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Abstract: As battery runtime and overheating problems for portable devices become unignorable, energy-aware LSI
design is strongly required. Moreover, an interconnection delay should be explicitly considered there because it ex-
ceeds a gate delay as the semiconductor devices are downsized. We must take account of energy efficiency and
interconnection delays even in high-level synthesis. In this paper, we first propose a huddle-based distributed-register
architecture (HDR architecture), an island-based distributed-register architecture for multi-cycle interconnect commu-
nications where we can develop several energy-saving techniques. Next, we propose an energy-efficient high-level
synthesis algorithm for HDR architectures focusing on multiple supply voltages. Our algorithm is based on itera-
tive improvement of scheduling/binding and floorplanning. In the iteration process, a huddle, which is composed of
functional units, registers, controller, and level converters, are very naturally generated using floorplanning results.
By assigning high supply voltage to critical huddles and low supply voltage to non-critical huddles, we can finally
have energy-efficient floorplan-aware high-level synthesis. Experimental results show that our algorithm achieves 45%
energy-saving compared with the conventional distributed-register architectures and conventional algorithms.

Keywords: high-level synthesis, energy optimization, multiple supply voltages, interconnection delay, distributed-
register architectures

1. Introduction

In recent LSI design, battery runtime and heat generation are
becoming the two main problems. Energy-aware LSI designs are
strongly required to solve both of these problems. An intercon-
nection delay, which is a delay necessary for the communication
between modules inside an LSI chip, is another problem. As de-
vice feature size decreases, the delay becomes the dominant fac-
tor of circuit total delay and it is predicted that this trend will
continue over successive years. High-level synthesis is one of the
LSI design automation techniques and it is quite necessary to deal
with energy efficiency as well as interconnection delays there.

Several energy-aware high-level synthesis algorithms have
been proposed which deal with multiple supply voltages [1], [6],
[9], [10], [14], [15], [16], [19], [20]. Reducing the supply volt-
age, however, increases the circuit delay. To satisfy the overall
throughput constraint, the high supply voltage should be assigned
to elements on critical paths and the low supply voltage should be
assigned to elements on the non-critical paths. These algorithms
proposed so far, however, optimizes only power or energy, and
they do not consider the interconnection delays at all.

Recently, several interconnection-aware high-level synthesis
algorithms have been proposed [2], [5], [7], [12], [13]. They are
not based on a traditional centralized-register architecture, but
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they are based on a distributed-register architecture which re-
alizes multi-cycle interconnect communications by giving local
registers to functional units.

A generalized distributed-register architecture (GDR architec-

ture) is proposed in Ref. [13]. GDR realizes multi-cycle inter-
connect communications by preparing two kinds of registers: lo-
cal registers and shared register groups. In Ref. [13], schedul-
ing/binding as well as floorplanning are simultaneously opti-
mized by using iterative synthesis flow. Since functional units,
shared/local registers, and global/local controllers can be very
flexibly arranged on a GDR architecture, it can obtain high per-
formance design. However, the flexibility of GDR may become
the disadvantage in terms of energy efficiency. Power reduction
techniques including the ones using multiple supply voltages as-
sume adding new modules such as a level converter. According
to Ref. [13], the synthesis problem is difficult enough only to con-
sider shared/local registers and global/local controllers. It is dif-
ficult to add any new modules to GDR architecture.

A regular distributed-register architecture (RDR architecture)
is proposed in Ref. [2]. RDR divides a chip into uniform-sized
islands and arranges functional units, a register file, and a con-
troller in each island. Inside an island, interconnection delay can
be ignored by using a local register. By introducing uniform-
sized islands, RDR realizes multi-cycle interconnect communi-
cation during inter-island data transfer. In RDR, it is very easy to
predict interconnection delays even in high-level synthesis stage
since an entire chip is divided into uniform-sized islands. In addi-
tion, it is easy to cope with the module addition/deletion in an is-
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Fig. 1 A huddle configuration.

land since the island abstracts modules inside. RDR also has sev-
eral improved architectures: RDR-Pipe [2] decreases the number
of connections by adding a new module; DRFM [3] is proposed
to implement the RDR architecture on FPGA devices; Ref. [17]
proposes fault-secure high-level synthesis on RDR architectures
by adding new modules to vacant islands. However, RDR has the
area overhead since it divide an entire chip into uniform-sized is-
lands. Area overhead causes useless modules and will increase
interconnection delays.

