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Since target applications running on an embedded processor are much lim-
ited in embedded systems, we can optimize its cache configuration based on
the number of sets, block size, and associativities. An extremely fast cache
configuration simulation method, CRCB (Configuration Reduction approach
by the Cache Behavior), has been recently proposed which can calculate cache
hit/miss counts accurately for possible cache configurations when the three pa-
rameters above are changed. The CRCB method assumes LRU-based (Least
Recently Used-based) cache but many recent processors use FIFO-based (First
In First Out-based) cache or PLRU-based (Pseudo LRU-based) cache due to its
hardware cost. In this paper, we propose exact and fast L1 cache configuration
simulation algorithms for embedded applications that use PLRU or FIFO as
a cache replacement policy. Firstly, we prove that the CRCB method can be
applied not only to LRU but also to other cache replacement policies including
FIFO and PLRU. Secondly, we prove several properties for FIFO- and PLRU-
based caches and we propose associated cache simulation algorithms which can
simulate simultaneously more than one cache configurations with different cache
associativities accurately for FIFO or PLRU. Finally, many experimental results
demonstrate that our cache configuration simulation algorithms obtain accu-
rate cache hit/miss counts and run up to 249 times faster than a conventional
cache simulator.

1. Introduction

Recently, memory access speed has much increased but does not catch up
with the processing performance in embedded processors, i.e., memory access
speed limits overall the processing performance. By introducing a cache and
constructing a memory hierarchy, we can bridge the gap between the processing
performance and the memory access speed.
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Cache memory access speed cannot increase as expected unless the cache is
properly configured. It cannot reach to the required speed if we use a too small
cache configuration. It will have extra power consumption and extra cost if we
use a too much large cache configuration. Since application programs running
on embedded processors are limited unlike those on general-purpose processors,
embedded processors can be optimized for a particular application program. In
particular, cache configuration can be optimized in terms of speed and power.
Counting cache hits/misses is the important key to configure such an application-
driven cache accordingly.

Cache configuration is parameterized by the number of sets, block size, and
associativity�1. Cache configuration is also characterized by its cache replacement
policy, that is an algorithm when and where a datum is stored to and discarded
from a cache set. Practical processors use LRU-based (Least Recently Used-
based) cache, FIFO-based (First In First Out-based) cache, and PLRU-based
(Pseudo LRU-based) cache. If a processor uses an LRU cache whose associativity
is large, its hardware cost increases too much. On the other hand, FIFO and
PLRU can be implemented with low hardware cost even if its associativity is
large. Many practical processors, such as PowerPC PPC755 and x86 processors,
use FIFO or PLRU rather than LRU.

There are roughly two types of cache hit/miss measuring methods: The first
ones just calculate and estimate cache hit/miss counts based on cache behav-
ior 4),11). The second ones simulate memory accesses and obtain cache hit/miss
counts accurately 8),9),12),13). The first ones run very fast but may have large
errors in cache hit/miss counts. The second ones are accurate but time con-
suming. This paper targets the second approach, a simulation-based approach.
In simulation-based cache hit/miss measuring, we take the following approach:
When an application program runs on a single-core in-order processor, memory

�1 Our target cache here is a single-level cache configuration parameterized by the number
of sets, block size, and associativity. In this sense, our proposed algorithm here cannot
directly be applied to a multi-level cache which includes cache parameters more than a
single-level cache. But, even if a multi-level cache, such as L1/L2-cache and L1/L2/L3-
cache, is given, our proposed algorithm can be applied to each one of the cache levels. For
example, our proposed algorithm can be applied to L2 cache configuration simulation if L1
cache configuration is completely fixed in L1/L2-cache.
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access sequence from the processor is independent of a particular cache config-
uration. This means that cache configurations can be independent of memory
access history to a main memory. Using this memory access history, we can sim-
ulate cache hit/miss counts in various cache configurations. However, simulating
cache hits/misses takes too much time and boosting up the cache configuration
simulation is the most important key there.

Several cache configuration simulation methods have been reported. Partic-
ularly, the CRCB (Configuration Reduction approach by the Cache Behavior)
method 13) runs 205 times faster than a naive exhaustive approach. However it
assumes only LRU as a cache replacement policy and it is not proved that it can
be applied to FIFO and/or PLRU.

In this paper, we propose exact and fast L1 instruction/data cache configura-
tion simulation algorithms for embedded applications that use PLRU or FIFO
as a cache replacement policy. Firstly, we prove that the CRCB method can be
applied not only to LRU but also to other cache replacement policies including
FIFO and PLRU. Secondly, we prove several properties for FIFO- and PLRU-
based caches and we propose associated cache simulation algorithms which can
simulate simultaneously more than one cache configurations with different cache
associativities accurately for FIFO or PLRU. Finally, many experimental results
demonstrate that our cache configuration simulation algorithms obtains accurate
cache hit/miss counts and runs up to 249 times faster than a conventional cache
simulator.

This paper is organized as follows: Section 2 introduces the two cache configu-
ration simulation methods: the Janapsatya method and the CRCB method, both
of which assume LRU as a cache replacement policy. Furthermore, we prove that
the Janapsatya method cannot be applied to FIFO nor PLRU; Section 3 explains
several properties in the CRCB method and proves that the CRCB method can
be applied to cache replacement policies including FIFO and PLRU; Section 4
proves several properties related to FIFO and proposes its associated fast and ex-
act cache configuration simulation algorithm. Section 5 proves several properties
related to PLRUt, one of the most typical PLRU cache replacement policies, and
proposes its associated fast and exact cache configuration simulation algorithm.
Section 6 gives concluding remarks and future works.

2. Fast Cache Configuration Simulation

Cache configuration is parameterized by the number of sets, block size, and
associativity. We assume one of the three cache replacement policies, LRU, FIFO,
and PLRU. Each set in a cache is represented by a priority queue and the number
of sets shows the number of these priority queues. The block size is the smallest
unit of data. Associativity shows the number of elements in each priority queue.
Each element in a priority queue contains a cache tag. Let c = (s, b, a) be a cache
configuration where the number of sets is s, block size is b, and associativity is a.
Then the tag, index, and offset for a memory address A is given as in Fig. 1. Let
S(c, i) and S(c, i)j be the i-th set or priority queue on c and the element whose
priority is j in S(c, i), where j = 0, · · · , (a − 1). For example, if c = (16, 16, 4)
and A = 1010 1010 0000 0000 are given, its tag becomes 1010 1010 and its index
becomes 0000. The set indicated by S(c, 0000) and the elements indicated by
S(c, 0000)3 are shown in Fig. 2. In this case, A is hit at S(c, 0000)3.

