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As device feature size decreases, the reliability improvement against soft er-
rors becomes quite necessary. A fault-secure system, in which concurrent error
detection is realized, is one of the solutions to this problem. On the other hand,
average interconnection delays exceed gate delays which leads to a serious tim-
ing closure problem. By using regular-distributed-register architecture (RDR
architecture), we can estimate interconnection delays very accurately and their
influence can be much reduced even in behavioral-level design. In this paper,
we propose a fault-secure high-level synthesis algorithm for an RDR architec-
ture. In fault-secure high-level synthesis, a recomputation CDFG as well as a
normal-computation CDFG must be scheduled to control steps and bound to
functional units. Firstly, our algorithm re-uses vacant areas on RDR islands
to allocate new function units additionally for the recomputation CDFG. Sec-
ondly, we propose an efficient edge-break algorithm which considers comparison
nodes’ scheduling/binding. We can have small-latency scheduling/binding for
both the normal CDFG and recomputation CDFG. Our algorithm reduces the
required control steps by up to 53% compared with the conventional approach.

1. Introduction

While advanced process technologies contribute to improve the device integra-
tion, speed up the operation and reduce the power consumption 2), soft errors and
system design reliability are becoming important problems 10). Previous works
mainly focused on soft errors on memory elements. This is because they are more
susceptible to soft errors than logical circuits, since soft errors on logical circuits
could be masked by logical, electrical, and latching-window masking 9). However,
the soft error susceptibility in logical circuits will be comparable to that of mem-
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Fig. 1 Technology node and soft error rate 9).

ory circuits as the technology node advances, as we can see in Fig. 1. Soft errors
on logical circuits that occur close to the clock edge can result in a fault . LSI
manufacturing technology cannot completely prevent the faults caused by soft
errors. That is why fault-secure design methodologies are strongly required in
recent LSI design. High-level synthesis is also focused on to develop complicated
LSIs in a short turn-around time. We have to focus on fault-secure high-level
LSI synthesis.

There are several types of existing works on fault-secure high-level synthesis:
(1) Reliability-centric high-level synthesis
(2) Triple modular redundancy (TMR)
(3) Concurrent error detection (CED)
In (1), the main approach is to increase the reliability of the synthesized circuit
as much as possible using more reliable functional units (FUs, in short). This
approach can increase reliability but cannot detect or correct errors. In (2), a
simple majority voting system is used where three modules are connected in par-
allel. TMR is a hardware-redundancy-based error correction technique and has
at least 200% hardware overhead 3),4). In (3), we duplicate a normal control/data-
flow graph (CDFG) and generate a recomputation CDFG . We schedule and bind
both the original CDFG and the recomputation CDFG by making use of the
idle computation cycles and the idle data transfer cycles, and compare their re-
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Fig. 2 RDR architecture.

sults 1),8). CED can reduce overheads significantly compared with TMR. Antola,
et al. 1) proposed an Force-Directed Scheduling (FDS) based fault-secure schedul-
ing algorithm to minimize area overheads. Since this approach does not break
a recomputation CDFG, the resultant latency or area overhead may increase.
Wu, et al. 8) proposed a CED technique that selectively breaks data dependen-
cies in a recomputation CDFG to minimize the resultant latency. Edges in a
recomputation CDFG are broken to improve the FU sharing between normal
and recomputation CDFGs. However, since this technique does not consider new
comparator insertion, it may increase the resultant latency if too many new com-
parison nodes are inserted. In this paper, we focus on (3) CED as fault-secure
high-level synthesis.

Nanometer process technologies allow us to integrate billions of transistors on a
single die, running at multiple-gigahertz frequencies. On the other hand, average
interconnection delays exceed gate delays which leads to a timing closure prob-
lem. By using a regular-distributed-register architecture (RDR architecture), we
can estimate interconnection delays very accurately 5)–7). The RDR architecture
divides the entire chip into an array of islands. Each island has a local compu-
tational cluster (LCC), local registers, and a finite state machine (FSM). LCC
includes several FUs such as multipliers and ALUs. Figure 2 illustrates a 2× 2
island-based RDR architecture. The registers are distributed to each island so

that wire delay between FUs and registers can be reduced. Inter-island communi-
cation can use multicycle communication. Then clock cycle time can be occupied
by almost the intra-island delay.

Since the RDR architecture divides the chip into an array of islands regularly,
all the islands are not always full . Some of the islands have vacant spaces. By
using these vacant islands for recomputation in fault-secure high-level synthesis,
we expect that we can reduce latency with small area overheads. But there are no
existing works in RDR architecture from the viewpoint of fault-secure high-level
synthesis.

In this paper, we propose a fault-secure high-level synthesis algorithm for an
RDR architecture. In fault-secure high-level synthesis, a recomputation CDFG
as well as a normal CDFG must be scheduled to control steps and bound to FUs.
Firstly, our algorithm re-uses vacant spaces on RDR islands to allocate new FUs
additionally for the recomputation CDFG. Secondly, we propose an edge-break
algorithm which considers comparison nodes’ scheduling/binding. We can have
small-latency scheduling/binding for both the normal CDFG and recomputation
CDFG. Our algorithm reduces the required control steps by up to 53% compared
with the conventional approach.

This paper is organized as follows: Section 2 defines our fault-secure high-
level synthesis problem for RDR architecture; Section 3 proposes a fault-secure
high-level synthesis algorithm; Section 4 demonstrates experimental results; and
Section 5 gives several concluding remarks.

