
IPSJ Transactions on System LSI Design Methodology Vol. 4 31–46 (Feb. 2011)

Invited Paper

Coarse-Grained Reconfigurable Array:

Architecture and Application Mapping

Kiyoung Choi†1

Coarse-grained reconfigurable arrays, or CGRAs in short, have drawn increas-
ing attention recently due to their performance and flexibility. They provide
flexibility through reconfiguration, which is not attained with fixed harware
such as traditional ASICs. They also provide performance through highly par-
allel architecture, which is hardly achieved with basically sequential software
running on full-blown processors. There have been many researches on CGRAs,
and many of them are commercialized or in practical use. However, they still
face some challenges that are to be addressed for their widespread use. In this
paper, we survey existing CGRA architectures as well as existing approaches
to the mapping of applications onto the architectures.

1. Introduction

With the ever-increasing requirements for more flexibility, higher performance,
and lower power consumption in embedded systems design, there have been con-
tinuous efforts on finding new architectures that fit better with the requirements.
ASIC design approaches have been used for many years for their merit in perfor-
mance and power consumption. Recently, processor cores are replacing ASICs
mainly due to the flexibility of software implementation. It allows reusing ex-
isting architectures and debugging without involving hardware redesign, thereby
helps reduce time-to-market as well as development cost. In general, however,
the performance of software implementation is orders of magnitude lower than
that of hardware implementation, even with much larger power consumption. It
is a current trend to integrate multiple cores on a chip to alleviate such problem,
but software only implementation is not yet a solution for high-end embedded
systems. As an alternative solution, one can consider using coarse-grained re-

†1 School of EECS, Seoul National University

configurable arrays (CGRAs). They provide flexibility through reconfiguration,
which is not achieved with fixed harware such as traditional ASICs dedicated
to a single functionality. They also provide performance through highly paral-
lel architecture, which is not possible with basically sequential software running
on full-blown processors. Conversely speaking, of course, the performance of
CGRAs cannot be as high as that of dedicated hardware and the flexibility can-
not be better than that of software. Figure 1 (slightly modified from the figure
in Ref. 1)) is a conceptual view that shows where typical CGRAs are positioned
in the performance-flexibility tradeoff space. We can say the same about power
efficiency or area efficiency instead of performance. It is therefore important to
design CGRAs such that the performance, power, area, and flexibility merits are
best utilized.

The difference between fine-grained reconfigurable arrays (FGRAs) and
CGRAs is in the granularity of reconfiguration. An FGRA such as field-
programmable gate array (FPGA) typically consists of an array of gates (or
bit-level logic blocks) and flip-flops, and the reconfiguration is performed at the
bit-level. The reconfigurable array used in Garp 2) also belongs to this class. On
the other hand, a CGRA typically consists of an array of ALUs and registers,
and the reconfiguration is performed at the word-level. For an implementation of
random logic operations, FGRAs can provide a more efficient solution. However,
for word-level operations, CGRAs can provide better optimized computation el-
ements. In addition, since CGRAs have much less number of program points,
the size of configurations (sometimes called contexts or instructions for the PEs)
is much smaller compared to the size of the bitstream used for programming
FGRAs. Therefore, the overhead of reconfiguration of a CGRA is much lower
than that of an FGRA, thereby making it easy to reconfigure a CGRA dynami-
cally.

There have been many researches on CGRA 3)–18), and some CGRAs have been
commercialized directly or indirectly 19),21),22). However, they still face some chal-
lenges that are to be addressed for their widespread use. First, they need to
further improve the performance and reduce the power consumption without
increasing silicon area much. It is important for differenciating them from soft-
ware implementation. In particular, area and power efficiency is important when

31 c© 2011 Information Processing Society of Japan



32 Coarse-Grained Reconfigurable Array: Architecture and Application Mapping

Fig. 1 Performance-flexibility tradeoffs (not in scale).

compared to software implementations on many-core architectures. More impor-
tantly, programming CGRAs must be as easy as parallel programming, if not
easier.

In this paper, we survey existing CGRA architectures and see how to enhance
them in terms of performance, power consumption, and area cost. In addition,
we survey existing approaches to the mapping of applications onto CGRAs since
it is one of the most challenging problems to be solved.

2. CGRA Architectures

There have been various CGRAs with different target domains of applications
and different tradeoffs between flexibility and performance. In Ref. 23), Harten-
stein summarized many CGRAs that had been suggested until 2001. Those
CGRAs can be classified into two groups: linear reconfigurable array and mesh-

Fig. 2 A basic RaPiD cell 7).

based reconfigurable array. Most of them comprise a fixed set of specialized PEs
and interconnection fabrics between them. The run-time control of the operation
of each PE and the interconnection provides the reconfigurability. Mesh-based
reconfigurable arrays arrange their processing elements (PEs) as a rectangular 2D
array with horizontal and vertical connections, which support rich communica-
tion resources for efficient parallelism. In the case of linear reconfigurable arrays,
they support pipelined execution for stream-based applications with static or
dynamic reconfiguration.

RaPiD 7) (Reconfigurable Pipelined Datapath) and PipeRench 11) have a lin-
ear array structure. RaPiD provides different computing resources like ALUs,
RAMs, multipliers and registers. Figure 2 shows a basic RaPiD cell, which is
replicated left or right to form a complete array. These resources are irregularly
distributed on one dimension and are mostly reconfigured in a static way us-
ing bus segments, multiplexers, and bus connectors. However, PipeRench relies
on dynamic reconfiguration, allowing the reconfiguration of a processing element
(PE) in each execution cycle. It consists of stripes composed of interconnects and
PEs with registers and ALUs. The reconfigurable fabric allows the configuration
of a pipeline stage in every cycle, while concurrently executing all other stages.

IPSJ Transactions on System LSI Design Methodology Vol. 4 31–46 (Feb. 2011) c© 2011 Information Processing Society of Japan



33 Coarse-Grained Reconfigurable Array: Architecture and Application Mapping

Fig. 3 PipeRench architecture 11).