Let s0 and b0 be the minimum number of sets and the minimum block size,
respectively. Let sm, bm, and am be the maximum number of sets, the maximum
block size, and the maximum associativity, respectively. Then we explore cache
configurations (s, b, a) where

s = s0, 2s0, 4s0, . . . , sm (1)
b = b0, 2b0, 4b0, . . . , bm (2)
a = 1, 2, 3, . . . , am (3)

A naive exhaustive algorithm for cache simulation for a particular cache con-
figuration c = (s, b, a) and a particular memory address A is shown as follows:
[Exhaustive cache configuration simulation algorithm]
1) The memory address A is partitioned into its tag t, index i, and offset o. Calculate

Fig. 1 Tag, index and offset.
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Fig. 2 S(c, 0000), S(c, 0000)1 and S(c, 0000)3.

S(c, i) by using c and i.
2) Check whether the priority queue S(c, i) contains the tag t or not.
3) If S(c, i) contains t at Step 2), a cache hit occurs on c for A and update S(c, i) according

to the cache replacement policy.
4) If S(c, i) does not contain t on Step 2), a cache miss occurs on c for A. Add t into S(c, i)

and update it according to the cache replacement policy.

Step 1), Step 3) and Step 4) require O(1) hit/miss check counts. Step 2) checks
one by one a maximum of a elements and then Step 2) requires O(a) hit/miss
check counts. This means that a cache simulation for a memory address A on a
cache configuration c requires O(a) hit/miss check counts.

We repeat the above Step 1)–Step 4) for all the memory accesses and for all the
possible cache configurations. Since the possible cache configurations are given by
Eqs. (1)–(3), the number of cache configurations becomes O(lg sm × lg bm × am).
Let n be the number of total memory accesses. Then the exhaustive algorithm
requires totally O(n × lg sm × lg bm × a2

m) hit/miss check counts.
In 2006, Janapsatya, et al. 9) first proposed an extremely boosting up approach

for the exhaustive algorithm. Their approach is based on LRU-based cache
and runs up to 45 faster than the exhaustive-based approach which is called
Dinero IV 3). In 2009, Tojo, et al. 13) proposed the CRCB method for further

Fig. 3 The Janapsatya’s method. It only checks the cache configuration with maximum
associativity.

boosting up the Janapsatya’s method. It is also based on LRU-based cache.
Combined Janapsatya’s method and CRCB method runs up to 3.3 times faster
than Janapsatya’s method only and 205 times faster than the exhaustive algo-
rithm. As far as we know, this is the fastest approach for cache configuration
simulation�1.

In the rest of this section, we first prove that Janapsatya’s method can run
based on LRU but it cannot run based on other cache replacement policies such
as FIFO and PLRU. After that, we review the CRCB method very briefly.

2.1 Janapsatya’s Method
The Janapsatya’s method 9) is a fast cache configuration simulation method

which can be applied to LRU. It can simulate am cache configurations simul-
taneously by just simulating a single cache configuration c = (s, b, am). In the
LRU-based priority queue, we assume that the most-recent-used tag has the
priority zero, the second most-recent-used tag has the priority one, and the least-
recent-used tag has the priority (am − 1).

Let us focus on the i-th set S(c0, i) on an LRU-based cache c0 = (s, b, 2) whose

�1 Recently, Haque, et al. 5)–7) proposed the cache configuration simulation algorithms SuS-
eSim, DEW, and SCUD for LRU-based and FIFO-based L1 cache configuration simulation.
However, overall cache configuration simulation including the three parameters of the num-
ber of sets, block size, and associativity is not discussed 5)–7). In that sense, we can say that
combined Janapsatya’s method and CRCB method is still the fastest one for LRU-based
L1 cache simulation.
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Fig. 4 Janapsatya’s method cannot be applied to FIFO. In (f), the smaller cache set is no longer included in the larger cache set.

associativity is two. Let us also focus on the i-th set S(c1, i) on an LRU-based
cache c1 = (s, b, 4) whose associativity is four. Figure 3 shows the priority
queues S(c0, i) and S(c1, i) and their associated priorities. As Fig. 3 shows, the
tag 0000 0100 is used the most recently and 0000 0011 is used the second most
recently. Assuming LRU as a cache replacement policy, if a cache hit occurs on
c0 at the tag of priority 0, then a cache hit also occurs on c1 at the tag of priority
0. If a cache miss occurs on c1, a cache miss also occurs on c0. Even if a cache
hit occurs on c1 at the tag of priority 2 or priority 3, a cache miss occurs on c0.
If the number s of sets and block size b are fixed, we can accurately count cache
hits/misses for every cache associativity (s, b, a) for a = 1, 2, . . . , am − 1 by just
simulating a cache configuration (s, b, am). This means that we can skip cache
configuration simulations for (s, b, a) for a = 1, 2, . . . , am − 1. This property is
summarized as follows:
Property 1. If a memory access causes a cache miss on a cache configuration
(s, b, a), it also causes a cache miss on every cache configuration (s, b, a′) where
a′ = 1, 2, 3, . . . , a − 1. If a memory access causes a cache hit on a cache config-
uration (s, b, a), it also causes a cache hit on every cache configuration (s, b, a′)
where a′ = (a + 1), (a + 2), . . . , am.

Janapsatya’s method is based on Property 1. Janapsatya’s method reduces the
cache hit/miss check counts from O(n × lg sm × lg bm × a2

m) to O(n × lg sm ×
lg bm × am). LRU-based caches satisfy Property 1 but we have the following

theorem:
Theorem 1. A FIFO-based cache does not satisfy Property 1.

Proof. We show the counterexample. Let us consider a memory access sequence of
Ai (i = 1, . . . , 7) below on FIFO-based cache configurations c0 = (16, 16, 2) and c1 =
(16, 16, 4).

( 1 ) A1 = 0000 0001 1000 0000
( 2 ) A2 = 0000 0010 1000 1000
( 3 ) A3 = 0000 0011 1000 0100
( 4 ) A4 = 0000 0100 1000 0010
( 5 ) A5 = 0000 0001 1000 0001
( 6 ) A6 = 0000 0101 1000 0001
( 7 ) A7 = 0000 0001 1000 0010

The cache set index of all these memory accesses Ai is the same and it is 1000. If a
cache hit occur on c0 or c1, its tag must be stored in the set S(c0, 1000) or S(c1, 1000).
Figure 4 shows the contents of the sets S(c0, 1000) and S(c1, 1000) for these seven
memory accesses. Just before the memory access A7 occurs (see Fig. 4 (f)), the set
S(c0, 1000) contains 0000 0001 and 0000 0101 and the set S(c1, 1000) contains 00000010,
00000011, 00000100, and 00000101. If A7 is given, we can have a cache hit on c0 but
a cache miss on c1 even though c0 is smaller than c1. A FIFO-based cache does not
satisfy the Property 1 above.