2. Problem Formulation

A normal CDFG G = (V,E) is represented by a directed graph, where V

is a set of operation nodes, constant nodes and branch nodes and E is a set
of edges which denote the data/control dependencies. A recomputation CDFG
GR = (VR, ER) is generated by just duplicating the normal CDFG G = (V,E).

Given scheduling and binding of a normal CDFG G = (V,E), we schedule and
bind its recomputation CDFG GR = (VR, ER) so that it satisfies the fault-secure
conditions (1) to (6) below 1),8):
(1) Scheduling and binding of G = (V,E) is not changed.
(2) Let n′ ∈ VR be one of the operation nodes in the recomputation CDFG,
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Fig. 3 Fault-secure scheduling and binding.

and let n ∈ V be the corresponding normal CDFG’s node. If there are two
or more FUs which can execute n and n′, they do not share the same FU.

(3) The outputs of normal and recomputation CDFG must be compared.
(4) A data-flow edge e′ ∈ ER in the recomputation CDFG can be broken.
(5) Let n′ ∈ VR and e′ = (m′, n′) ∈ ER be the one of the operation nodes and

its input data-flow edge in the recomputation CDFG, where m′ is one of
the parent nodes of n′. Let m be the normal CDFG’s node corresponding
to m′. If e′ is broken, n′ uses the output of the normal CDFG’s node m

instead of m′.
(6) In case of (5), the outputs of m and m′ must be compared.
Example 1. Figure 3 shows an example of fault-secure scheduling and binding.

This example uses four multipliers “M1”,“M2”,“M3”, and “M4”, two adders “A1” and

“A2”, and two comparators “C1” and “C2”. According to the fault-secure condition

(1), scheduling/binding of the normal CDFG G0 is not changed. According to the fault-

secure condition (2), the normal CDFG’s operation “*1” uses the multiplier “M1”, but

the recomputation CDFG’s operation “*1” uses the multiplier “M3”. According to the

fault-secure condition (3), the outputs of the normal CDFG and the recomputation

CDFG are compared by using the comparator “C1”.

Figure 4 shows the scheduling/binding of the recomputation CDFG G0R when break-

Fig. 4 Fault-secure scheduling and binding after the breaking edge.

ing the edge marked as × in Fig. 3. By breaking this edge, the recomputation CDFG’s

operation “+3” can be scheduled to the control step “CS4”. According to the fault-

secure conditions (4) and (5), the input of recomputation CDFG’s operation “+3” uses

the output of the normal computation CDFG’s operation “+2”. According to the

fault-secure condition (6), the output of the normal CDFG’s operation “+2” and re-

computation CDFG’s operation “+2” are compared by using the comparator “C2”.

The RDR architecture divides the entire chip into N ×M array of islands. Let
I(x, y) be the island on the position (x, y) of the RDR array, where 1 ≤ x ≤ N

and 1 ≤ y ≤ M . Every island assumes to be square. An FU fu is allocated to
one of the islands and has a delay of d(fu). Each island I(x, y) has the local
register file R(I(x, y)). Let i1 and i2 be two islands I(x1, y1) and I(x2, y2) in the
RDR architecture. Interconnection delay Dc(ii, i2) between the two islands i1
and i2 is proportional to the square of their distance and it is given by

Dc(ii, i2) = Cd × (|x1 − x2|+ |y1 − y2|)2 (1)
where Cd shows the constant interconnection delay coefficient. Let fu1 be one of
the FUs allocated to the island i1. Assume that the output of fu1 is used by the
island i2. Let Tclk be the given clock period and we assume that d(fu1) < Tclk.
When

Tclk ≥ Dc(i1, i2) + d(fu1), (2)
executing fu1 and storing its output into the register file R(i2) are done in a
single control step. On the other hand, when
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Fig. 5 Allocation of FUs on RDR architecture.

Tclk < Dc(i1, i2) + d(fu1), (3)
we only execute fu1 and store its output into the register file R(i1) at the first
control step. After that, we transfer the fu1’s output from R(i1) to R(i2) using
�Dc(ii,i2)

Tclk
� control steps. If d(fu1) ≥ Tclk, we also use control steps only for data

transfer.
Let c(fu) be the cost of FU fu. Every island has the capacity C. Let F (i) be

a set of FUs allocated to the island i = I(x, y). Any island i satisfies

C ≥
∑

fu∈F (i)

c(fu). (4)

This is called a capacity constraint . In other words, an additional FU fuj can
be newly allocated to the island i when

c(fuj) ≤ C −
∑

fu∈F (i)

c(fu) (5)

holds.
Example 2. Figure 5 shows an example of RDR architecture. Let

d(A1) = d(A2) = 1ns (6)
and

d(M1) = d(M2) = 2ns (7)

be the delay of FUs “A1”, “A2”, “M1”, and “M2”. Let Tclk = 2ns be the clock

period, and let Cd = 1ns be the interconnection delay coefficient. Let i1 = I(1, 1), i2 =

I(2, 1), i3 = I(1, 2), i4 = I(2, 2) be the four islands on the RDR architecture. Consider

Fig. 6 (a) Scheduling/binding which ignores interconnection delays between islands.
(b) Scheduling/binding which considers interconnect delays between islands.

the DFG as shown in Fig. 6 (a) and its data flow “D1”. The operation node “+1” is

bound to the adder “A1” and “*1” is bound to the multiplier “M1”. “A1” is allocated

to the island i1 and “M1” is allocated to the island i2. Then we have

Dc(i1, i2) + d(A1) = Dc(I(1, 1), I(2, 1)) + d(A1)
= 1× (|2− 1|+ |1− 1|)2 + 1 (8)
= 2 ≤ Tclk.