Based on the above discussions, we propose a high-level
synthesis algorithm considering energy-efficiency and intercon-
nect delays simultaneously. First, we propose a huddle-based

distributed-register architecture (HDR architecture), which is
one of the distributed-register architecture focusing on energy-
efficiency. In HDR, functional units, registers, controllers, and
level converters are abstracted into a non-uniform island, which
we call a huddle.

Second, we propose a high-level synthesis algorithm which is
associated with an HDR architecture. The proposed algorithm
can reflect floorplan information in scheduling/binding by us-
ing iterative synthesis flow. At that time, modules which are
placed close to each other are huddled into a non-uniform is-
land. Then each huddle shares functional units, registers, con-
trollers, and level converters. Interconnection delays inside a hud-
dle can be ignored by using local registers inside and HDR also
support multi-cycle interconnect communications during inter-
huddle data transfer. Every huddle has its own supply volt-
age; low supply voltages are assigned to huddles on non-critical
paths and high supply voltages are assigned to huddles on criti-
cal paths. Experimental results show that our algorithm achieves
45% energy-saving compared with the conventional distributed-
register architectures and conventional algorithms.

2. HDR Architecture

In this section, we briefly review recent distributed-register ar-
chitectures, GDR and RDR, and point out that they are not suit-
able for applying energy-saving techniques. After that, we pro-
pose a new distributed-register architecture called HDR.

Generalized distributed-register (GDR) architectures proposed
in Ref. [13] can synthesize high-performance and small-area
circuits by introducing shared/local registers and global/local
controllers. Since functional units, shared/local registers, and
global/local controllers can be very flexibly arranged on a GDR

architecture, it can obtain high performance design. However,
this flexibly can become a disadvantage that its associated high-
level synthesis problems are too complex [13] where we have to
consider which register is shared or local as well as which con-
troller is global or local. In order to realize power reduction us-
ing multiple supply voltages, it is necessary to add new modules,
such as level converters when changing voltages. It definitely in-
creases the complexity of the high-level synthesis problem and it
must be very difficult to cope with energy-saving techniques in
GDR architecture synthesis.

Regular distributed-register (RDR) architectures proposed in
Refs. [2], [17] can predict interconnection delays in high-level
synthesis accurately by dividing a chip into uniform-sized is-
lands. It arranges functional units, local registers, and a con-
troller inside an island, and multi-cycle interconnect communica-
tion during inter-island data transfer can be also realized. In RDR
architectures, a module can be easily added to an island since it
abstracts each module inside. Reference [17] realizes fault-secure
high-level synthesis using RDR based on adding functional units
to an island. On the other hand, RDR architectures have signif-
icant area overhead since they divide a chip into uniform-sized
islands. Area overhead may lead the increase of useless modules
as well as interconnection delays. We can say that RDR archi-
tectures are not suitable for applying energy-saving techniques,
either.

Distributed-register architectures suitable for applying energy-
saving techniques are the ones which have small area and low
power consumption and in which it is easy to add new mod-
ules. Based on the discussion above, we propose a huddle-
based distributed-register (HDR) architecture, which is one of the
distributed-register architecture but has energy-efficiency com-
bining the advantages of RDR and GDR.

Our HDR architectures introduce a non-uniform sized island
called a huddle into GDR architectures in which each module in-
side is abstracted. As seen in RDR architectures, it is very easy
to add new modules into a non-uniform sized island. Our hud-
dle has non-uniform rectangular area determined by clock period
constraints which includes functional units, registers, controllers,
and level converters. Since our huddles have non-uniform rect-
angular area, an HDR architecture can be synthesized with small
area and small energy consumption.

Figure 1 shows a huddle configuration. A huddle h consists of
the following components:
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Huddled Local Registers (HLRs): Dedicated local registers
in h.