We can say similarly that a PLRUt-based cache, one of the PLRU-based caches,
does not satisfy Property 1 either.
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2.2 CRCB Method
The CRCB method 13) is also a fast cache configuration simulation method

which can be applied to LRU. By using the general cache properties, the CRCB
method skips several cache configuration simulations but obtains their cache
hit/miss counts correctly. The CRCB method is composed of CRCB-1 and
CRCB-2 summarized as follows:

CRCB-1: If a memory access causes a cache hit on a cache configuration (s, b, 1),
it also causes a cache hit on every cache configuration (s′, b, a′) where s′ =
s, 2s, 4s, . . . , sm and a′ = 1, 2, 3, . . . , am. In this case, we can skip these cache
configuration simulations (s′, b, a′).

CRCB-2: Let Ai−1 and Ai be the two consecutive memory accesses. If their indexes
are identical on a cache configuration (s, b, a) and also their tags are identical on
(s, b, a), a cache hit always occurs on (s′, b′, a′) for Ai where s′ = s, 2s, 4s, . . . , sm,
b′ = b, 2b, 4b, . . . , bm, and a′ = 1, 2, . . . , am.

If we use both Janapsatya’s method and CRCB method, cache hit/miss check
counts are reduced to O(n× S ×B × am) where S ≤ lg sm and B ≤ lg bm. lg sm

and lg bm can be reduced to S and B by reducing several cache configurations
by the CRCB method.

As we have mentioned earlier, the CRCB method realizes the world fastest
cache simulation. Then we try to apply it to FIFO- or PLRU-based cache simu-
lation. In the next section, we prove that the CRCB method can be applied not
only to LRU but also to FIFO and PLRUt.

3. Properties in the CRCB Method and the Cache Replacement
Policies to which the CRCB Method can be Applied

The CRCB method uses the following two properties assuming LRU as a cache
replacement policy:
Property 2. If a memory access causes a cache hit on a cache configuration
(s, b, 1), it also causes a cache hit on every cache configuration (s′, b, a′) where
s′ = s, 2s, 4s, . . . , sm and a′ = 1, 2, 3, . . . , am.
Property 3. Let Ai−1 and Ai be the two consecutive memory accesses. If their
indexes are identical on a cache configuration (s, b, a) and also their tags are
identical on (s, b, a), a cache hit always occurs on (s′, b′, a′) for Ai where s′ =

s, 2s, 4s, . . . , sm, b′ = b, 2b, 4b, . . . , bm, and a′ = 1, 2, . . . , am.
CRCB-1 uses Property 2 and CRCB-2 uses Property 3. Property 2 is further

partitioned into the following two sub-properties.

Sub-property 2-1: If a memory access causes a cache hit on a cache configuration
(s, b, 1), it also causes a cache hit on every cache configuration (s′, b, 1) where s′ =
s, 2s, 4s, . . . , sm.

Sub-property 2-2: If a memory access causes a cache hit on a cache configuration
(s, b, 1), it also causes a cache hit on every cache configuration (s, b, a′) where a′ =
1, 2, 3, . . . , am.

Property 3 is further partitioned into the following two sub-properties.

Sub-property 3-1: Let Ai−1 and Ai be the two consecutive memory accesses. If
their indexes are identical on a cache configuration (s, b, a) and also their tags
are identical on (s, b, a), their indexes are identical on every cache configuration
(s′, b′, a′) and also their tags are identical on (s′, b′, a′) where s′ = s, 2s, 4s, . . . , sm,
b′ = b, 2b, 4b, . . . , bm, and a′ = 1, 2, . . . , am.

Sub-property 3-2: Let Ai−1 and Ai be the two consecutive memory accesses. If
their indexes are identical on a cache configuration (s, b, a) and also their tags are
identical on (s, b, a), a cache hit always occur on (s, b, a) for Ai.

Tojo, et al. 13) proves Property 2, Property 3, Sub-property 2-1, Sub-property 2-
2, Sub-property 3-1 and Sub-property 3-2 assuming LRU as a cache replacement
policy.

Now let us focus on a very simple cache replacement policy which just satisfies
Property 4 below:
Property 4. Let Aj and Ak be any two memory accesses to a cache c = (s, b, a)
such that:

i) the indexes of Aj and Ak are identical on c, i.e., the tags of these two memory
addresses are inserted into the identical cache set S(c, i) in c,

ii) the memory access Ak occurs after the memory access Aj occurs, and
iii) there are no cache accesses to S(c, i) between Aj and Ak.

Then, the following two points are satisfied:

a) After the memory access of Aj occurs, the tag of Aj remains in S(c, i) until the
memory access Ak occurs.

b) If the tags of Aj and Ak are identical, we have a cache hit for Ak when the memory
access Ak occurs and we do not need to update the priority queue representing
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Fig. 5 An example of FIFO-based cache behavior when Property 4 is satisfied.

S(c, i) at this time.

Assume that we have a memory access sequence of Ai (i = 1, . . . , 5) below
assuming a cache configuration (16, 16, 2):

( 1 ) A1 = 0000 1111 0001 0000
( 2 ) A2 = 0000 0010 1000 0000
( 3 ) A3 = 0000 0100 1001 0000
( 4 ) A4 = 0000 1111 0001 0000
( 5 ) A5 = 0000 1000 1010 0000

Both of A1 and A4 have cache set index of 0001. A2 has cache set index of
1000 and A3 has cache set index of 1001. Property 4 focuses on the two memory
accesses A1 and A4 whose cache set index is the same but there are no cache
accesses to the cache set indexed by 0001 between them. For these two cache
accesses, Property 4 claims that:
a) After the memory access of A1 occurs, the tag of A1, 0000 1111, remains

in the cache set indexed by 0001 until the memory access A4 occurs.
b) If the memory access A4 occurs, we have a cache hit for A4 and we do not

need to update the cache set indexed by 0001 at this time.
In this case, Property 4 also claims that a cache replacement policy satisfying
Property 4 does not disturb nor update the cache set indexed by 0001 while the
memory accesses A2 and A3 occur.