This means that executing the operation “+1” and storing its output into the island i2

can be done in a single clock cycle “CS1” and the scheduling “D1” as shown in Fig. 6 (a)

is feasible. However, consider the data flow “D2” in Fig. 6 (a). In the same way, we

have

Dc(i3, i4) + d(M2) = Dc(I(1, 2), I(2, 2)) + d(M2)
= 1× (|1− 2|+ |2− 2|)2 + 2 (9)
= 3 > Tclk.

This means that executing the operation “*2” and storing its output into the island i4

cannot be done in a single clock cycle “CS1”. We cannot start the operation “+2” at

“CS2” in the data flow “D2”.

The modified scheduling is shown in Fig. 6 (b), where the data flow “D2” uses the

control step “CS2” only for data transfer.

Now, a fault-secure high-level synthesis problem for an RDR architecture is
defined as follows:
Definition 1. For given the number of RDR architecture islands N ×M , their al-

location of FUs, island capacity C, clock period Tclk, and normal CDFG’s schedul-
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ing/binding, the fault-secure high-level synthesis problem for this RDR architecture is,

to schedule and bind its recomputation CDFG satisfying the fault-secure conditions

(1)–(6) and the capacity constraint. The objective is to minimize the total control

steps. The FUs already allocated to the islands cannot be changed, but new FUs can

be allocated when they satisfy the capacity constraint.

3. Fault-secure High-level Synthesis Algorithm for RDR Architec-
ture

To solve the fault-secure high-level synthesis problem defined in Section 2, we
need to consider (a) edge-break in the recomputation CDFG and (b) new FU
allocation to vacant islands. We can have the following three options to tackle
this problem:
(1) (a) is processed first and then (b) is processed secondly.
(2) (a) and (b) are processed in a step-by-step manner.
(3) (b) is processed first and then (a) is processed secondly.

(1) is hard to optimize fault-secure high-level synthesis since we need to forecast
new FU allocation. (2) must improve fault-secure high-level synthesis locally in a
step-by-step manner, but it must be very hard to have a globally optimal solution.
In (3), we can completely see the FU arrangement including new FUs since (b)
is processed first. Based on it, we can break recomputation CDFG’s edges and
schedule and bind the recomputation CDFG. By performing the edge-break
step based on the complete FU arrangement, we can insert as small number of
comparison nodes as possible and then we will obtain a recomputation CDFG’s
scheduling/binding with minimized control steps.

Based on the above discussion, we employ the strategy (3) as our algorithm.
Our proposed fault-secure high-level synthesis algorithm for an RDR architecture
is shown in Fig. 7. Our algorithm has the three steps: initialization (Step 1), FU
allocation to vacant islands (Step 2), and edge-break in the recomputation CDFG
(Step 3). For simplicity, we assume DFG as an input CDFG in this section but
we can apply the proposed algorithm here to CDFG as shown in “PARKER” in
the experimental results.

Note that, Step 1 and Step 2 in our algorithm are completely new ones, in
which we consider recomputation CDFG schedulilng/binding taking into account

Fig. 7 Synthesis flow.
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RDR architecture. Step 3 introduces an idea of scheduling/binding a node in a
recomputation CDFG to an earlier control step by “edge-break,” which is similar
to that of Wu’s approach 8). However, how to realize this edge-break is quite
different. Wu’s approach is just based on breaking as many edges as possible and
assigning recomputation CDFG nodes to as early control steps as possible. It
can introduce too many comparison nodes and thus the latency of recomputation
CDFG may be increased. On the other hand, our algorithm is based on breaking
edges only when a recomputation CDFG node n′ and its associated comparison
nodes can be assigned to the control steps earlier than or equal to the control step
which n′ is originally assigned to. We do not perform unnecessary edge-breaks
here and then we can reduce the overall latency.

3.1 Initialization (Step 1)
This step solves our fault-secure problem temporarily to handle Step 2 and

Step 3 easily. In Step 1, we employ the following approach:
(1.1) Generate a recomputation CDFG by duplicating the input normal CDFG.
(1.2) Schedule/bind the recomputation CDFG temporarily.
(1.3) Allocate a new comparator if none of the islands has one.

Step (1.1) just generates a recomputation CDFG GR = (VR, ER) by dupli-
cating the normal CDFG G = (V,E).

Step (1.2) schedules/binds the recomputation CDFG so that it meets the
fault-secure conditions. Here, we propose an extended list-scheduling algorithm
for scheduling/binding. This algorithm performs list-scheduling-based scheduling
and binding as well as FU allocation to an RDR architecture. Figure 8 shows
our extended list-scheduling algorithm.

In our extended list-scheduling algorithm, the priority of operation nodes uses a
difference between their ALAP control step and ASAP control step as in a normal
list-scheduling algorithm. The priority is higher if the difference is smaller. The
important key of this algorithm is Step (1.2)-3.2.1 and we employ the following
approach:

Now we focus on scheduling/binding at a control step cs and an operation type
t such as “+” and “*” in Step (1.2)-3.2.1. Let PQ(t) be a priority queue which
includes operation nodes with operation type t in the recomputation CDFG and
can be assigned to the control step cs. For each FU fu in the RDR architecture,

Step (1.2) Extended list-scheduling

1. Set a priority to each operation node n′ ∈ VR in the recomputation CDFG.
2. For each operation type t, insert an operation node which has no preceding nodes

into the priority queue PQ(t). Let cs← 0.
3. Repeat the following loop until PQ(t) = ∅ for all operation types:

3.1 cs← cs + 1.
3.2 For each operation type t:

3.2.1 Based on the FU-binding in the normal CDFG, assign the operation
nodes in PQ(t) to cs as much as possible as described in Section 3.1.