Figure 3 shows the architecture of PipeRench. Such linear array structures are
good for applications that can be executed in the form of linear pipeline. How-
ever, mapping of an application that performs 2D data processing or forks into
multiple branches onto such an architecture will be inefficient and require many
global or non-local interconnects.

Most of the CGRAs have 2D array structure 3),5),6),8)–10),12),14)–16). REMARC 12)

(Reconfigurable Multimedia Array Coprocessor) and MorphoSys 14) are represen-
tative examples of 2D array architectures. REMARC consists of a global control
unit and an 8 × 8 array of 16-bit nano processors. A nano processor consists of
an ALU, a 16-entry data RAM, an 8-entry register file, data input registers, and
data output registers. The configuration for each nano processor is stored in the
32-entry instruction RAM to support MIMD execution model as well as SIMD
model. However, each nano processor does not directly control the instructions
it executes. Every cycle, the nano processor receives a PC value called nano PC
from the global control unit. All nano processors use the same nano PC and
execute the instructions indexed by the nano PC in their nano instruction RAM.

Fig. 4 REMARC architecture 12).

Fig. 5 Morphosys architecture 14).

Figure 4 shows the architecture of REMARC.
As shown in Fig. 5, MorphoSys consists of Tiny RISC processor, RC (Recon-

figurable Cell) array, frame buffer, context memory and DMA controller. RC
array is an 8 × 8 array of ALUs that performs 16-bit operations based on SIMD
programming model. The ALUs are connected by a multilevel interconnection
network having abundant interconnect resources as compared to a simple mesh
network. The frame buffer consists of two sets of memory thereby supports dou-
ble buffering, which helps hide communication overhead. The DMA controller

IPSJ Transactions on System LSI Design Methodology Vol. 4 31–46 (Feb. 2011) c© 2011 Information Processing Society of Japan



34 Coarse-Grained Reconfigurable Array: Architecture and Application Mapping

Fig. 6 ADRES architecture 17).

is used to perform more efficiently the data transfer between the frame buffer
and the main memory. Depending on applications, however, the communication
between the frame buffer and the main memory through a 32-bit bus can still be
a bottleneck of the overall system performance.

The MorphoSys M1 chip 24), implemented with 0.35 µm CMOS technology,
has area of 14 mm×12 mm and shows peak performance of 6.4 GOPS on 16 bit
data at 100 MHz clock frequency with 3.3 V power supply. It is reported in
Ref. 14) that MorphoSys shows performance about 23 times higher than Pentium
MMX 25) for motion estimation of MPEG2 encoder. Pentium MMX has 4.5 milion
transistors consuming 7.9 W typical power, whereas MorphoSys has about 1.56
milion transistors consuming less than 5 W power for the motion estimation. In
general, compared to general purpose processors, 2D array CGRAs like Mophosys
can achieve enormous speedup with much less power consumption using abundant
PEs for applications with high degree of data-parallelism.

Many more new CGRAs have been continuously proposed and
evolved 17)–19),21),22). ADRES 17) (Architecture for Dynamically Reconfigurable
Embedded System) is a VLIW architecture tightly coupled with a reconfigurable
array of PEs. Figure 6 shows the architecture of ADRES having two views:
VLIW view and reconfigurable matrix view. The reconfigurable matrix part
works as a co-processor of the VLIW part and so their executions never over-

lap with each other, which allows them to share some physical resources. The
tight coupling also allows the VLIW processor and the reconfigurable matrix to
communicate efficiently. However, since they cannot execute concurrently, the
code running on the VLIW processor and the rest of the code accelerated on the
reconfigurable matrix may not be pipelined efficiently. For the VLIW processor,
several functional units (FUs) are allocated and connected together through one
multi-port register file (RF). These FUs are more powerful in terms of function-
ality and speed compared with those in the reconfigurable matrix. For example,
they can execute operations such as branch operations which are not supported
in the reconfigurable matrix. Some of these FUs are connected to the memory
hierarchy, depending on available ports. Thus the data access to the memory is
done through the load/store operation available on those FUs.

For the reconfigurable matrix part, it shares the FUs and RF of the VLIW pro-
cessor. The access to the memory is performed through the VLIW processor’s
FUs. Since the reconfigurable matrix will usually process a lot of data concur-
rently, it may need a big memory to store the data. It may use the multi-port RF
for this purpose, but the cost of the RF will grow much faster than its capacity.
Alternatively, it may access the external memory through the VLIW processor’s
FUs. In this case, however, the long latency will degrade the overall system per-
formance. Apart from the FUs and RF shared with the VLIW processor, there
are a number of reconfigurable cells (RC) which also contain their own FUs and
RFs as shown in Fig. 6. The FUs can be heterogeneous (different RCs in the
matrix can have different types of FUs) supporting different operation sets. To
remove the control flow inside loops, the FUs support predicated operations.

Other components in the RCs are common to most CGRAs. For example, the
multiplexors are used to direct data from different sources. The configuration
RAM stores a few configurations locally, which can be loaded on a cycle-by-cycle
basis to control the behavior of the basic components. The configurations can
also be loaded from the external memory at the cost of extra delay, if the local
configuration RAM is not big enough.

FloRA 18) (Floating-point Reconfigurable Array) has a 2D homogeneous array
of PEs and a RISC processor connected by a bus as shown in Fig. 7. One salient
feature of this CGRA is that the PEs in the array can be paired to compute

IPSJ Transactions on System LSI Design Methodology Vol. 4 31–46 (Feb. 2011) c© 2011 Information Processing Society of Japan



35 Coarse-Grained Reconfigurable Array: Architecture and Application Mapping

Fig. 7 FloRA architecture 18).

floating-point operations. As floating-point applications such as 3D graphics
become more prevalent, acceleration of floating-point operations become more
important. More recent version 26) of FloRA has memory-centric communication
between the RISC processor and the PE array instead of bus-centric communi-
cation as shown in Fig. 8. This helps avoid the bottleneck problem caused by
the communication through a bus. The cenral memory is divided into several
smaller memory blocks, with each part connected to its own master (processor,
PE array, network/bus interface are masters). Communication can be done by
switching the connections between the masters and the memory blocks. Each
memory block can be implemented as a single port memory and therefore costly
multi-port memory implementation is not necessary. However, there is some
overhead in implementing the communication switch between the masters and
memory blocks with a crossbar.