Assume that we consider FIFO as a cache replacement policy and the above
memory access sequence of Ai (i = 1, . . . , 5) are given. Figure 5 shows the cache
behavior in this case. In FIFO-based cache, the tag of A1 remains in the cache
set indexed by 0001 until the memory access A4 occurs and no update is required
there. The memory accesses A2 and A3 do not disturb the cache set indexed by
0001.

Now we focus on a cache replacement policy satisfying Property 4�1. Property 4
is a very natural cache behavior but it satisfies the following very strong theorem:
Theorem 2. If a cache replacement policy satisfies Property 4, the cache re-
placement policy also satisfies Property 2 and Property 3.

First we prove that a cache replacement policy which satisfies Property 4 also
satisfies Sub-property 2-1, Sub-property 2-2, Sub-property 3-1 and Sub-property
3-2.

Proof. (Sub-property 2-1) We focus on a cache configuration c = (s, b, 1). Let Aj and
Ak be two memory accesses, whose indexes are identical on c. The tags of these two
memory addresses are inserted into the identical cache set S(c, i). We assume that the
memory access Ak occurs after the memory accesses Aj occurs and that there are no
cache accesses to S(c, i) between Aj and Ak.

�1 There may be cache replacement policies which do not satisfy Property 4. For example,
the tag of A1 may not remain in the cache set indexed by 0001, or the memory access of
A2 and/or A3 may disturb the cache set indexed by 0001 in the above example there. We
only focus on here a cache replacement policy satisfying Property 4.
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We further assume that the memory access Ak causes a cache hit in S(c, i). According
to Property 4, the tag of Aj remains in S(c, i) until the memory access Ak occurs. Since
the associativity of the cache c is one, S(c, i) has a single tag, which must be the tag of
Aj . Thus the tag of Ak must be the same as the tag of Aj .

Since the tags of Aj and Ak are identical and indexes of Aj and Ak are identical on
(s, b, 1), the tags of Aj and Ak are identical and indexes of Aj and Ak are identical on
(s′, b, 1) where s′ = s, 2s, . . . , sm. The tags of these two memory addresses are inserted
into the identical cache set S(c′, i′) on c′ = (s′, b, 1). Since there are no cache accesses
to S(c′, i′) between Aj and Ak, we also have a cache hit for Ak in S(c′, i′) according to
Property 4.

In summary, if a memory access causes a cache hit on a cache configuration (s, b, 1), it
also causes a cache hit on every cache configuration (s′, b, 1) where s′ = s, 2s, 4s, . . . , sm.
A cache replacement policy satisfying Property 4 also satisfies Sub-property 2-1.

Proof. (Sub-property 2-2) We focus on a cache configuration c = (s, b, 1). Let Ak and
Aj be two memory accesses, whose indexes are identical on c, as in the proof of Sub-
property 2-1. Then, the tag of Ak must be the same as the tag of Aj . Since the tags
of Aj and Ak are identical and indexes of Aj and Ak are identical on (s, b, 1), the tags
of Aj and Ak are identical and indexes of Aj and Ak are identical on (s, b, a′) where
a′ = 1, 2, . . . , am. The tag of these two memory addresses are inserted into the identical
cache set S(c′, i′) on c′ = (s, b, a′). Since there are no cache accesses to S(c′, i′) between
Aj and Ak, we have a cache hit for Ak in S(c′, i′) according to Property 4.

In summary, a cache replacement policy satisfying Property 4 also satisfies Sub-
property 2-2.

Proof. (Sub-property 3-1) Let Ai−1 and Ai be the two consecutive memory accesses
with l bits. If their indexes are identical on a cache configuration (s, b, a) and also
their tags are identical on (s, b, a), (l − lg b) bits from the MSB of Ai−1 and Ai are
identical. Then (l − lg b′) bits from the MSB of Ai−1 and Ai are also identical on
(s′, b′, a) where s′ = s, . . . , sm and b′ = b, . . . , bm. This means that the tags of Ai−1

and Ai are identical and indexes of Ai−1 and Ai are also identical on (s′, b′, a′) where
s′ = s, . . . , sm, b′ = b, . . . , bm, and a′ = 1, 2, · · · , am. This is also true if we assume any
cache replacement policy satisfying Property 4. We can say that a cache replacement
policy satisfying Property 4 also satisfies Sub-property 3-1.

Proof. (Sub-property 3-2) Let Ai−1 and Ai be the two consecutive memory accesses.
If their indexes are identical on any cache configuration (s, b, a) and also their tags are
identical on (s, b, a), we can clearly say that a cache hit always occurs on (s, b, a) for Ai

if we assume any cache replacement policy satisfying Property 4. We can also say that
a cache replacement policy satisfying Property 4 also satisfies Sub-property 3-2.

Since it is quite clear that Sub-property 2-1 and Sub-property 2-2 lead to

Property 2 and Sub-property 3-1 and Sub-property 3-2 lead to Property 3, all of
the above proofs give us the proof of Theorem 2. This means that we can use the
CRCB method assuming any cache replacement policy satisfying Property 4.

Since Property 4 is a very natural property for a cache, not only LRU but also
FIFO and PLRU satisfy Property 4. We can use the CRCB method even when
we assume FIFO or PLRU as a cache replacement policy. If we use the CRCB
method assuming FIFO or PLRU, its cache hit/miss check counts reduces to
O(n×S×B×a2

m), where S≤ lg sm and B≤ lg bm. We expect that we can simulate
cache configurations very fast even if they use FIFO or PLRU.

Now let us discuss how the maximum number sm of sets, maximum block
size bm, and maximum associativity am affect the cache simulation speed in the
CRCB method, assuming the minimum number s0 of sets, minimum block size
b0, and minimum associativity of one are fixed.
CRCB-1: Since the CRCB-1 method is independent of block size, bm cannot

affect the cache simulation speed in CRCB-1. On the other hand, CRCB-1
can reduce more cache configuration simulations if sm and am become larger
as in Property 2.

CRCB-2: As Property 3 indicates, CRCB-2 can reduce more cache configura-
tion simulations if sm, bm, and am become larger.

Overall the cache simulation speed using the CRCB method can be affected by
sm, bm, and am but how much the simulation speed will be increased is heavily
dependent on the simulation environment such as memory access histories and
simulation computers.