3.2.2 Delete the scheduled and bound operation nodes in 3.2.1 from PQ(t).
3.3 Insert the ready operation nodes into PQ(t) and go to 3.

Fig. 8 Extended list-scheduling algorithm.

let N(t, cs, fu) ⊆ PQ(t) be a set of operation nodes with operation type t which
can use fu at the control step cs considering interconnection delay from its
preceding nodes and the fault-secure condition (2). In Step (1.2)-3.2.1, we delete
the highest-priority operation node n′ from PQ(t) and bind it to fu which n′

can use at the control step cs. If there are more than one such FUs, we select
the one which gives the minimum |N(t, cs, fu)|�1. We also schedule n′ to cs. If
there are no available FUs for n′, we insert n′ again into PQ(t) and we try the
next highest-priority operation node. By repeating this process, we can expect
that it binds as many operation nodes as possible at each control step cs and
thus reduces the overall latency.
Example 3. Figure 9 illustrates how Step (1.2)-3.2.1 works. For simplicity, we

demonstrate here how our extended list scheduling algorithm schedules/binds CDFG

nodes to control steps and FUs, just ignoring the fault-secure condition (2), and show

the effectiveness of using the minimum |N(t, cs, fu)| as a criterion. In fault-secure high-

level synthesis, however, we have to consider the fault-secure condition (2) as well when

we assign recomputation CDFG nodes to FUs.

Now we assume that FU allocation as shown in Fig. 5 is given and scheduling/binding

CDFG nodes to CS1, CS2, and CS3 is done as in Fig. 9 (a). In this example, we assume

�1 As the example just below shows, using the minimum |N(t, cs, fu)| can lead to improve FU
usage in each control step. However, there may be better algorithms or optimal algorithms
for initial recomputation CDFG scheduling/binding. This is one of our future works.
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Fig. 9 Example of extended list-scheduling.

that the interconnection delay between adjacent islands requires one control step (1CS).

We consider the next control step CS4. In this case, the nodes “*2” and “*3” can be

scheduled to CS4 and we have PQ(∗) = {∗2, ∗3}. Since “+3” is executed by the adder

“A1” at CS2 and the control step CS3 is used only for data transfer between “+3” and

“*2”, then “*2” can be executed at CS4 by either the multiplier “M1” or the multiplier

“M2”, which is one-island away from “A1”. On the other hand, since “*1” is executed

by “M1” at CS3, “*3” can be executed at CS4 only by “M1”, not by “M2”. Then we

have

N(∗, 4,M1) = {∗2, ∗3} (10)
N(∗, 4,M2) = {∗2} (11)

and
|N(∗, 4,M1)| = 2 (12)
|N(∗, 4,M2)| = 1. (13)

In this case, the minimum |N(t, cs, fu)| is given by |N(∗, 4, M2)|, and then the operation

node “*2” is scheduled to CS4 and bound to “M2” first. After that, the operation node

“*3” is scheduled to CS4 and bound to “M1” as shown in Fig. 9 (b). Note that, if the

operation node “*2” is bound to “M1” first, then we will have a scheduling/binding

result as shown in Fig. 9 (c), which has a longer latency than Fig. 9 (b). By using the

minimum |N(t, cs, fu)| as a criterion, we can improve FU usage as illustrated in this

example.

Fig. 10 (a) RDR architecture and (b) scheduling and binding for normal CDFG.

In Step (1.2), we schedule/bind the recomputation CDFG by using this ex-
tended list-scheduling algorithm. Note that, in Step (1.2), we do not sched-
ule/bind a new comparator to compare the results between normal CDFG and
recomputation CDFG.

Then Step (1.3) allocates a new comparator if there are no comparators in
the RDR architecture. Let n′ ∈ VR be an operation node in the recomputation
CDFG. Let cs(n′) be the control step to which n′ is scheduled. Let CS′

max be
the maximum control step in the recomputation CDFG. Let n′

max be one of the
operation nodes scheduled to CS′

max. Let fu′ be the FU that is bound to n′
max

and ir = I(xr, yr) be the island to which fu′ is allocated. A new comparator is
allocated to the island which is the nearest to the island ir and has an enough
capacity to accommodate a new comparator. In case the RDR architecture does
not have such an island, a new comparator is allocated to the island ir ignoring
the capacity constraint. This case violates the capacity constraint and may occur
significant area overhead.
Example 4. Figure 10 (b) shows a scheduled and bound normal CDFG when RDR

architecture in Fig. 10 (a) is given. In this example, we assume that the interconnection

delay between adjacent islands requires one control step (1CS). Table 1 shows the cost

of each FU. The capacity constraint C for each island is set to be two. Step (1.1)

duplicates the normal CDFG and generates a recomputation CDFG. According to the
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Table 1 FU costs.

Cost
Adder (A1, A2, A3) 1
Multiplier (M1, M2) 2
Comparator (C1) 1

Fig. 11 Initialization.