Huddled Functional Units (HFUs): Dedicated functional
units in h. HFUs can only access the HLRs in h.

Finite State Machine (FSM): A dedicated controller in h.
FSM controls the HFU and the HLR in h.

Huddled Level Converters (HLCs): Dedicated level convert-
ers in h. HLCs are used during inter-huddle data transfer
across different voltage huddles.

Huddles are placed as in Fig. 2. Interconnection delays can
be ignored by using HLRs inside a huddle and multi-cycle inter-
connect communication during inter-huddle data transfer can be
realized. HLCs are used during multi-cycle interconnect commu-
nication across different voltage huddles.

Example 1. Figure 3 shows the high-level synthesis results of

HDR, GDR [13], and RDR [2]. DCT is used as a benchmark ap-

plication. HDR drastically reduces synthesis complexity as com-

pared to GDR because HDR abstracts modules by introducing

huddles. HDR also reduces area overhead as compared to RDR

because huddles have non-uniform rectangular area. �

Fig. 2 HDR architecture.

(a) HDR. (b) GDR. (c) RDR.

Fig. 3 Experimental results of HDR, GDR [13], and RDR [2] when DCT is synthesized.

3. Problem Definition

A control-data flow graph (CDFG) G(N, E) is a directed graph,
where a node set N is composed of an operation node set No and a
branching control node set Nc (start and end nodes of conditional
branches), and an edge set E is composed of a data-flow edge set
Ed and a control-flow edge Ec set. Tclk refers to a clock period
constraint and S max refers to a control step constraint.

Let F = { f1, · · · , fp} be a set of functional units and Df ( fi) be
a delay of the functional unit fi in F. S f ( fi) shows the number of
control steps required to execute the functional unit fi and S f ( fi)
is defined by S f ( fi) = �Df ( fi)/Tclk�. Let E( fi) be the energy con-
sumed by the functional unit fi in S f ( fi) steps.

Let H = {h1, · · · , hq} be a set of huddles in our HDR architec-
ture. Each functional units are bound to any one of the huddles.
Hud( fi) is the huddle to which fi is bound. F(h j) is a set of func-
tional units which are bound to h j. Dreg(h j) is a delay of HLRs in
h j.

We consider the three supply voltages, vl, vm, and vh (vl < vm <
vh), which are assigned to each huddle. V(h j) is a supply volt-
age which are assigned to the huddle h j. Dlc(vl, vm) is a delay of a
level converter which changes the voltage from vl to vm. Likewise,
we can define Dlc(vl, vh), Dlc(vm, vl), and so on.

S lack( f j) is defined by:

S lack( f j) = Tclk · S f ( fi) − Df ( fi). (1)

S lack( f j) shows the slack time which can be used by data transfer
for succeeding operations.

According to the island defined by RDR [2], The width and
height of each huddle must satisfy the following huddle size con-

straint:

2 · Dw(W(h j) + H(h j)) + Dreg(h j) ≤ min
fi∈F(h j)

{S lack( fi)} (2)

where W(h j) and H(h j) are the width and height of the huddle h j,
respectively. Dw(x) is an interconnection delay whose length is x.
In our proposed algorithm, we obtain the value of (W(h j)+H(h j))
so that it satisfies the huddle size constraint and determine W(h j)
and H(h j) by using the aspect ratio predefined for each huddle.

Let Dist(h j, hk) be the Manhattan distance between the huddles
h j and hk. Then Dw(Dist(h j, hk)) shows the interconnection delay
between them. Let fi be a functional unit bound to the huddle h j,
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Fig. 4 An example of HDR architecture configuration.