The Janapsatya’s method groups cache sets with different associativities and
execute cache simulation simultaneously for them. On the other hand, the CRCB
method itself does not group cache sets and thus cannot execute cache simulation
simultaneously for them. If we can group several cache sets in FIFO- or PLRU-
based cache, we can boost up cache configuration simulation furthermore. In
Section 4 and Section 5, we propose a boosting up cache configuration simulation
strategy by grouping several cache sets, assuming FIFO and PLRU, respectively.
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4. Boosting up Cache Configuration Simulation based on FIFO as
a Cache Replacement Policy

A cache replacement policy determines the behavior of the priority queue rep-
resenting each set in a cache. Let a be an associativity of a cache. Then each
priority queue representing a cache set contains at most a elements. FIFO means
first-in-first-out and data in each priority queue are replaced in a first-in-first-out
fashion. Figure 6 shows an example of a priority queue when we have memory
access sequences of D, C, B, and A. When D is inserted into a cache, D is the
most IN-side. As C, B, and A are inserted into the priority queue, D is moved
upward one by one to the OUT-side.

In this section, we propose a boosting up algorithm for cache configuration
simulation assuming FIFO as a cache replacement policy.

4.1 Skipping the Priority Queue Update When its Behavior is the
Same

Now let us focus on two cache configurations c0 = (s, b, a0) and c1 = (s, b, a1),
where the number of sets s is identical, their block size b is also identical, but
their associativity is different (a0 < a1). S(c0, i) shows a priority queue on c0

whose index is i. As discussed in Section 2, the tag which is the most IN-side
in S(c0, i) has the priority zero. The tag which is the second most IN-side in
S(c0, i) has the priority one. The tag which is the most OUT-side in S(c0, i) has
the priority (a0 − 1). Figure 7 shows an example of priorities. In this figure, D
is inserted first. Then C, B, and A are inserted in this order.

Fig. 6 The behavior of FIFO queue with associativity of four.

We assume here that all the tags in a priority queue S(c0, i) are included in a
priority queue S(c1, i) and their priorities are also identical in both S(c0, i) and
S(c1, i). In this case, we denote c0 ⊂

i
c1, i.e., c0 is included in c1 at index i. In

other words, if S(c0, i)j is equal to S(c1, i)j for 0≤j≤(a0 − 1), we denote c0 ⊂
i

c1.
Each of Figs. 8 (a) and (b) shows the two cache sets for two cache configurations
c0 = (s, b, 2) and c1 = (s, b, 4).

Figure 8 (a) shows the two cache sets S(c0, 0101) and S(c1, 0101) where c0 =
(s, b, 2) and c1 = (s, b, 4). Figure 8 (b) shows the two cache sets S(c0, 1111) and
S(c1, 1111) where c0 = (s, b, 2) and c1 = (s, b, 4). Figure 8 (a) focuses on the
cache set index 0101. Figure 8 (b) focuses on the cache set index 1111. In case
of Fig. 8 (a), we have c0 ⊂

0101
c1, but in case of Fig. 8 (b), we have c0 �⊂

1111
c1.

Let A be a memory access whose tag is tag and its index is i. Let c0 = (s, b, a0)
and c1 = (s, b, a1) be two cache configurations assuming FIFO and c0 ⊂

i
c1 holds

true for them. Then we have the following properties:
Property 5. When tag is hit at S(c1, i)j and j < a0, we also have a cache hit
on c0 and c0 ⊂

i
c1 still holds. When tag is hit at S(c1, i)j and a0 ≤ j < a1, we

have a cache miss on c0 and we have c0 �⊂
i

c1.

Proof. When tag is hit at S(c1, i)j and j < a0, it is also hit at S(c0, i)j since S(c0, i)j =
S(c1, i)j . When we have a cache hit on c0 and c1, we do not have to update its priority
queues since we assume FIFO. Then c0 ⊂

i
c1 still holds true.

When tag is hit at S(c1, i)j and a0 ≤ j < a1, it is not at S(c0, i)k for 0≤k < a0.
We will have a cache miss on c0. Since tag has to be inserted into c0, we have priority

Fig. 7 Priorities in the FIFO queue. Fig. 8 (a) c0 ⊂
0101

c1 and (b) c0 �⊂
1111

c1.
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queue update in c0. Then we have c0 �⊂
i

c1.

Property 6. When we have a cache miss for tag on c1, we also have a cache
miss for tag on c0 but c0 ⊂

i
c1 holds true.

Proof. Since we have a cache miss for tag on c1, we do not have tag at S(c1, i)j where
0≤j < a1. Since S(c0, i)j = S(c1, i)j for j < a0, we do not have tag on c0.

Since we have a cache miss on both c0 and c1, the priority queues indexed by i are
updated and c0 ⊂

i
c1 still holds.

Based on Properties 5 and 6, we can skip priority queue checking and updating
in c0 by just checking and updating priority queues in c1 if c0 ⊂

i
c1 holds true.

Figure 9 shows how we can skip priority queue checking and updating. In this
figure, we consider two cache configurations c0 and c1 and their two priority
queues with index i, S(c0, i) and S(c1, i), where c0 ⊂

i
c1. S(c0, i) has two ways

and S(c1, i) has four ways. When B is accessed, we only perform checking and
updating of S(c1, i) and skip checking and updating of S(c0, i). In this case,
c0 ⊂

i
c1 holds. Similarly, when E is accessed, we only perform checking and up-

dating of S(c1, i) and skip checking and updating of S(c0, i). In this case, c0 ⊂
i

c1

holds. When C is accessed, we first check S(c1, i) and have a cache hit at the
tag of priority two. Since we know that this tag is never included in S(c0, i), we
have a cache miss on S(c0, i) without checking it. S(c0, i) must be updated so
that C is inserted into it. After that, we have c0 �⊂

i
c1.

Note that c0 ⊂
i

c1 holds true if we have a cache hit on both c0 and c1 and we
have a cache miss on both c0 and c1. Otherwise, we cannot guarantee c0 ⊂

i
c1.

We can also see that Properties 5 and 6 are a generalized version of Property
1. In other words, Property 1 is a very special case of ours which can be applied
only to LRU-based cache.

4.2 The Algorithm
Based on Properties 5 and 6, we propose a boosting up algorithm for cache

configuration simulation assuming FIFO as a cache replacement policy.
Let C(s, b) = {(s, b, a) | s and b are fixed and a = 1, 2, · · · , am} be a set of cache

configurations whose cache set size and block size are identical but their asso-
ciativity is different. Let SS(i) = {S(c, i) | c ∈ C(s, b)} be a set of cache sets

Fig. 9 Skipping cache configurations.

whose index is i in C(s, b). SS(i) is partitioned into several cache set groups
SS(i)1, SS(i)2, · · · as follows:
(1) For any cache configuration c0 ∈ C(s, b), there exists a group which contains

S(c0, i).
(2) For any two cache configurations c0, c1 ∈ C(s, b), if c0 ⊂

i
c1, S(c0, i) and

S(c1, i) are in the same group.
Figure 10 shows an example of cache set groups. First, we assume that am = 4
and consider C(s, b) = {c0 = (s, b, 1), c1 = (s, b, 2), c2 = (s, b, 3), c3 = (s, b, 4)}.
Then we have SS(i) = {S(c0, i), S(c1, i), S(c2, i), S(c3, i)} as in Fig. 10. Since we
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Fig. 10 Cache set groups.

have c0 ⊂
i

c1, c1 ⊂
i

c2, and c0 ⊂
i

c2, S(c0, i), S(c1, i) and S(c2, i) are included in the
same group SS(i)0. SS(i)1 includes only S(c3, i). According to Properties 5 and
6, the priority queue S(c2, i) whose size is maximum can represent all the priority
queue behaviors in SS(i)0. This means that we only construct a data structure
for the priority queue S(c2, i) in SS(i)0.