Step (1.2), we have the scheduling/binding result of recomputation CDFG as shown

in Fig. 11 (b). In this scheduling/binding, the recomputation CDFG’s operation node

“*4” gives the maximum control step CS′
max = CS10. This operation node “*4” is

bound to the multiplier “M2” and the island which accommodates the multiplier “M2”

is ir = I(1, 2). According to Step (1.3), a new comparator is allocated to the island

I(1, 1) which is the nearest to ir and has a enough capacity to accommodate a new

comparator.

3.2 FU Allocation to Vacant Islands (Step 2)
This step allocates new FUs if the RDR architecture has vacant islands. We

employ the following approach:
(2.1) Determine critical paths in the recomputation CDFG.
(2.2) Determine new FUs to be allocated to vacant islands.
(2.3) Allocate the new FUs to vacant islands.
In this approach, we first find an operation node which is scheduled to a “late”
control step due to FU shortage. Then we allocate a new FU so that the opera-
tion node can be re-scheduled to an “earlier” control step. We expect that this
approach also reduces the overall latency.

Step (2.1) calculates a critical path based on the scheduling/binding of the
recomputation CDFG. We focus on the recomputation CDFG’s operation node
n′ which is scheduled to CS′

max. Let P (n′) be a set of parent nodes of n′ and
m′ ∈ P (n′) be one of them. Let s(n′,m′) be the control step of operation node
n′ in case we assume that n′ has only m′ as its parent node, i.e, we assume that
all the parents nodes other than m′ are deleted. Let us consider

Smax(n′) = max
m′∈P (n′)

s(n′,m′). (14)

and let m′
max(n

′) be one of the parent node of n′ which gives Smax(n′). We
focus on m′

max(n
′) instead of n′ and repeat this process until we finally reach the

primary input node. We define a critical path by a sequence of operation nodes
focused on at the above process and denoted as CPR = {n′

1, n
′
2, . . . , n

′
p} from the

beginning node to the ending node.
Based on this critical path CPR, we determine new FUs which will be allo-

cated to vacant islands. Let CP = {n1, n2, . . . , np} be the normal CDFG’s path
corresponding to the recomputation CDFG’s critical path CPR. We compute for
CP

disti =

{
cs(ni)− cs(ni−1) (2 ≤ i ≤ p)
cs(n1) (i = 1)

. (15)

Also we compute for CPR
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dist′i =

{
cs(n′

i)− cs(n′
i−1) (2 ≤ i ≤ p)

cs(n′
1) (i = 1)

. (16)

disti shows the difference between the control step of ni and the control step of
its parent node ni−1. Similarly, dist′i shows the difference between the control
step of n′

i and the control step of its parent node n′
i−1. Then we can compute

the difference between disti and dist′i:
dist(ni) = dist′i − disti. (17)

dist(ni) shows how many control steps the recomputation CDFG’s operation
node n′

i is delayed, compared with the corresponding normal CDFG’s operation
node, due to FU shortage. In other words, this delay directly increases the overall
latency.

In Step (2.2), we determine new FU candidates which will be added to vacant
islands. We first sort the dist(ni) values in the descending order and try to
allocate a new FU fui which can execute the operation node ni in this order.

In Step (2.3), we find out vacant islands and allocate new FUs to them. Let
I(fui) be a set of islands that has an enough capacity to accommodate a new
FU fui. When we try to allocate each new FU candidate fui, we will have the
following three cases:
(i) There exists only one island iv in I(fui).
(ii) There exist two or more islands in I(fui).
(iii) No islands exists in I(fui).

In case of (i), the new FU fui is allocated to the island iv. In case of (ii),
we determine the island iv to which the new FU fui is allocated as follows:
Firstly we try to allocate fui to each island in I(fui). Secondly we re-schedule
and re-bind the recomputation CDFG and calculate the required control steps.
Lastly, we actually allocate fui to the island iv which gives the minimum required
control steps. In case of (iii), we just skip new FU allocation for fui and try to
allocate the next FU candidate. Note that, every time the new FU is allocated,
we re-schedule and re-bind the recomputation CDFG.

After trying to allocate new FU candidates for all the operation nodes in the
critical path CPR, we determine the next critical path if we further have vacant
islands. The next critical path is determined in the same way as in Step (2.1) by

Step 2 FU allocation to vacant islands

(2.1) Find the critical path CPR and CP and calculate dist(ni).
(2.2) Repeat Steps (2.2.1)–(2.2.2) in the descending order of dist(ni) until there are

no vacant islands:
(2.2.1) In case there exists only one vacant island iv for a new FU fui, allocate

fui to iv.
(2.2.2) In case there exist two or more vacant islands for a new FU fui:

a: Try to allocate fui to every vacant island and re-schedule/re-bind the
recomputation CDFG using the extended list-scheduling algorithm.

b: Allocates fui to iv which gives minimum required control steps and
re-schedule/re-bind the recomputation CDFG using the extended list-
scheduling algorithm.

(2.3) If there still exist vacant islands, remove all the nodes in CPR and go to
Step (2.1). Otherwise, finish.

Fig. 12 New FU allocate algorithm.

just removing the first critical path�1.
After that, we repeat the same process as in Step (2.2) and Step (2.3).
Figure 12 summarizes the algorithm of Step 2.