Fig. 5 An example of scheduling/binding for HDR architecture.

i.e., Hud( fi) = h j. Tr( fi, hk) shows the inter-huddle data transfer
delay from fi to HLRs in hk which is defined by:

Tr( fi, hk) = Dw(Dist(h j, hk)) + Dlc(V(h j),V(hk)) + Dreg(hk).
(3)

DT ( fi, hk) shows the number of clock cycles required to transfer
data from fi to hk which is defined by:

DT ( fi, hk) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, (S lack( fi) ≥ Tr( fi, hk))

�Tr( fi, hk)/Tclk�. (S lack( fi) < Tr( fi, hk))

(4)

In the case of S lack( fi) ≥ Tr( fi, hk), the functional unit fi di-
rectly stores its output in the register file of huddle hk. Thus, the
data transfer requires no extra cycles. In the case of S lack( fi) <
Tr( fi, hk), the functional unit fi first stores its output into the lo-
cal register file in its huddle h j (= Hud( fi)). In the next cycle,
we perform the data transfer from the huddle h j to the huddle
hk. The data transfer requires �Tr( fi, hk)/Tclk� cycles. Then the
data transfer table DT can be defined by a p × q matrix whose
(i, k)-element is expressed by DT ( fi, hk).

Example 2. Figure 4 and Fig. 5 show an example of HDR archi-

tecture when a clock period constraint Tclk = 3 ns and a control

step constraint S max = 5 are given. Table 1 shows delay and en-

ergy consumption of each functional unit. Table 2 shows delay of

each level converter.

As in Fig. 4, the input functional units are f1 = MUL1, f2 =

MUL2, f3 = MUL3, and f4 = ADD1. In this example, we

have huddle configurations of F(h1) = { f1}, F(h2) = { f2}, and

F(h3) = { f3, f4}. Voltages are assigned to the huddles as in Fig. 4:

Table 1 Delay/energy of functional units.

Adder Multiplier
vh 1 ns/144 fJ 2 ns/1,440 fJ
vm 2 ns/100 fJ 4 ns/1,000 fJ
vl 4 ns/64 fJ 8 ns/640 fJ

Table 2 Level converter delays.

vh vm vl
vh - 0.5 ns 1.0 ns
vm 0.5 ns - 2.0 ns
vl 1.0 ns 2.0 ns -

V(h1) = V(h2) = vh and V(h3) = vm.

Let Dw(Dist(h1, h3)) = 1 ns and Dreg(h3) = 0.5 ns. S lack( f1)
can be calculated by:

S lack( f1) = 3 ns × 1 − 2 ns = 1 ns.

Tr( f1, h3) is calculated by

Tr( f1, h3) = 1 ns + 0.5 ns + 0.5 ns = 2 ns.

Since S lack( f1) < Tr( f1, h3), DT ( f1, h3) can be calculated by:

DT ( f1, h3) = �2/3� = 1.

Data transfer from the functional unit f1 to the huddle h3 requires

1 clock cycle. As in Fig. 5, the data transfer from the node 4 (*)

to the node 7 (+) requires extra control step (CS3) for multi-cycle

interconnect communication. �

Based on the above definitions, our high-level synthesis prob-
lem is defined as follows:

Definition 1. Our high-level synthesis problem is, for a given

CDFG, a clock cycle constraint, a control step constraint, and a

set of functional units, to assign each operation node to a control

step and a functional unit, to bind each functional unit to each

huddle, and to assign a supply voltage to each huddle so that the

given CDFG is executed correctly considering multi-cycle inter-

connect communications. The objective is to minimize the total

energy consumption.

4. An Energy-efficient High-level Synthesis Al-
gorithm for HDR Architectures

In this section, we propose a new high-level synthesis algo-
rithm targeting HDR architectures which deals with multiple sup-
ply voltages and multi-cycle interconnect communication simul-
taneously.

Generally, high-level synthesis algorithms considering multi-
cycle interconnect communication are composed of schedulings,
bindings, and floorplannings and classified into the following two
types:

Type 1: Schedulings, bindings, and floorplannings are executed
a predetermined number of times in a predetermined order.

Type 2: Schedulings, bindings, and floorplannings are executed
repeatedly as an iterative refinement flow.

In Type 1, a required time to synthesize a chip can be ex-
pected easily since how many times each synthesis step is exe-
cuted and its execution order are determined. If we know in ad-
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vance how many times we need to perform each high-level syn-
thesis step as well as its best execution order, Type 1 will be the
best choice. MCAS [2], one of the RDR architecture synthesis
algorithms, uses an approach based on Type 1 above. Since RDR
architectures have uniform-sized islands, inter-island delays are
unchanged even if RDR island configurations are changed. Then
we can execute a predetermined design flow as in Type 1 above.