Based on the above discussion, we first construct a single group SS(i)0 in which
all the cache sets with index i is included, since no tags are inserted into priority
queues first and c0 ⊂

i
c1 is satisfied for any two cache sets S(c0, i) and S(c1, i).

Then this single group is partitioned into several groups every time the condition
(2) above is not satisfied. In each group, we only check and update the priority
queue whose size is maximum.

We propose a cache-set-group based algorithm as follows:
[Cache-set-group based cache configuration simulation algorithm with CRCB]
1) Generate a single cache set group including all the cache sets in SS(i) = {S(c, i) | c ∈

C(s, b)} for each number of sets s, block size b, and cache set index i.
2) For each memory access A, initialize the block size b to be b0, the number of sets s to

be s0, and associativity a to be two.
3) If we can skip the block size b by applying CRCB-2, go to Step 10).
4) Based on CRCB-1, if we have a cache hit for A on (s, b, 1), go to Step 9) since we can

skip every cache configuration (s′, b, a′) where s′ = s, 2s, ..., sm and a′ = 1, 2, ..., am.
5) Let S(c, i) in c = (s, b, a) be a cache set that we have to check. Check cache hits/misses

in the maximum-size priority queue Q in the cache set group including S(c, i).
If cache hit occurs, go to Step 6).
If cache miss occurs, update Q and go to Step 7).

6) If a cache hit occurs at priority j in Q, we always have a cache hit in (s, b, a′) for j < a′
and skip cache hit/miss checks for them.
In this case, we always have a cache miss in (s, b, a′) for a′≤j. Partition the cache set
group and update their priority queues accordingly.

7) Let a to be the maximum size in the cache set group plus one.
If the new (s, b, a) is within the cache configuration range, go to Step 5).

8) a← 2 and s← 2s.
If the new (s, b, a) is within the cache configuration range, go to Step 4).

9) s← s0 and b← 2b.
If the new (s, b, a) is within the cache configuration range, go to Step 3).

10) If there is a next memory access, go to Step 2). Otherwise, stop.

Our cache-set-group based algorithm itself reduces a cache hit/miss check
counts from O(n×lg sm×lg bm×a2

m) to O(n× lg sm× lg bm×am×A) where A≤am.
Combined CRCB method and our cache-set-group based algorithm reduces it to
O(n×S×B×am×A) where S≤ lg sm, B≤ lg bm and A≤am.

Now let us discuss how the maximum number sm of sets, maximum block
size bm, and maximum associativity am affect the cache simulation speed in
our proposed cache-set-group based algorithm (excluding the CRCB method),
assuming the minimum number s0 of sets, minimum block size b0, and minimum
associativity of one are fixed.
Cache-set-group based algorithm: Since our cache-set-group based algo-

rithm is independent of the number of sets and block size, sm and bm cannot
affect the cache simulation speed in the CSG algorithm. On the other hand,
the CSG algorithm can group more cache sets in a single group if am becomes
larger as in Properties 5 and 6.

Overall the cache simulation speed using the CSG algorithm can be affected by
am but how much the simulation speed will be increased is heavily dependent
on the simulation environment such as memory access histories and simulation
computers.

4.3 Experimental Evaluations
We have implemented our cache-set-group based algorithm in the C++ lan-

guage on AMD 1.3 GHz CPU and 16 GB memory PC. We have obtained cache
hit/miss counts for FIFO-based cache configurations by using Dinero IV 3), the
CRCB method (CRCB), and combined CRCB method and our cache-set-group
based algorithm (CRCB+CSG). Dinero IV is a cache simulator based on an ex-
haustive approach which checks cache hits/misses for a given cache configuration
and memory access history. Dinero IV can be applied to LRU-based caches as
well as FIFO-based caches. Note that, since we have proved that the CRCB
method can be applied to FIFO-based caches in Section 3, it can be applied to
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Table 1 Experimental comparisons 1 (FIFO-based cache configuration simulation).

Dinero IV CRCB CRCB+CSG

CPU time Hit/miss check CPU time Hit/miss check CPU time Hit/miss check
[sec] counts [million] [sec] counts [million] [sec] counts [million]

ADPCM E 67 (1) 235 (1) 1.01 (0.015) 12 (0.051) 0.96 (0.014) 9 (0.038)
ADPCM D 68 (1) 228 (1) 1.04 (0.015) 12 (0.053) 0.98 (0.014) 10 (0.043)

ADPCM E (I) 669 (1) 4,796 (1) 4.83 (0.007) 58 (0.012) 4.30 (0.006) 38 (0.0079)

JPEG E 666 (1) 8,678 (1) 9.28 (0.014) 246 (0.028) 8.92 (0.013) 237 (0.027)
JPEG D 156 (1) 821 (1) 3.51 (0.023) 94 (0.11) 3.23 (0.021) 89 (0.11)

EPIC E 1,047 (1) 13,467 (1) 28.82 (0.028) 786 (0.058) 26.54 (0.025) 710 (0.053)
EPIC D 224 (1) 1,495 (1) 8.89 (0.040) 277 (0.19) 7.95 (0.035) 241 (0.16)

G721 E 5,833 (1) 66,465 (1) 29.80 (0.005) 423 (0.0064) 28.81 (0.005) 413 (0.0062)
G721 D 5,980 (1) 69,251 (1) 29.31 (0.005) 388 (0.0056) 28.64 (0.005) 379 (0.0055)

Table 2 Hit/miss counts (FIFO-based cache configuration simulation).