DRP 19) (Dynamically Reconfigurable Processor) from NEC is one of the com-
mertially used CGRAs. It consists of an array of Tiles, each of which is an array
of PEs. Figure 9 shows the architecture of DRP-1 containing 4 × 2 Tiles, with

Fig. 8 Memory-centric communication 26).

Fig. 9 DRP-1 arcchitecture 19).

IPSJ Transactions on System LSI Design Methodology Vol. 4 31–46 (Feb. 2011) c© 2011 Information Processing Society of Japan



36 Coarse-Grained Reconfigurable Array: Architecture and Application Mapping

Fig. 10 XPP-III Core architecture 21).

each Tile consisting of an 8 × 8 array of PEs. Each Tile also has a State Transi-
tion Controller (STC), Vertical MEMories (VMEMs), and Horizontal MEMories
(HMEMs). Each PE has an 8-bit ALU, an 8-bit DMU (Data Manipulation Unit:
for shift/mask operations), an 8-bit×16-word register file, and an 8-bit flip-flop.
It also has a 16-depth instruction memory, whose instruction pointer is set by the
STC in the Tile. According to the evaluation with stream applications presented
in20), DRP with eight Tiles running at 33 MHz shows five times higher perfor-
mance than Pentium IV running at 2.5 GHz for Viterbi decoder and six times
higher performance than MIPS64 running at 500 MHz for Block Cipher RC6.

XPP 21) (eXtreme Processing Platform) from PACT is another example of com-
mercial CGRA. Figure 10 shows the architecture of an XPP-III Core. It con-
tains a rectangular array of three types of PAEs (Processing Array Elements).
Those in the center of the array are ALU-PAEs. To the left and right side of the
ALU-PAEs are RAM-PAEs with I/O. On the right side of the array, there is a
column of FNC-PAEs (Function-PAEs). The ALU-PAEs and RAM-PAEs com-
prise a dataflow array, which can process dataflow graphs efficiently. An FNC-
PAE contains a complete VLIW-like sequential processor kernel and is suitable
for processing control-oriented part of the application. The horizontal routing

Fig. 11 PC101 picoArray architecture 22).

buses between XPP objects (ALUs, RAMs, I/O objects, etc.) can be segmented
by configurable switch objects. The buses include n-bit data buses and 1-bit
events buses. The XPP Core data bitwidth (for ALUs, RAMs, and data buses)
can be chosen from 16, 24 or 32 bit. Vertical routing connections are provided
within the ALU- and RAM-PAEs. Between the FNC-PAEs, there is an addi-
tional dedicated vertical routing connection. When the dataflow array is used, a
FNC-PAE instructs a DMA controller to configure the ALU- and RAM-PAEs as
well as the communication network from external memory. Each configuration
word contains the address of the PAE and XPP object to be configured and the
configuration value (ALU operator, bus connection etc.) and enters the dataflow
array through its configuration interface. The I/O objects allow to cascade XPP
Cores and to access external streaming data sources or destinations or external
RAM.

The picoArray 22) from picoChip is yet another example of commercial CGRA.

IPSJ Transactions on System LSI Design Methodology Vol. 4 31–46 (Feb. 2011) c© 2011 Information Processing Society of Japan



37 Coarse-Grained Reconfigurable Array: Architecture and Application Mapping

Fig. 12 Interconnect and processor architecture of picoArray 22).

Figure 11 shows the architecture of PC101, the initial version of the picoAr-
ray, which contains 430 heterogeneous processors. The processors are connected
together using 32-bit unidirectional buses called picoBus and bus switches as
shown in Fig. 12. The inter-processor communication protocol implemented by
the picoBus is based on a time division multiplexing (TDM) scheme. There
is no run-time bus arbitration, so communication bandwidth is guaranteed as
scheduled by software and controlled using the bus switches. Signals may be
point-to-point, or point-to-multi-points. Faster signals can be allocated time-
slots more frequently than slower signals. All of the processors in the picoArray
are 16-bit, 3-way VLIW processors. The basic structure of the processors is also
shown in Fig. 12. Each processor has its own small memory (between 1 KB and
32 KB), which is organised as separate data and instruction banks (i.e., a Harvard
architecture). The processor contains a number of communication ports, which
allow access to the interconnect buses through which it can communicate with
other processors. Each processor is programmed and initialised using a special
configuration bus.

3. Architecture Optimization

With the development of various architectures, it has been an important issue to

Fig. 13 Design flow of KressArray Xplorer 27).

optimize the architectures for given applications or application domains. There
have been quite a few attempts to solve the problem through an exploration
of architectural parameters such as number of PEs, number of interconnects,
number of registers, etc. 27)–30)

KressArray Xplorer 27) is an interactive design space exploration (DSE) envi-
ronment that assists the user in optimizing the architecture of KressArray for
a given application domain, considering KressArray as an architecture template
rather than a single architecture instance. Figure 13 shows the overall design
flow of KressArray Xplorer. It provides a language called ALE-X to descrive the
application to be mapped onto a KressArray. Given the ALE-X description, it
generates an expression tree and measures the complexity of the tree to estimate
the minimal requirements for the architecture and then determines the initial ar-
chitecture for the exploration process. It also provides a mapper and scheduler,
where the mapper performs simulated anealing based placement and routing of

IPSJ Transactions on System LSI Design Methodology Vol. 4 31–46 (Feb. 2011) c© 2011 Information Processing Society of Japan



38 Coarse-Grained Reconfigurable Array: Architecture and Application Mapping

Fig. 14 DRESC framework 28).

the operations in the application onto the KressArray, and the scheduler produces
schedules for both global bus and row/column buses. Then the results are ana-
lyzed so that the user can redefine architectural parameters, modify the mapping
results, and/or tune the optimization parameters (e.g., parameters for the simu-
lated annealing). The atchitectural parameters include array size, functionality
of certain PEs, number and maximum legnth of nearest neighbor connections,
number of buses, etc.