In Type 2, several informations such as scheduling results and
placement results are fed back to each other since each synthesis
step is executed repeatedly as many times as needed. A GDR
architecture synthesis algorithm proposed in Ref. [13] uses an
approach based on Type 2. By iteratively executing schedul-
ing/binding steps and floorplanning steps, a current schedul-
ing/binding step can consider interconnection delays obtained in
a previous floorplanning step. The shape and size of each module
are determined in a scheduling/binding step and a floorplanning
step is done using these module informations. Because each syn-
thesis step affects each other, an iterative refinement flow as in
Type 2 must be the best choice targeting GDR architectures.

As far as we know, all the existing high-level synthesis ap-
proaches based on Type 1 just ignore level converter delays or as-
sume that level converters are inserted between all the two mod-
ules [1], [6], [9], [10], [14], [15], [16], [19], [20]. This is be-
cause it is very difficult to insert level converters and other re-
quired components when they are needed. On the other hand, we
can consider level converters and other required components in
scheduling and binding according to module configurations de-
termined at the previous iteration in Type 2. It is very natural that
we develop an algorithm based on Type 2 when we consider mul-
tiple supply voltages in HDR architectures. Totally, we can say
that Type 2 will be the best choice in HDR architecture synthesis
algorithms.

An HDR architecture synthesis algorithm based on Type 2
must have the following four steps in each iteration:

• scheduling/binding
• register/controller synthesis and floorplanning
• huddling, and
• unhuddling.

In a scheduling/binding step, each operation node in a CDFG is
assigned to a control step and a functional unit considering mul-
tiple supply voltages and multi-cycle interconnect communica-
tions. In a register/controller synthesis and floorplanning step,
register file and controller configuration in each huddle are de-
termined using a scheduling/binding result and every huddle is
placed on a chip. In a huddling step, adjacent huddles are merged
into a single huddle. In an unhuddling step, a single huddle is
partitioned into several huddles.

Now we face a problem when and how many times each of
the above four synthesis steps is executed in each iteration (see
Fig. 6). Assume that we have initial huddle configurations some-
how. Then we can execute (i) a scheduling/binding step based
on them. After a scheduling/binding step is done, (ii) a regis-
ter/controller synthesis and floorplanning step must be executed
since an operation scheduling to a control step and binding to
a function unit may be changed. After that we can merge two

Fig. 6 Energy-efficient high-level synthesis algorithm targeting HDR archi-
tectures.

or more huddles into a single huddle since floorplanning may be
changed. This means that (iii) a huddling step can be done after
Step (ii). If several huddles are merged into a single huddle, a reg-
ister/controller synthesis is needed since each huddle has a single
register file and a controller. We need (iv) a register/controller
synthesis and floorplanning step again. Finally, we try (v) an un-
huddling step and if no huddles are unhuddled, we can finish the
loop or we continue Steps (i)–(v) again.

The remaining problem is how to obtain initial huddle config-
urations. We can assume the following two initial huddle config-
uration options:

Option 1: As an initial state, we assume a single huddle which
contains all the given functional units.

Option 2: As an initial state, we assume several huddles, each
of which includes only a single functional unit.

In Option 1, our synthesis flow is roughly based on unhuddling
a single huddle into multiple huddles. However, we cannot find
out which part in a huddle will cause a multi-cycle commutation
since we have only a single huddle or two in an early iteration
stage. Moreover, we cannot assign multiple supply voltages to a
single huddle since each huddle has its own supply voltage.