Dinero IV CRCB+CSG

Cache cache hit cache miss cache hit cache miss
configuration counts counts counts counts

JPEG E (32,8,1) 3,597,258 1,587,745 3,597,258 1,587,745
(32,1024,8) 5,184,812 191 5,184,812 191

(1024,256,16) 5,184,292 711 5,184,292 711

G721 E (32,8,1) 39,293,727 8,608,067 39,293,727 8,608,067
(32,1024,8) 47,901,763 31 47,901,763 31

(1024,256,16) 47,901,686 108 47,901,686 108

FIFO-based cache configuration simulation.
Application programs that we have used here are from MediaBench 10) as in

Table 1. In the table, E stands for encoder and D stands for decoder. We
assume L1 instruction cache in ADPCM E (I) and we assume L1 data cache in
other application programs. We have also used SimpleScalar 1) to obtain memory
access histories. Simulated cache configurations are:

The number of sets: 32, 64, . . . , 524,288
Block size: 8, 16, . . . , 1,024bytes
Associativity: 1, 2, 4, . . . , 16.

We have totally 380 cache configurations whose total cache size ranges from
256 bytes to 4,194,304 bytes. Table 1 shows the experimental results. Obtained
cache hit/miss counts for every cache configuration are exactly the same for

Dinero IV, CRCB, and CRCB+CSG. Table 2 shows the cache hit counts and
cache miss counts for several cache configurations in JPEG E and G721 E.
Roughly saying, CRCB+CSG runs up to 208 faster than Dinero IV. It finishes
cache configuration simulation within several seconds while Dinero IV takes sev-
eral hours. Our approach makes simulation-based cache hit/miss measuring a
practical one.

Figures 11 and 12 show how many cache set groups are generated in JPEG E
and G721 E as the memory accesses proceed. Theoretically, the minimum number
of cache set groups is 2,088,704, in which each cache set group includes all the
cache sets in SS(i). The maximum number of cache set groups is 4,046,080, in
which each cache set group includes only a single cache set. As shown in Figs. 11
and 12, the number of cache set groups do not reach its maximum value in all
the simulation time. This is because a particular cache access pattern which
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Table 3 CPU time comparison when smax becomes smaller (FIFO-based cache configuration simulation).

Dinero IV CRCB CRCB+CSG

CPU time CPU time CPU time
[sec] [sec] [sec]

ADPCM E 34 (1) 0.51 (0.015) 0.45 (0.013)
ADPCM E (I) 350 (1) 4.34 (0.012) 3.95 (0.011)

JPEG D 82 (1) 2.57 (0.031) 2.38 (0.029)
G721 E 3,087 (1) 29.47 (0.010) 28.81 (0.009)

smax is set to be 512.

Dinero IV CRCB CRCB+CSG

CPU time CPU time CPU time
[sec] [sec] [sec]

ADPCM E 60 (1) 0.64 (0.011) 0.58 (0.010)
ADPCM E (I) 608 (1) 4.41 (0.007) 4.02 (0.007)

JPEG D 140 (1) 3.09 (0.022) 2.85 (0.020)
G721 E 5,305 (1) 28.85 (0.005) 28.82 (0.005)

smax is set to be 16,384.

Fig. 11 Cache set groups on FIFO-based cache configuration simulation for JPEG E.

Fig. 12 Cache set groups on FIFO-based cache configuration simulation for G721 E.

partitions all cache set groups does not usually occur in practical memory access
histories. This means that the overheads of making cache set groups can be too
small compared with reducing cache configurations by using our CSG method.

The maximum number of sets, 524,288, can be too large for embedded pro-
cessors. Then we have done additional experiments where the number of sets is
limited to up to 16,384 or 512. Table 3 summarizes these experimental results.
Even in these experiments, CRCB+CSG runs 34 to 184 times faster than Dinero
IV.

Note that SCUD 6) was proposed very recently for FIFO-based L1 cache con-
figuration simulation. It claims that SCUD runs up to 57 times faster than
Dinero IV but it can be applied only when the cache block size and cache as-
sociativity are fixed. We cannot say that SCUD realizes cache configuration
simulation including the overall three cache parameters of the number of sets,
block size, and associativity. Since our proposed approach CRCB+CSG runs 28
to 208 times faster than Dinero IV for FIFO-based L1 cache as in Table 1, it
means that our approach can be much faster than SCUD although we cannot
compare them directly.

5. Boosting up a Cache Configuration Simulation based on PLRU
as a Cache Replacement Policy

When implementing an original LRU-based cache into hardware, its costs can
be too high because of its complex behavior. PLRU, or pseudo LRU, is a cache
replacement policy which has cache hit rate as high as an original LRU but can
be implemented very easily. PLRU does not show a particular algorithm but just
shows LRU-like cache replacement policies. In this section, we pick up PLRUt 2),
one of the most typical PLRU cache replacement policies.

The PLRUt algorithm can be viewed as a complete binary tree, in which a
cache tag is inserted into a leaf and each node other than leaves has one-bit node
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Table 4 Experimental comparisons 2 (PLRUt-based cache configuration simulation).

Exhaustive approach CRCB CRCB+CSG

CPU time Hit/miss check CPU time Hit/miss check CPU time Hit/miss check
[sec] counts [million] [sec] counts [million] [sec] counts [million]

ADPCM E 82 (1) 204 (1) 1.45 (0.022) 12 (0.059) 1.03 (0.017) 9 (0.044)
ADPCM D 81 (1) 204 (1) 1.51 (0.022) 13 (0.064) 1.07 (0.019) 10 (0.049)

ADPCM E (I) 988 (1) 4,710 (1) 5.77 (0.006) 60 (0.013) 4.87 (0.005) 41 (0.0087)

JPEG E 787 (1) 2,090 (1) 11.16 (0.017) 207 (0.099) 10.88 (0.016) 198 (0.095)
JPEG D 186 (1) 506 (1) 4.59 (0.029) 76 (0.15) 3.95 (0.025) 71 (0.14)

EPIC E 1,232 (1) 5,721 (1) 35.01 (0.033) 796 (0.14) 36.32 (0.034) 706 (0.12)
EPIC D 264 (1) 1,084 (1) 10.89 (0.049) 286 (0.26) 10.53 (0.047) 240 (0.22)

G721 E 7,073 (1) 35,481 (1) 30.92 (0.005) 299 (0.0084) 29.30 (0.005) 232 (0.0065)
G721 D 7,243 (1) 35,897 (1) 30.25 (0.005) 291 (0.0081) 29.04 (0.005) 239 (0.0067)

Fig. 13 PLRUt behavior.

flag . The one-bit node flag shows which child node is LRU or not. If it is zero, its
left node is LRU. If it is one, its right node is LRU. If a memory address whose
tag is t is accessed and a cache hit occurs, then the node flags from the root node
to the leaf containing t are set to be one or zero, so that each of them does not
point to t. If a cache miss occurs, we traverse from the root node according to
the node flag. If the node flag is zero, we go to its left node and, if it is one, we

go to its right node. We finally get to the leaf, which can be the LRU tag. We
discard this tag, insert t into this leaf, and reverse every node flag from the root
node to this leaf.