ADRES is also regarded as an architecture template rather than a fixed ar-
chitecture instance. Even the internal organization of each PE is not fixed, but
FUs and RFs can be put together in several ways. For example, two FUs can
share one RF. Figure 14 shows the DRESC (Dynamically Reconfigurable Em-
bedded System Compiler) framework that has been suggested in Refs. 28) and

31) to explore the architecture design space and generate a good instance of
ADRES. The design flow starts from a C-language description of the application.
The profiling/partitioning step identifies the candidate loops for mapping on the
reconfigurable matrix based on the execution time and possible speedup. The
flow uses IMPACT 32), a compiler framework mainly for VLIW, to parse the C
code, do some analysis and optimization, and emit an intermediate representa-
tion called Lcode, which is used as the input for scheduling. On the other side in
the flow, the target architecture is described in an XML-based language to spec-
ify the overall topology, supported operation set, resource allocation, and timing.
The specified architecture is translated to an internal representation to facilitate
modulo scheduling of the operations in the application kernels on the reconfig-
urable matrix. For the non-kernel code, ILP scheduling is used to generate code
for the VLIW processor.

The DRESC tool chain can be used for architecture exploration. However,
deriving an optimal instance from the architecture template requires the deter-
mination of many architectural parameters such as the numbers of FUs and RFs,
the interconnection topology, the operation set each FU supports, and the sizes
of the distributed RFs. Moreover, the trade-offs involved in choosing the optimal
architectural parameters are not obvious. In Ref. 28), they just try to explore
the effects of varying important architectural aspects including interconnection
patterns, heterogeneous FUs, memory ports, and distributed RFs to obtain a
pointer to a better architecture design and a better insight into the effect of
different parameter choices and their interaction.

The DSE flow presented in Ref. 29) considers resource sharing and pipelining.
It assumes that an area critical resource is not directly contained in each PE
of the architecture but is shared among a set of PEs. Figure 15 (a) shows an
example where two multipliers are shared among four PEs in each row of the PE
array. The area critical resources can be pipelined not to slow down the clock
and at the same time to enhance their utilization. Since there are various ways
of allocating and placing the shared resources (see Fig. 15 (b)), DSE is needed to
obtain an optimal or near optimal architecture. As shown in Fig. 16, the DSE
flow starts from a set of applications in the target domain. The applications are
profiled to extract critical loops and the base architecture is determined through

IPSJ Transactions on System LSI Design Methodology Vol. 4 31–46 (Feb. 2011) c© 2011 Information Processing Society of Japan



39 Coarse-Grained Reconfigurable Array: Architecture and Application Mapping

Fig. 15 Critical resource sharing (a) resources shared among PEs in the same row (b) four
different ways of allocating and placing shared resources 29).

the first phase of DSE. The parameters of the base architecture determined in
this phase include the numbers of rows and columns and the functionalities of
each PE. Also determined are the interconnect resources, typically by adding
more vertical and/or horizontal interconnects to a basic mesh structure. Then
the loops are mapped on the base architecture and the RSP (Resource Sharing
and Pipelining) parameters are determined through the second phase of DSE.
The RSP parameters include the types of shared functional resources, the types
of pipelined resources, the number of pipeline stages of the pipelined resources,
the number of rows and columns of the shared resources. During the second
phase of DSE the performance is estimated roughly by inserting stall cycles due
to lack of resources or multi-cycle operations.

There have been researches on interconnect optimization in terms of perfor-
mance or energy consumption. The approach in Ref. 33) explores the network
topology to study the effects of three aspects of network topology exploration
on the performance: (a) changing the interconnection between PEs, (b) chang-
ing the way the network topology is traversed while mapping operations to the
PEs, and (c) changing the communication delays on the interconnects between

Fig. 16 Architecture exploration considering resource sharing and pipelining 29).

Fig. 17 Different connection topologies 33).

PEs. Figure 17 shows an example of different connection topologies that can
be explored by this approach. In Ref. 30), interconnect architecture explorations
have been suggested for low energy. Because CGRA has complex interconnection
for performance and flexibility, energy consumption due to the interconnection

IPSJ Transactions on System LSI Design Methodology Vol. 4 31–46 (Feb. 2011) c© 2011 Information Processing Society of Japan



40 Coarse-Grained Reconfigurable Array: Architecture and Application Mapping

Fig. 18 Energy-aware architecture exploration framework 30).

can be significant. In Ref. 30), the authors present an energy and performance-
aware exploration for the interconnect of the ADRES architecture. They use the
framework shown in Fig. 18 for the exploration, where the energy consumption
is estimated based on the activation trace generated by the simulator.

Considering that the memory for storing configurations is another source of
significant power and area consumption, Ref. 34) proposes a power conscious
configuration cache structure. One of the key ideas of this paper is to pipeline
the fetched configurations to the next columns instead of fetching each column’s
configurations directly from the configuration cache. To implement this, the au-
thors add pipeline registers to the PE array such that the configurations fetched
to the first column of the array are pipelined to the next columns. This concept
works well with loop pipelining, which can be easily implemented by mapping
each iteration of the loop on a different column of the PE array through temporal
mapping. Temporal mapping is used since all the operations in the loop body
are to be executed on a single column. Figure 19 shows the PE array with
pipeline registers and the hybrid structure of spatial cache and temporal cache.
When spatial mapping is done, the spatial cache is used. In this case, all PEs can
perform different operations like MIMD (Multiple Instruction, Multiple Data).
When temporal mapping is done, the temporal cache is used. In this case, all

Fig. 19 Hybrid configuration cache structure 34).

PEs in a column can perform different operations but the PEs in a row perform
the same operation like SIMD (Single Instruction, Multiple Data), but off by one
cycle per iteration. There are also many other approaches to DSE and optimiza-
tion of CGRAs including the one for register file architecture optimization 35) and
the one for DSE of a CGRA for software-defined radio 36).