Example 5. Now we will find a critical path in the recomputation CDFG as shown

in Fig. 13 (b). The operation node “*4” gives the maximum control step CS10. A set

of parent nodes of “*4” is defined by

P (*4) = {+4,+5}. (18)
If “+4” is the only parent node of “*4”, then “*4” can be scheduled to CS10. Then

s(*4, +4) becomes 10. Similarly, we have s(*4, +5) = 9. Thus the parent node “+4”

gives Smax(*4). This means that the parent node “+4” determines the scheduling of

“*4”. Then we focus on the operation node “+4” and repeat the same process. We can

finally have the critical path CPR in the recomputation CDFG as follows:

CPR = {+1, *1, *2,+4, *4}. (19)
Corresponding to each node in CPR, we also have the critical path in the normal CDFG

�1 If two or more critical paths in a recomputation CDFG share several operation nodes, “just
removing the first critical path” may be insufficient for determining a second or third critical
path. However, RDR architecture does not have too much vacant islands and then we do
not always focus on too many critical path nodes. This means that focusing on operation
nodes on a first critical path will be enough for new FU allocation in most cases. In fact,
we just focused on the first critical path in all the cases in our experiments in Section 4.
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Fig. 13 FU allocation to vacant islands.

as follows:

CP = {+1, *1, *2,+4, *4}. (20)
Secondly, we determine new FU candidates to allocate. We calculate disti and dist′i

based on Eqs. (19) and (20):

{dist1, dist2, . . . , dist5} = {1, 2, 1, 2, 2} (21)
{dist′1, dist′2, . . . , dist′5} = {3, 2, 1, 2, 2}. (22)

We calculate the difference between disti and dist′i and obtain dist(ni)
{dist(n1), dist(n2), . . . , dist(n5)} = {2, 0, 0, 0, 0}. (23)

Since the maximum value of dist(ni) is given by “+1”, we try to allocate a new adder to

a vacant island. As in Fig. 13, the island I(2, 2) has an enough capacity to accommodate

a new adder, and then we actually allocate a new adder to the island I(2, 2).

Since there are no vacant islands, we finish Step 2.

3.3 Edge-Break in the Recomputation CDFG (Step 3)
This step breaks several edges in the recomputation CDFG so that some op-

eration nodes can be scheduled/bound to earlier control steps. Breaking edges
does not always lead to decreasing latency but it may increase the resultant
latency when too many new comparison nodes are required. We propose here
an efficient edge-break algorithm which takes into account comparison nodes’
scheduling/binding. We employ the following two-step approach:
(3.1) Find an operation node n′ in the recomputation CDFG which can be sched-

uled to an earlier control step if its input edges are broken.
(3.2) Insert a comparison node for each input edge of n′ and re-schedule/re-bind

the recomputation CDFG. Break the edges actually if the operation node
n′ as well as all its associated comparison nodes are scheduled to an earlier
control steps and/or to the same control step.

In this two-step approach, we do not just break all possible edges but we first
find out an operation node which can be scheduled to an earlier control step
by breaking its input edges. After that, we try to insert comparison nodes and
check whether they can be scheduled to an earlier control steps and/or to the
same control step. We actually perform edge-break only if all the associated
comparison nodes can be scheduled to an earlier control steps and/or to the
same control step. This means that we actually perform edge-break only when
we have small or equal latency for the targeted operation node. Since edge-break
may increase the operation node’s “mobility”, we can expect that we will reduce
the overall latency. In Steps (3.1) and (3.2), we focus on each recomputation
CDFG’s operation node n′ in the ascending order of their scheduled control step
cs(n′).

Step (3.1) is performed as follows: Let n′ be an operation node in the re-
computation CDFG and n be its corresponding operation node in the normal
CDFG. Now the operation nodes n and n′ are scheduled to the control steps
cs(n) and cs(n′), respectively. Let P (n) be a set of parents nodes of n. If the
operation node n′ uses the outputs of P (n) instead of the outputs of P (n′), it
may be scheduled to the control step earlier than cs(n′). Let s(n′) be the earliest
control step to which n′ can be scheduled using the outputs of P (n) instead of
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Step 3 Edge-break in the recomputation CDFG

(3.0) Visit each recomputation CDFG’s operation nodes n′ in the ascending order of
its control step cs(n′).

(3.1) Calculate the earliest control step s(n′) to which n′ can be scheduled if the input
edges in Eb(n

′) ⊆ ER of n′ are broken.
(3.2) While s(n′) < cs(n′), perform the Steps (3.2.1)–(3.2.4):

(3.2.1) For each recomputation CDFG’s edge e′ ∈ Eb(n
′), insert its comparison

node ci and calculate its scheduled control step cs(ci).
(3.2.2) Calculate the maximum scheduled control step

Cmax = max
ci∈Cn

cs(ci),

where Cn shows all the inserted comparison nodes.
(3.2.3) If Cmax ≤ cs(n′), break the edges in Eb(n′) and reschedule/rebind

n′ to s(n′). Reschedule and rebind the recomputation CDFG’s nodes
except for n′ using the extended list-scheduling algorithm. Go to (3.3).

(3.2.4) If Cmax > cs(n′), cancel the edge-break and insertion of the com-
parison nodes. s(n′)← s(n′) + 1 and go to (3.2).

(3.3) Repeat Steps (3.1) and (3.2) until all the operation nodes in the recomputation
CDFG are visited.

Fig. 14 The edge-break algorithm.

the outputs of P (n′). If s(n′) < cs(n′), we determine a minimum set Eb(n′) of
input edges to be broken and go to the next step (3.2). Otherwise, we try the
next operation node in the recomputation CDFG.