Figure 13 shows an example of PLRUt behavior. The arrow at each node
shows its LRU child node. By traversing from the root, we can find out the LRU
tag. Initially, the LRU tag is D and the MRU tag is A. If the memory access to
B occurs, we update the arrows from the node to B so that they do not point
to B. In this case, the LRU tag changes from D to C. After that, if the memory
access to E which is not on the cache occurs, the LRU tag C is discarded and E
is inserted here. We update all the arrows from the root node to E so that they
do not point to E. After that, if D is accessed, we update the arrows similarly.

In this section, we propose a boosting up algorithm for cache configuration
simulation assuming PLRUt as a cache replacement policy.

5.1 Skipping the Priority Queues’ Update when their Behavior is
the Same

First, we map a tree structure in PLRUt to a priority queue. Let t be a leaf
in a tree structure in PLRUt. We define the priority p(t) of the leaf t as follows:
Consider the path from the root node to t which is composed of a sequence
{v0, v1, . . . , vn} of nodes, where n shows the level of the leaf t. In this case,
the k-th bit of p(t) is defined by one if the node flag of vk points to vk+1 for
0 ≤ k ≤ (n − 1). It is defined by zero if the node flag of vk does not point to
vk+1. If all the leaves have their priority, we can consider them to be a priority
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Table 5 Hit/miss counts (PLRUt-based cache configuration simulation).

Exhaustive approach CRCB+CSG

Cache cache hit cache miss cache hit cache miss
configuration counts counts counts counts

JPEG E (32,8,1) 3,597,258 1,587,745 3,597,258 1,587,745
(32,1024,8) 5,184,801 202 5,184,801 202

(1024,256,16) 5,184,292 711 5,184,292 711

G721 E (32,8,1) 39,293,727 8,608,067 39,293,727 8,608,067
(32,1024,8) 47,901,763 31 47,901,763 31

(1024,256,16) 47,901,686 108 47,901,686 108

Fig. 14 Mapping a PLRUt tree to its priority queue.

queue. Figure 14 shows an example of this mapping from the tree to the priority
queue.

We can have the same discussions as Section 4 to these mapped priority queues.
Since Properties 5 and 6 just discuss a general priority queue, they hold true for
priority queues mapped from PLRUt trees. Based on Properties 5 and 6, we also
define a cache set group as in the same discussion in the previous section.

Note that it is natural that the associativity a in PLRUt-based cache is
1, 2, 4, 8, . . . , am.

5.2 The Algorithm and Experimental Evaluations
By mapping a PLRUt tree into its priority queue, the cache-set-group based al-

gorithm proposed in Section 4 can also simulate cache configurations for PLRUt-
based caches.

As far as we know, there are no boosting up cache simulation algorithms for

Fig. 15 Cache set groups on PLRUt-based cache configuration simulation for JPEG E.

PLRUt-based caches. Then we have used the exhaustive approach discussed
in Section 2, the CRCB method (CRCB), and combined CRCB method and
our cache-set-group based algorithm (CRCB+CSG) and obtained cache hit/miss
counts for PLRUt-based cache configurations. The experimental environments
are the same as those in Section 4.

Table 4 shows the experimental results. Obtained cache hit/miss counts for ev-
ery cache configuration are exactly the same for the exhaustive approach, CRCB,
and CRCB+CSG. Table 5 shows the cache hit counts and cache miss counts for
several cache configurations in ADPCM E and G721 E. As Table 4 indicates,
CRCB+CSG runs up to 249 times faster than the exhaustive approach here. It
simply means that our approach CRCB+CSG achieves the world fastest cache
configuration simulation for PLRUt-based L1 cache simulation.

Figures 15 and 16 show how many cache set groups are generated in JPEG
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Table 6 CPU time comparison when smax becomes smaller (PLRUt-based cache configuration simulation).

Dinero IV CRCB CRCB+CSG

CPU time CPU time CPU time
[sec] [sec] [sec]

ADPCM E 42.63 (1) 0.55 (0.013) 0.53 (0.012)
ADPCM E (I) 517 (1) 4.80 (0.009) 4.51 (0.009)

JPEG D 98 (1) 3.11 (0.032) 3.09 (0.032)
G721 E 3,698.19 (1) 30.33 (0.008) 29.24 (0.008)

smax is set to be 512.

Dinero IV CRCB CRCB+CSG

CPU time CPU time CPU time
[sec] [sec] [sec]

ADPCM E 73.54 (1) 0.76 (0.010) 0.67 (0.009)
ADPCM E (I) 897 (1) 5.00 (0.006) 4.50 (0.005)

JPEG D 169 (1) 3.81 (0.023) 3.61 (0.021)
G721 E 6,419.71 (1) 30.06 (0.005) 29.15 (0.005)

smax is set to be 16,384.

Fig. 16 Cache set groups on PLRUt-based cache configuration simulation for G721 E.

E and G721 E as the memory accesses proceed. Theoretically, the minimum
number of cache set groups is 2,088,704 and the maximum number of cache set
groups is 4,046,080. As shown in Figs. 15 and 16, the number of cache set groups
do not reach its maximum value in all the simulation time in this case as well.
Overheads of making cache set groups can be too small compared with reducing
cache configurations by using our CSG algorithm.

As in the same discussion in the previous section, the maximum number of
sets, 524,288, can be too large for embedded processors. Then we have done
additional experiments where the number of sets is limited to up to 16,384 or
512. Table 6 summarizes these experimental results. Even in these experiments,
CRCB+CSG runs 31 to 220 times faster than the exhaustive approach.

6. Conclusions

In this paper, we proposed exact and fast L1 cache configuration simulation

algorithms for embedded applications that use PLRU or FIFO as a cache replace-
ment policy. Firstly, we proved that the CRCB method can be applied not only
to LRU but also to other cache replacement policies including FIFO and PLRU.
Secondly, we proved several properties for FIFO- and PLRU-based caches and
we proposed associated cache simulation algorithms which can simulate simulta-
neously more than one cache configurations with different cache associativities
accurately. Finally, experimental resulted demonstrate that our cache configura-
tion simulation algorithms obtained accurate cache hit/miss counts and runs up
to 249 times faster than a conventional cache simulator.

In the future, we will extend our cache configuration simulation to a hierarchical
cache memory system including L1/L2 caches.
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