4. Application Mapping onto CGRAs

For CGRAs to be adopted widely, they should be easy to use. In particular,
the application should be easily programmed, compiled, and mapped onto the
taget system containing a CGRA. If the programmer should specify explicitly a
part of the program that is to be mapped onto the CGRA, then it will be good
to have a programming model which is easy to understand and follow so that
the programmer’s productivity is not degraded much. It will be even better if
the programming can be done in a conventional way and the compilation and
mapping processes automatically identify compute-intensive kernel parts of the

IPSJ Transactions on System LSI Design Methodology Vol. 4 31–46 (Feb. 2011) c© 2011 Information Processing Society of Japan



41 Coarse-Grained Reconfigurable Array: Architecture and Application Mapping

program and map them onto the CGRA to obtain the best result. With the tools
available today, profiling and partitioning are not fully automated but typically
done manually with the help of the tools.

Once the kernel parts of the program (typically loops) are identified, they are
mapped onto the CGRA. However, the mapping is not an easy process because
of the high complexity of the problem that requires compiling the kernel parts
for the target architecture of dynamically reconfigurable array of PEs, with ad-
ditional complexity of dealing with limited routing resources. It is more difficult
than simply compiling the kernels for a processor target, since it requires max-
imally exploiting the parallelism provided by the abundant PEs. Even if we
compare it with compiling for a VLIW procesor with multiple functional units, it
is still more difficult since there are many more PEs (a PE is more complex than
a simple funtional unit) in a CGRA, and the interconnect resources should also
be considered at the same time. The mapping of an application kernel onto a
CGRA is similar to the synthesis from an HDL (hardware description language)
description for an FPGA target. It requires placement of the operations onto a
PE array (instead of a gate array) and routing between them. A difference is in
the granularity of the operations; CGRA deals with word-level operations and
FPGA deals with bit-level operations. A more important difference, however, is
that a PE in a CGRA is dynamically shared among many operations whereas a
logic block in an FPGA is typically dedicated to its own operation. These all
together create new challenges for the mapping of applications onto a CGRA.
There have been many researches on developing mapping tools that exploit par-
allelism found in the applications as well as abundant computation resources of
the target CGRAs.

The approach in Ref. 14) for MorphoSys uses GUI-based design tools called
mView (for manual mapping), mLoad (for generating contexts from the mapping
result), and mcc (for generating TinyRISC instructions to control the PE array
execution) to manually generate a mapping (see Fig. 20). Such an approach may
have difficulty in handling big designs. The approach in Ref. 38) focuses only on
instruction-level parallelism, failing to fully utilize the resources in CGRAs, which
is possible by exploiting loop-level parallelism. More recent approaches 31),39)–43)

better exploit the parallelism provided by the abundant resources in the target

Fig. 20 Mapping and simulation environment for MorphoSys 14).

CGRA.
The approach in Ref. 31) adopts modulo scheduling to maximally exploit loop-

level parallelism. Modulo scheduling is a framework within which algorithms
for software pipelining of innermost loops may be defined 44). It generates a
schedule for one iteration of the given loop such that the same schedule is repeated
at regular intervals while satisfying intra- and inter-iteration dependency and
resource constraints. The interval, termed initiation interval (II), reflects the
performance (throughput) of the scheduled loop. For the scheduling of operations
on a CGRA, placement and routing (P&R) problem should also be solved. So the
problem is more complex than a simple modulo scheduling problem. Figure 21
shows an example of mapping a dataflow graph onto a 2 × 2 array of PEs using
modulo scheduling 45).

The scheduling problem can be formulated as a mapping of a dataflow graph
G1=(V1, E1) onto a MRRG (modulo routing resource graph) G2=(V2, E2, II).
The dataflow graph models the given loop and the MRRG models the routing
resources of the target architecture replicated each cycle along the time axis.
Thus each node v in the set of nodes V2 is a tuple (r,t), where r refers to a port
of a resource and t refers to the time stamp. The edges in E2 corresponds to
possible connections between nodes in V2. The algorithm starts with an II equal

IPSJ Transactions on System LSI Design Methodology Vol. 4 31–46 (Feb. 2011) c© 2011 Information Processing Society of Japan



42 Coarse-Grained Reconfigurable Array: Architecture and Application Mapping

Fig. 21 Modulo scheduling example (a) simple dataflow graph (b) 2 × 2 array of PEs (c)
modulo scheduling and P&R (d) scheduling and P&R result 45).

to MII (minimum initiation interval), and tries successively larger II, until the
loop is scheduled. For each II, it first generates an initial schedule satisfying the
dependency constraints, but may overuse resources. For example, more than one
operation may be scheduled on one FU at the same cycle. In the inner loop, the
algorithm iteratively reduces resource overuse and tries to come up with a legal
schedule, using simulated annealing. Thus, at every iteration, an operation is
placed randomly in a new location. The connected nets are rerouted accordingly.
Then a cost function is computed to evaluate the new P&R. If the new cost is
lower than the old one, the new P&R of this operation is accepted. Even if the
new cost is higher, there is still a chance to accept the move, depending on the
temprature, which helps to escape from a local minimum. The temperature is

Fig. 22 Comparison of NMS and EMS (a) 1 × 5 CGRA (b) search by NMS (c) search by
EMS 40).

gradually decreased from a high value. So the operation becomes increasingly
difficult to move. The cost function is constructed by taking overused resources
into account. The penalty associated with them is increased every iteration. If
the algorithm runs out of time budget without finding a valid schedule, it starts
with the next II. This algorithm is time-consuming.

The above approach for modulo scheduling relies on simulated annealing which
can result in a long convergence time for loops with modest numbers of opera-
tions. The approach in Ref. 40) speeds up the mapping process through edge-
centric modulo scheduling (EMS) rather than conventional node-centric mod-
ulo scheduling (NMS). Thus, instead of assigning operations to PEs before the
routing of data communications, this approach defers the placement decision
until routing information is discovered. The example in Fig. 22 shows how it
achieves speedup compared to the node-centric approach. Given the hypotheti-
cal 1 × 5 CGRA in Fig. 22 (a), two producer operations P1 and P2 have already
been placed and the consumer operation C is going to be placed. NMS may
place C by visiting all empty slots as shown in Fig. 22 (b). The slots with dotted
circles are failed attempts where the scheduler could not route data from P1 or

IPSJ Transactions on System LSI Design Methodology Vol. 4 31–46 (Feb. 2011) c© 2011 Information Processing Society of Japan



43 Coarse-Grained Reconfigurable Array: Architecture and Application Mapping

Fig. 23 Basic relationship between control steps and contexts 42).