In Option 2, our synthesis flow is roughly based on huddling
two or more huddles into a single huddle. If two or more hud-
dles are placed close to each other, they should be merged into a
single huddle unless they cause interconnection delay errors. We
can also deal with multiple supply voltages by considering mul-
tiple huddles and assigning an appropriate supply voltage to each
of them.
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Based on the above discussion, we can say that Option 2 is
the best choice as our initial huddle configurations. Overall, we
can summarize that Fig. 6 shows the best synthesis flow targeting
HDR architectures. In initial huddling, initial huddle configura-
tion and placement are determined by given functional units. If p

functional units are given as input, we prepare just p huddles in
which each functional unit is assigned to each huddle. We merged
huddles by huddling during Steps (i)–(v) iteratively. When no
huddles are partitioned in Step (v) (in other words, no timing vi-
olations occur in Step (iv)), the iteration is finished *1. In the rest
of this section, we will propose each process in Fig. 6. Note that
we deal with only DFG for simplicity as a motivated example
but we can deal with CDFG similarly. In the same way, we only
deal with adders and multipliers with fixed bit width as functional
units for simplicity.

4.1 Initial Huddling
In initial huddling, initial huddle configuration and placement

are determined by given functional units. If p functional units
are given as input, we prepare just p huddles in which each func-
tional unit is assigned to each huddle and the supply voltage vh
is assigned to each huddle. All the huddles are overlapped with
each other where we can ignore interconnection delays between
huddles here. F(hi), V(hi), and Dist(hi, h j) are set to be:

F(hi) = { fi}, (1 ≤ i ≤ p)

V(hi) = vh, (1 ≤ i ≤ p)

Dist(hi, h j) = 0. (1 ≤ i, j ≤ p)

After initial huddling, we will start the first iteration.

4.2 Scheduling/Binding
When the supply voltage assigned to operations is changed, the

execution timing and the energy consumption of the operation are
also changed. When low supply voltage is assigned to an opera-
tion, its execution time will increase and its energy consumption
will decrease. If an operation execution timing is changed, we
may change the operation scheduling and/or operation binding.
Our algorithm has five steps (i)–(v) but only Step (i) determines
operation execution timings. It is very natural that we assign sup-
ply voltages to huddles in the scheduling/binding step and the
other steps will be carried out based on supply voltages deter-
mined in Step (i).

Then our scheduling/binding problem is, for given a CDFG
G(N, E), a clock period constraint Tclk, a control step constraint
S max, a set of functional units, huddle configuration, an initial
supply voltage assigned to each huddle, and huddle placement,
to find scheduling and functional unit binding of every node in a
given CDFG and to determine supply voltages assigned to given
huddles so as to minimize the total energy consumption meeting
clock period constraint and control step constraint. Note that, in-
terconnection delays are ignored in the first iteration since floor-

*1 It is not guaranteed that our algorithm always generates converged re-
sults even when there exists a feasible solution, but the algorithm has
converged in 2–8 iterations in our experimental results in Section 5. Note
that other distributed-register architecture synthesis algorithms also have
the similar convergence problem above.

planning is not carried out and we assume that all the huddles are
overlapped with each other.

Our scheduling/binding is composed of the three phases: initial
phase, voltage-increasing phase, and voltage-decreasing phase.
In the initial phase, scheduling and binding are executed accord-
ing to the previous huddle placement and voltages. Since opera-
tion binding may be changed, its voltages may be changed in this
phase but huddle voltages are not changed. Voltage-increasing
phase is executed when the initial phase result does not satisfy
the control step constraint and huddle voltages are increased so
as to satisfy the control step constraint. Voltage-decreasing phase
decreases huddle voltages so as to minimize total energy con-
sumption while meeting the control step constraint.

In order to minimize the energy consumption so as to satisfy
control step constraint through the voltage-increasing phase and
the voltage-decreasing phase, we design a priority Ps(h j) for a
huddle hi. We will change the supply voltage of hi based on its
priority. The priority Ps(h j) is calculated by:

Ps(h j) =
∑

fi∈F(h j)

E( fi)/D( fi). (5)

According to Ref. [10], Ps(h j) expresses the energy-efficient ef-
fect that are caused by assigning the voltage to h j. If low voltage
can assigned to h j that has high Ps(h j), we can gain farther reduc-
tion of overall energy consumption.