We determine a minimum set Eb(n′) of input edges to be broken as follows:
We first schedule the operation node n′ to s(n′). Let e′ be one of the input
edges of n′ and e be the corresponding edge in the normal CDFG. In case the
operation node n′ uses e′ as its input, it violates the data transfer and n′ cannot
be scheduled to s(n′). In this case, Eb(n′) includes e′. Consider the case where,
if the operation node n′ uses e′ as its input, n′ can be still scheduled to s(n′). In
this case, Eb(n′) does not include e′. Note that all the edges in Eb(n′) must be
broken.

Step (3.2) is performed as follows: Let e′ = (m′, n′) be one of the edges in

Fig. 15 Edge-break in the recomputation CDFG.

the minimum set Eb(n′) of edges to be broken. The operation node m′ ∈ P (n′)
is one of the parents node of n′. Let m be the normal CDFG’s operation node
corresponding to m′. We now insert a comparison node ci to compare the outputs
of m′ and m and schedule/bind it. Let cs(ci) be the control step to which ci is
scheduled. In the similar way, we require several comparison nodes when all the
edges in Eb(n′) are broken. Let Cn be the set of these comparison nodes. Then
we calculate Cmax as follows:

Cmax = max
ci∈Cn

cs(ci) (24)

In case Cmax ≤ cs(n′), we actually break each edge e′ ∈ Eb(n′) and sched-
ule/bind n′ to the control step s(n′)�1. In this case, n′ uses the outputs of the
normal computation CDFG’s nodes corresponding to the edge-breaks in Eb(n′).
We also insert the comparison nodes for them. We re-schedule and re-bind the
recomputation CDFG after breaking these edges.

�1 In case Cmax < cs(n′), the operation node n′ as well as its associated comparison nodes
can be scheduled to control steps earlier than cs(n′). We expect that we can finally reduce
overall latency of our recomputation CDFG. Even when Cmax = cs(n′), the operation node
n′ can be scheduled to a control step earlier than cs(n′), although one of its associated
comparison nodes is scheduled to cs(n′). We also expect that we can finally reduce overall
latency of our recomputation CDFG in this case.
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If Cmax > cs(n′), we cancel the edge-break for n′ as well as the insertion of
comparison nodes. If (s(n′) + 1) < cs(n′) still holds, we increase the value of
s(n′) by one, update a minimum set Eb(n′) of input edges to be broken, and
repeat Step (3.2).

Figure 14 shows the edge-break algorithm.
Example 6. We explain our edge-break algorithm using the example as shown in

Fig. 16 Output of our approach.

Fig. 13. We visit each operation node in the recomputation CDFG in the ascending order

of its control step, i.e., we visit “+1”,“+2”,“*1”,“+3”, “*2”, “*3”, “+4”, “+5”, and

“*4” in this order. From “+1” to “*3”, the operation nodes cannot be scheduled to an

earlier control step even if their input edges are broken. Then we focus on the operation

node “+4” in the recomputation CDFG (Step (3.1)). “+4” is now scheduled to CS7

(Fig. 15 (b)). Now we consider that we break the edge e′1 and “+4” uses the output

of “*2” in the normal computation CDFG. In this case, “+4” in the recomputation

CDFG can be scheduled to CS6 (Fig. 15 (c)). Since CS6 is earlier than CS7, we go to

the next step.

Now we insert the comparison node c to compare the output of “*2” in the normal

CDFG with the output of “*2” in the recomputation CDFG (Step (3.2)). c can be

scheduled to CS7. Since CS7 is equal to the original control step to which “+4” is

scheduled, then we actually break the edge e′1 and insert the comparison node c.

In the similar way, we visit the rest of the operation nodes in recomputation CDFG

and break its input edges. Since the operation node “+5” does not satisfy s(n′) < cs(n′),

we do not break its input edges. Since the operation node “*4” satisfies s(n′) < cs(n′)

and cs(c) ≤ cs(n′), we break its input edge. Figure 16 shows the output of our edge-

breaking algorithm applied to the recomputation CDFG shown in Fig. 13. As we can see

in Fig. 16, the overhead to schedule/bind the recomputation CDFG is just two control

steps, compared with scheduling/binding the normal CDFG only.

4. Experimental Results

We have implemented our algorithm in C++. We have used the Intel Xeon
3.0 GHz and 4 GB memory PC. We have applied our algorithm to FIR (75 nodes),
DCT (48 nodes), EWF (34 nodes), EWF3 (102 nodes), and PARKER (22 nodes

Table 2 Cost and delay of functional units.

Cost Delay [ns]
Adder (ADD) 1 1.32

Substractor (SUB) 1 1.33
Multiplier(MUL) 2 2.7

Comparator (COMP) 1 0.6
AND (AND) 1 0.03

Shifter (SHIFT) 1 0.55
Memory unit (MEM) 1 2.7
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Table 3 Experimental results (control Steps).

Normal CDFG only Wu’s approach 8) Our algorithm
Input #Islands Capacity Control Control #Inserted Time CPU time Control #Inserted Time CPU time
CDFG N × M constraint steps steps comparison nodes overhead [sec] steps comparison nodes overhead [sec]
DCT 2 × 2 2 14 29 12 107% 111 27 8 92% 110
DCT 2 × 3 2 13 47 36 261% 167 22 14 69% 164
EWF 1 × 2 2 19 35 9 84% 56 32 3 68% 56

PARKER 1 × 1 4 7 13 5 85% 28 13 4 85% 28
PARKER 1 × 2 2 9 14 5 55% 55 14 4 55% 55

EWF3 2 × 2 2 53 62 25 16% 122 61 14 15% 121
EWF3 2 × 3 2 53 60 11 13% 176 60 10 13% 176
FIR 2 × 3 2 24 64 51 166% 176 31 18 29% 165

Average — — 24 41 19 69% 111 33 9 35% 109

Table 4 Experimental results (area).