P2 due to resource conflicts. After visiting those slots, the scheduler successfully
places C at slot (3,4), i.e., on PE 3 (FU 3 in the figure) at time 4. On the other
hand, EMS begins with the edge from P1 to C, instead of scheduling operation
C directly. While routing the edge, if an empty slot is encountered, the scheduler
temporarily places the target operation C and checks to see if there are other
edges connected to the consumer; if so, it recursively routes those edges. In the
example, when the router visits slot (2,1) in Fig. 22 (c), it temporarily places C
there and recursively calls the router function to route the edge from P2 to C.
When it fails to route the edge, it resumes the routing from slot (2,1). This
process is continued until it finds a solution at slot (3,4). So, slots (2,1), (2,2),
(2,3), (2,4), and (3,4) are all visited in one routing call, thus making the approach
much faster. This approach has a greedy nature and the solution can easily fall
into local minima, which is addressed by employing several other techniqes.

The approach in Ref. 39) takes compilation approach to map applications onto
parameterizable generic CGRAs. For a better mapping result, it considers the
memory bottleneck problem, which typically limits the performance of many
applications executed on a CGRA. The mapping flow starts with microoperation
trees that represent a given loop body. Then it partitions the tree such that the
set of microoperations in each partition can be mapped to a PE and executed
with a single configuration. Now the problem becomes placing the partitions onto

Fig. 24 Overall mapping flow and environment for DRP 42).

the 2D array of PEs. It is solved by two-levels of mapping: line-level mapping
and plane-level mapping. The line-level mapping groups together the partitions
such that the total number of memory operations in each group does not exceed
the capacity of the memory interface bus. Then the plane-level mapping stitches
together the line placements on the 2D plane of PEs.

The approach in Ref. 42) uses a high-level synthesis (HLS) tool for the mapping
of applications in the C language or BDL (behavioral design language: extension
of C with some constructs removed) onto the DRP 19) architecture shown in
Fig. 9. The HLS tool generates a multi-context Verilog code including a finite
state machine (FSM) that is mapped onto the STC. As shown in Fig. 23, each
context basically corresponds to a control step of the HLS result. However,
multiple steps can be combined to be mapped into a single context to reduce the
number of contexts and achieve better area efficiency. Also PE can be chained and
in this case wire delays should be considered. Since accurate wire delays cannot
be obtained before P&R, a typical wire delay between PEs are added to each
operational delay. Figure 24 shows the overall mapping flow and environment.

IPSJ Transactions on System LSI Design Methodology Vol. 4 31–46 (Feb. 2011) c© 2011 Information Processing Society of Japan



44 Coarse-Grained Reconfigurable Array: Architecture and Application Mapping

Fig. 25 Overall mapping flow for FloRA 43).

The approach in Ref. 43) also adopts HLS techniques to map applications onto
FloRA architecture. It handles loop-level parallelism by applying loop unrolling
and pipelining techniques. For the mapping, it first applies the list schedul-
ing algorithm to find an initial solution and then refines the solution using the
quantum-inspired evolutionary algorithm (QEA) 46), QEA is an evolutionary al-
gorithm that is known to be very efficient compared to other kinds of evolu-
tionary algorithm. It has been first used for optimizing electronic designs in
Ref. 47). The QEA, like genetic algorithms, generates tens or hundreds of pos-
sible cases (through rotation instead of crossover operation) and evaluates each
case to choose the best solution. The fitness function that we use for the QEA is
the performance, which is the inverse of the total latency. The solution is then
used to produce the next generation. This iterative improvement continues until

there is no improvement during a given time interval or the total latency hits
the pre-calculated lower bound of optimal latency. Since the QEA starts with a
relatively good initial solution obtained by the list scheduling, it tends to reach a
better solution sooner than starting with a random seed. When the schedule and
binding of each vertex are determined, it tries to find the routing path among the
vertices with unused remaining PEs to see if these schedule and binding results
violate the interconnect constraint. It considers a Steiner tree (instead of a span-
ning tree) for multiple writes from a single source. Figure 25 shows the overall
mapping flow for FloRA. Aside from the QEA-based mapping, it also provides
optimal solutions based on integer linear programming (ILP). However, since the
ILP-based mapping takes long time, it can be applied only to small examples.

5. Concluding Remarks

For a fixed application, CGRAs cannot beat hardware implementations in
terms of performance, power, and area. In terms of flexibility, they can hardly
beat genenral purpose processors. However, CGRAs may have the best architec-
ture that can provide hardware-like performance and software-like flexibility at
the same time, while maintaining reasonably low power consumption and area.
Therefore, for a CGRA, it is important to find its own sweetspot in the target
system’s design space and optimize it to maximally exploit its merits.

There have been many researches on devising/improving the architectures of
CGRAs and their development environments. In particular, the interconnection
architecture within the PE array has been an important issue of those researches.
¿From the entire system’s perspective, however, devising an efficient interconnec-
tion architecture between the PE array and external memory/processor will be
a more important reserch direction.

Another future direction is integrating multiple (and maybe smaller) CGRAs
in a system, where each of the CGRAs can be optimized such that multiple
concurrent tasks can be accelerated at minimal costs in terms of area, power,
performance, and flexibility. This again requires researches on efficient intercon-
nection networks among the CGRAs, other processing elements, and memories.

Yet more important issue is developing good programming models and com-
pilers for seamless mapping of application software onto the processor-CGRA

IPSJ Transactions on System LSI Design Methodology Vol. 4 31–46 (Feb. 2011) c© 2011 Information Processing Society of Japan



45 Coarse-Grained Reconfigurable Array: Architecture and Application Mapping

combined systems, so that the architecture does not put too much burden on the
application developer. This requires researches on automatically generating code
for the interface between the code blocks executed on processors and CGRAs, in
addition to the researches on traditional issues of parallel programming. Since it
heavily depends on the interface architecture, the researches may have to consider
hardware-software codesign.

