

64-bit array 432,169.9 30.53 186,657.3 11.55
array+Booth 384,976.5 19.35 124,665.4 6.63

CPP+array 309,527.1 26.01 116,498.1 9.34
CPP+div2+array 320,856.1 19.91 115,926.6 7.48

in the multipliers to take the ripple carry structures, which is the most simple,
the smallest and the slowest structure of a parallel adder. The final adders
are considered to be critical for the delay. Even if the CPP compressors are
accelerated, it does not lead to the speed-up of the entire multipliers. On the
other hand, Table 3 shows that the acceleration method works effectively and all
CPP+div2+array’s are faster than CPP+array’s. In Table 3, we set delay
constraint, therefore the final adders in the multipliers take the faster structures
than ripple carry structure. The array-type CPP compressors are considered to
be critical for the delay. Therefore, accelerating the array-type CPP compressors
leads to the speed-up of the entire multipliers.

Although the purpose of this paper is proposing the reduced area multipliers,
readers may also have an interest in the delay of the multiplier. In fast multpliers
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Wallace tree is widely used. We show the experimental results of the following
multipliers using Wallace tree.

CPP+Wallace : Multipliers using a tree-type CPP compressor. The
operand addition is not divided.

Wallace : Wallace multipliers without radix-4 Booth’s method
Wallace+Booth : Wallace multipliers with radix-4 Booth’s method

Note that the result using Wallace tree is a reference information and we show
only the simple constructions listed above. Table 4 shows the area and the
delay of the multipliers using Wallace tree. In Table 4 (a), the similar trend
holds as Table 2. In Table 4 (b), CPP+Wallace is slower and smaller than
Wallace and Wallace+Booth. Wallce and Wallace+Booth generates par-
tial products in constant time. CPP+Wallace does not generate the CPPs in
constant time because CPP+Wallace requires a carry propagate addition in
the operand addition. The carry propagate addition in CPP generation becomes
disadvantageous for the delay.

6. Conclusion

We have proposed a novel partial product generation method for reduced area
parallel multipliers. The proposed method reduces the total number of partial
product bits by using the sum of the operands effectively. We call partial products
generated by the proposed method the compound partial products (CPP). The
total number of CPP bits is about half of the number of basic partial product
bits. We have also proposed a method to accelerate the multipliers using CPPs.
Our method for acceleration divides the operand addition into multiple sections
and generates CPPs simultaneously. CPP compression is also parallelized into
multiple sections. We designed the multipliers using CPPs and compared them
with conventional multipliers. Our experimental results show the usefulness of
the proposed method. The multipliers using CPPs can be an alternative to the
array multipliers using radix-4 Booth’s method.

In this paper, we have evaluated only the case of dividing the operand ad-
dition into two sections. The multipliers employing the CPPs can take many
other constructions according to the number of sections and the positions to di-
vide. Finding the optimal construction is one of the future tasks. Our method

Table 4 Area (µm2) and delay (ns) of multipliers using Wallace tree.

(a) Under area constraint and no delay constraint

Rohm 0.18 µm STARC 90 nm
area delay area delay

unsigned 16-bit Wallace 25,085.9 10.18 5,823.8 4.69
Wallace+Booth 22,814.1 13.05 4,743.7 5.94
CPP+Wallace 19,650.0 11.44 4,292.9 5.50

32-bit Wallace 103,911.6 20.73 24,160.9 9.27
Wallace+Booth 84,359.8 24.59 17,320.2 10.37
CPP+Wallace 72,357.5 22.66 15,981.8 10.38

64-bit Wallace 423,241.2 42.59 98,482.8 18.85
Wallace+Booth 322,250.3 46.03 67,516.7 19.52
CPP+Wallace 279,246.2 44.34 61,542.4 21.06

signed 16-bit Wallace 24,892.2 10.30 5,780.0 4.68
Wallace+Booth 20,806.7 12.69 4,366.3 5.18
CPP+Wallace 19,765.6 11.40 4,110.1 5.27

32-bit Wallace 103,502.0 20.62 24,069.5 9.37
Wallace+Booth 80,054.6 23.80 17,244.9 10.09
CPP+Wallace 72,632.6 22.82 15,946.6 10.36

64-bit Wallace 422,398.8 42.28 98,295.3 18.79
Wallace+Booth 313,588.5 46.51 65,279.3 19.73
CPP+Wallace 279,849.0 44.70 61,542.4 20.84

(b) Under both area and delay constraint

Rohm 0.18 µm STARC 90 nm
area delay area delay

unsigned 16-bit Wallace 32,432.9 4.30 12,356.5 1.45
Wallace+Booth 38,168.0 4.18 9,824.1 1.46
CPP+Wallace 29,893.8 4.96 7,413.0 1.83

32-bit Wallace 121,921.2 5.45 41,037.7 2.41
Wallace+Booth 119,321.4 5.50 34,931.4 2.26
CPP+Wallace 98,790.6 7.04 27,151.5 2.76

64-bit Wallace 468,251.3 7.35 150,714.8 4.02
Wallace+Booth 411,641.9 7.48 112,519.9 3.58
CPP+Wallace 345,247.5 10.32 105,950.1 4.06

signed 16-bit Wallace 32,674.6 4.07 10,386.4 1.43
Wallace+Booth 41,975.1 4.04 10,877.5 1.65
CPP+Wallace 31,506.8 4.72 7,878.0 1.89

32-bit Wallace 123,510.4 5.64 38,745.9 2.27
Wallace+Booth 120,589.5 5.40 32,112.6 2.19
CPP+Wallace 101,488.9 6.81 25,293.6 2.71

64-bit Wallace 470,246.1 7.73 151,475.4 3.59
Wallace+Booth 413,382.9 7.65 107,321.8 3.46
CPP+Wallace 341,909.2 9.72 99,666.0 4.20
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performs addition and multiplication simultaneously and therefore can be used
more efficiently for applications where the sum and the product are required
simultaneously.
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