Input Algorithm Maximum area Area Controller #Regs #MUXs Allocated

CDFG island I(x, y) [µm2] Area [µm2] functional units

DCT Normal CDFG only (1,1) 10836 661 10 21 MUL

2 × 2 Wu’s approach 8) (2,2) 14110 1418 18 62 ADD ×2

Our algorithm (2,2) 13573 1409 15 65 ADD ×2

DCT Normal CDFG only (2,2) 8737 813 10 40 ADD ×2

2 × 3 Wu’s approach 8) (2,3) 13121 1528 10 73 ADD, COMP

Our algorithm (2,2) 9655 1059 10 46 ADD×2

EWF Normal CDFG only (1,1) 5750 289 2 3 MUL

1 × 2 Wu’s approach 8) (1,2) 13560 1319 14 46 ADD ×2

Our algorithm (1,2) 10511 1227 12 47 ADD ×2

PARKER Normal CDFG only (1,1) 4681 254 8 6 ADD ×2, SUB, COMP

1 × 1 Wu’s approach 8) (1,1) 10451 489 17 30 ADD ×2, SUB, COMP

Our algorithm (1,1) 8092 466 12 22 ADD ×2, SUB, COMP

PARKER Normal CDFG only (1,1) 2619 244 4 4 SUB, COMP

1 × 2 Wu’s approach 8) (1,2) 6577 446 13 14 ADD ×2

Our algorithm (1,1) 5771 340 8 20 SUB, COMP

EWF3 Normal CDFG only (1,2) 10297 1541 9 50 ADD ×2

2 × 2 Wu’s approach 8) (1,2) 18923 2279 15 105 ADD ×2

Our algorithm (1,2) 16854 2130 13 93 ADD ×2

EWF3 Normal CDFG only (1,2) 10297 1541 9 50 ADD ×2

2 × 3 Wu’s approach 8) (1,2) 11837 1668 7 68 ADD ×2

Our algorithm (1,2) 11167 1627 9 57 ADD ×2

FIR Normal CDFG only (1,1) 7089 428 5 6 MUL

2 × 3 Wu’s approach 8) (2,3) 16553 1792 11 109 ADD, COMP

Our algorithm (1,3) 8476 1105 7 35 ADD, MEM

including a branch node and a join node). Table 2 shows the cost and delay
time of FUs used. All of them are assumed to have 16-bit width under the 90 nm
technology node. We set the clock period to be 3 ns. We also set the wire delay
coefficient Cd = 1ns. Scheduling/binding of normal CDFGs and their functional

unit allocation are given by using MCAS 5).
We have compared required control steps between our algorithm and Wu’s

approach 8). Since Wu’s approach does not have a functional unit allocation
step, the functional unit allocation given by Step 2 of our algorithm is used.

IPSJ Transactions on System LSI Design Methodology Vol. 4 150–165 (Aug. 2011) c© 2011 Information Processing Society of Japan



163 A Fault-Secure High-Level Synthesis Algorithm for RDR Architectures

Fig. 17 Required control steps.

Fig. 18 Number of comparison nodes.

After that, recomputation CDFG is scheduled/bound by using Wu’s algorithm.
Table 3 and Table 4 show experimental results. Required control steps of

normal CDFG, Wu’s approach 8), and our algorithm are also shown in Fig. 17.
The number of inserted comparison nodes are shown in Fig. 18. The first to the
third columns of Table 3 show the input CDFG, the number of given islands, and
capacity constraint. Time overhead shows the increasing rate of required control

steps between the scheduling of only normal CDFG and scheduling of both nor-
mal and recomputation CDFGs. The first to the third columns of Table 4 show
input CDFG, an algorithm used, the island I(x, y) giving maximum area. The
fourth to the eighth columns of Table 4 show the area of I(x, y), controller area in
I(x, y), the number of registers, the number of multiplexers, and functional unit
allocation in I(x, y). These results demonstrate that our algorithm decreases up
to 53% control steps compared with Wu’s approach 8). The number of compar-
ison nodes inserted by edge-breaks is reduced by up to 66%. This is because
Wu’s approach 8) breaks all possible edges, but our approach considers the actual
scheduling/binding of comparison nodes. Our algorithm can reduce redundant
edge-breaks as well as insertion of comparison nodes. As Table 4 indicate, our
algorithm reduces the maximum island area compared with Wu’s approach. Our
algorithm reduces the number of required control steps as well as comparison
nodes, and thus reduces the required registers, MUXs and comparators.

5. Conclusion

In this paper, we proposed a fault-secure high-level synthesis algorithm for an
RDR architecture. As device feature size is decreased, there arise so many its
related problems. Our algorithm gives one of the solutions to these problems
by considering fault caused by soft errors on logic circuits and interconnection
delays. The experimental results show that our algorithm can reduce required
control steps by up to 53% compared with the conventional approach.

The fault-secure design of this paper duplicates the entire CDFG. In the future,
we need to determine subgraphs in the input CDFG necessary for fault-secure
design and perform fault-secure high-level synthesis only for them.
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