Acknowledgments This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea government (MEST)
(no.2010-0019522).

References

1) Dutt, N. and Choi, K.: Configurable Processors for Embedded Computing, IEEE
Computer, Vol.36, No.1, pp.120–123 (2003).

2) Hauser, J. and Wawrzynek J.: Garp: A MIPS Processor with a Reconfigurable
Coprocessor, FCCM, pp.12–21 (1997).

3) Yeung, A.K.W. and Rabaey, J.M.: A Reconfigurable Data-driven Multiprocessor
Architecture for Rapid Prototyping of High Throughput DSP Algorithms, HICSS-
26, pp.169–178 (1993).

4) Hartenstein R.W. and Kress, R.: A Datapath Synthesis System for the Reconfig-
urable Datapath Architecture, ASP-DAC, pp.479–484 (1995).

5) Hartenstein, R., Herz, M., Hoffmann, T. and Nageldinger, U.: On Reconfigurable
Co-Processing Units, Reconfigurable Architectures Workshop (1998).

6) Bittner, R.A., Athanas, P.M. and Musgrove, M.D.: Colt: An Experiment in Worm-
hole Run-time Reconfiguration, SPIE Photonics East (1996).

7) Ebeling, C., Cronquist, D. and Franklin, P.: Configurable Computing: The Cata-
lyst for High-Performance Architectures, IEEE Int. Conf. Application-Specific Sys-
tems, Architectures, and Processors, pp.364–372 (1997).

8) Mirsky, E. and DeHon, A.: MATRIX: A Reconfigurable Computing Architec-
ture with Configurable Instruction Distribution and Deployable Resources, FCCM,
pp.157–166 (1996).

9) Waingold, E., Taylor, M., Srikrishna, D., Sarkar, V., Lee, W., Lee, V., Kim, J.,
Frank, M., Finch, P., Barua, R., Babb, J., Amarasinghe, S. and Agarwal, A.: Baring
It All to Software: RAW Machines, IEEE Computer, pp.86–93 (1997).

10) Rabaey, J.: Reconfigurable Processing: The Solution to Low Power Programmable
DSP, ICASSP (1997).

11) Goldstein, S.C., Schmit, H., Moe, M., Budiu, M., Cadambi, S., Taylor, R.R. and
Laufer, R.: PipeRench: A Coprocessor for Streaming Multimedia Acceleration,
ISCA (1999).

12) Miyamori, T. and Olukotun, K.: REMARC: Reconfigurable Multimedia Array
Coprocessor, FPGA (1998).

13) Singh, H., Lee, M.-H., Lu, G., Kurdahi, F.J., Bagherzadeh, N. and Lang, T.:
MorphoSys: An Integrated Re-configurable Architecture, NATO RTO Symp. on
System Concepts and Integration (1998).

14) Singh, H., Lee, M.-H., Lu, G., Kurdahi, F.J., Bagherzadeh, N. and Filho,
E.M.C.: Morphosys: An Integrated Reconfigurable System for Data-Parallel and
Computation-Intensive Applications, IEEE Trans. Comput., Vol.49, No.5, pp.465–
481 (2000).

15) Marshall, A., Stansfield, T., Kostarnov, I., Vuillemin, J. and Hutchings, B.: A
Reconfigurable Arithmetic Array for Multimedia Applications, FPGA (1999).

16) Alsolaim, A., Becker, J., Glesner, M. and Starzyk, J.: Architecture and Application
of a Dynamically Reconfigurable Hardware Array for Future Mobile Communica-
tion Systems, FCCM (2000).

17) Mei, B., Vernalde, S., Verkest, D., Man, H.D. and Lauwereins, R.: ADRES: An
Architecture with Tightly Coupled VLIW Processor and Coarse-Grained Reconfig-
urable Matrix, FPL (2003).

18) Lee, D., Jo, M., Han, K. and Choi, K.: FloRA: Coarse-Grained Reconfigurable
Architecture with Floating-Point Operation Capability, International Conference
on Field-Programmable Technology, pp.376–379 (2009).

19) Motomura, M.: A Dynamically Reconfigurable Processor Architecture, Micropro-
cessor Forum (2002).

20) Suzuki, N., Kurotaki, S., Suzuki, M., Kaneko, N., Yamada, Y., Deguchi, K.,
Hasegawa, Y. and Amano, H.: Implementing and Evaluating Stream Applications
on the Dynamically Reconfigurable Processor, FCCM (2004).

21) PACT XPP Technologies: XPP-III Processor Overview.
http://www.pactxpp.com/

22) Duller, A., Panesar, G. and Towner, D.: Parallel Processing the picoChip way!,
Communicating Processing Architectures, Broenink, J.F. and Hilderink, G.H. (eds.),
IOS Press, pp.299–312 (2003).

23) Hartenstein, R.: A Decade of Reconfigurable Computing: A Visionary Retrospec-
tive, in Design Automation and Test in Europe Conf., pp.642–649 (2001).

24) Lee, M.-H., Singh, H., Lu, G., Kurdahi, F.J., Bagherzadeh, N., Filho, E.M.C. and
Alves, V.C.: Design and Implementation of the MorphoSys Reconfigurable Com-
puting Processor, Journal of VLSI Signal Processing, Vol.24, pp.147–164 (2000).

25) Intel: Embedded Pentium Processor with MMX Technology Datasheet.
http://www.intel.com/design/archives/Processors/mmx/

26) Chang, K. and Choi, K.: Memory-Centric Communication Architecture for Re-
configurable Computing, International Symposium on Reconfigurable Computing:
Architectures, Tools and Applications, pp.400–405 (2010).

27) Hartenstein, R., Herz, M., Hoffmann, T. and Nageldinger, U.: KressArray Xplorer:

IPSJ Transactions on System LSI Design Methodology Vol. 4 31–46 (Feb. 2011) c© 2011 Information Processing Society of Japan



46 Coarse-Grained Reconfigurable Array: Architecture and Application Mapping

A New CAD Environment to Optimize Reconfigurable Datapath Array Architec-
tures, Asia and South Pacific Design Automation Conf., pp.163–168 (2000).

28) Mei, B., Vernalde, S., Verkest, D. and Lauwereins, R.: Design Methodology for a
Tightly Coupled VLIW/Reconfigurable Matrix Architecture: A Case Study, Design
Automation and Test in Europe Conf., pp.1224–1229 (2004).

29) Kim, Y., Kiemb, M., Park, C., Jung, J. and Choi, K.: Resource Sharing and
Pipelining in Coarse-Grained Reconfigurable Architecture for Domain-Specific Op-
timization, Design Automation and Test in Europe Conf., pp.12–17 (2005).

30) Lambrechts, A., Raghavan, P., Jayapala, M., Catthoor, F. and Verkest, D.: Inter-
connect Exploration for Energy Versus Performance Tradeoffs for Coarse Grained
Reconfigurable Architectures, IEEE Trans. Very Large Scale Integration (VLSI )
Systems, Vol.17, No.1, pp.151–155 (2009).

31) Mei, B., Vernalde, S., Verkest, D., De Man, H. and Lauwereins, R.: DRESC: A
Retargetable Compiler for Coarse-Grained Reconfigurable Architectures, Interna-
tional Conference on Field Programmable Technology, pp.166–173 (2002).

32) The IMPACT Research Group. http://impact.crhc.illinois.edu/
33) Bansal, N., Gupta, S., Dutt, N., Nicolau, A. and Gupta, R.: Network Topology

Exploration of Mesh-Based Coarse-Grain Reconfigurable Architectures, Design Au-
tomation and Test in Europe Conf., pp.474–479 (2004).

34) Kim, Y., Park, I., Choi, K. and Paek, Y.: Power-conscious configuration cache
structure and code mapping for coarse-grained reconfigurable architec-ture, Inter-
national Symposium on Low Power Electronics and Design, pp.310–315 (2006).

35) Kwok, Z. and Wilton, S.: Register File Architecture Optimization in a Coarse-
Grained Reconfigurable Architecture, Symposium on Field-Programmable Custom
Computing Machines (2005).

36) Novo, D., Bougard, B., Raghavan, P., Schuster, T., Kim, H.-S., Yang, Ho. and Van
der Perre, L.: Energy-Performance Exploration of a CGA-Based SDR Processor,
SDR 06 Technical Conference and Product Exposition (2006).

37) Callahan, T.J. and Wawrzynek, J.: Instruction-Level Parallelism for Reconfig-
urable Computing, IWFPL, pp.248–257 (1998).

38) Lee, W., Barua, R., Frank, M., Srikrishna, D., Babb, J., Sarkar, V. and Ama-
rasinghe, S.P.: Space-Time Scheduling of Instruction Level Parallelism on a RAW
Machine, ASPLOSV (1998).

39) Lee, J.-e., Choi, K. and Dutt, N.: Compilation Approach for Coarse-Grained Re-
configurable Architectures, IEEE Design & Test of Computers, Vol.20, No.1, pp.26–
33 (2003).

40) Park, H., Fan, K., Mahlke, S.A., Oh, T., Kim, H. and Kim, H.: Edge-Centric Mod-
ulo Scheduling for Coarse-Grained Reconfigurable Architectures, PACT (2008).

41) Ahn, M., Yoon, J.W., Paek, Y., Kim, Y., Kiemb, M. and Choi, K.: A Spatial Map-
ping Algorithm for Heterogeneous Coarse-Grained Reconfigurable Architectures,
Design Automation and Test in Europe Conf., pp.363–368 (2006).

42) Toi, T., Nakamura, N., Kato, Y., Awashima, T., Wakabayashi, K. and Jing, L.:
High-Level Synthesis Challenges and Solutions for a Dynamically Reconfigurable
Processor, ICCAD, pp.702–708 (2006).

43) Lee, G., Lee, S., Choi, K. and Dutt, N.: Routing-Aware Application Mapping
Considering Steiner Point for Coarse-Grained Reconfigurable Architecture, ARC,
pp.231–243 (2010).

44) Rau, B.R.: Iterative Modulo Scheduling, Technical Report HPL-94-115, Hewlett-
Packard Lab (1995).

45) Mei, B., Vernalde, S., Verkest, D., De Man, H. and Lauwereins, R.: Exploit-
ing Loop-Level Parallelism on Coarse-Grained Reconfigurable Architectures Using
Modulo Scheduling, Design Automation and Test in Europe Conf. (2003).

46) Han, K.-H. and Kim, J.-H.: Quantum-Inspired Evolutionary Algorithm for a Class
of Combinatorial Optimizaion, IEEE Trans. Evolutionary Computation, Vol.6,
No.6, pp.580–593 (2002).

47) Ahn, Y., Han, K., Lee, G., Song, H., Yoo, J. and Choi, K.: SoCDAL: System-on-
Chip Design AcceLerator, ACM Trans. Design Automation of Electronic Systems,
Vol.13, No.1 (2008).

(Received October 6, 2010)
(Released February 8, 2011)

(Invited by Editor-in-Chief: Hidetoshi Onodera)

Kiyoung Choi was born in 1955. He received his B.S. degree
in electronics engineering from Seoul National University in 1978,
M.S. degree in electrical and electronics engineering from Korea
Advanced Institute of Science and Technology in 1980, and Ph.D.
degree in electrical engineering from Stanford University in 1989.
From 1989 to 1991, he was with Cadence Design Systems, Inc. In
1991, he joined the faculty of the Department of Electrical Engi-

neering and Computer Science, Seoul National University. His primary interests
include various aspects of computer-aided electronic systems design including
embedded systems design, high-level synthesis, and low-power systems design.
He is also interested in computer architecture and especially in configurable and
reconfigurable computer architecture design.

IPSJ Transactions on System LSI Design Methodology Vol. 4 31–46 (Feb. 2011) c© 2011 Information Processing Society of Japan