Initial phase is executed as a first step of scheduling/binding
according to huddle placement and voltages obtained by the
previous iteration. Figure 7 shows the initial phase. Basi-
cally, we use data-transfer-table based scheduling [12]. If the
initial phase result here does not satisfy the control step con-
straint, we will execute the voltage-increasing phase. Other-
wise, we will execute the voltage-decreasing phase.

Voltage-increasing phase is executed when the initial phase
result does not satisfy the control step constraint. Th voltage-
increasing phase will increase huddle voltages and satisfy
the control step constraint. Figure 8 shows the voltage-
increasing phase. We first try to increase the huddle volt-
age from vl to vm to satisfy the control step constraint. At
that time we pick up the huddle h j with the voltage vl whose
priority Ps(h j) is the smallest first. This is because, even if
the supply voltage of h j is increased to from vl to vm, we
expect that overall energy consumption is as small as possi-
ble satisfying the control step constraint. If the control step
constraint is not satisfied when we increase all the huddle
voltages from vl to vm, we try to increase the huddle voltage
from vm to vh in a similar way.

Voltage-decreasing phase decreases huddle voltages so as to
minimize total energy consumption while meeting the con-
trol step constraint. Figure 9 shows the voltage-decreasing
phase. We first try to decrease the huddle voltage from vh
to vm while meeting the control step constraint. At that time
we pick up the huddle h j with the voltage vh whose priority
Ps(h j) is the largest first. If we succeed to decrease the hud-
dle voltage for the largest priority huddle, we can drastically
decrease the total energy consumption. After that, we try to
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Initial Phase.

( 1 ) Calculate data transfer table DT ( fi, hk) for each functional unit fi
and each huddle hk.

( 2 ) Perform scheduling/binding based on the data transfer table
DT ( fi, hk) [12].

( 3 ) If the result satisfies the control step constraint, perform (a)–(f) so
as to minimize energy consumption:
( a ) If there are multipliers with the voltage vl and vm,

( i ) Select a multiplication node n which are executed with
the voltage vm.

( ii ) Assume that n is executed with the voltage vl
(not vm), and perform scheduling/binding based on
DT ( fi, hk) [12] without changing any other operation
voltages.

( iii ) If the result satisfies the control step constraint, we ac-
cept the result. Otherwise, we execute n with the origi-
nal voltage vm.

( iv ) Repeat the above steps until we try all the multiplica-
tion nodes executed with vm.

( b ) If there are multipliers with the voltage vl and vh, perform
the same steps above for multiplication node executed with
the voltage vh.

( c ) If there are multipliers with the voltage vm and vh, perform
the same steps above for multiplication node executed with
the voltage vh.

( d ) If there are adders with the voltage vl and vm, perform the
same steps above for addition node executed with the volt-
age vm.

( e ) If there are adders with the voltage vl and vh, perform the
same steps above for addition node executed with the volt-
age vh.

( f ) If there are adders with the voltage vm and vh, perform the
same steps above for addition node executed with the volt-
age vh.

Fig. 7 Initial phase in scheduling/binding.

Voltage-increasing phase

( 1 ) Pick up a huddle h j with the smallest priority Ps(h j) among the
huddles executed with the voltage vl. Change its voltage from vl
to vm.

( 2 ) Perform the initial phase again (Fig. 7).
( 3 ) If the result satisfies the control step constraint, finish.
( 4 ) Repeat the above steps 1–3 until all the huddles with the voltage

vl are tried.
( 5 ) Pick up a huddle h j with the smallest priority Ps(h j) among the

huddles executed with the voltage vm. Change its voltage from vm
to vh.

( 6 ) Perform the initial phase again (Fig. 7).
( 7 ) If the result satisfies the control step constraint, finish.
( 8 ) Repeat the above steps 5–7 until all the huddles with the voltage

vm are tried.

Fig. 8 Voltage-increasing phase in scheduling/binding.

decrease the huddle voltage from vm to vl in a similar way.

Example 3. Let us consider a DFG as depicted in Fig. 10 (a).

Assume that the clock cycle constraint of Tclk = 3 ns and the con-

trol step constraint S max = 8 are given. Tables 1 and 2 sum-

marize functional unit and level converter specifications. Hud-

dle configurations of Fig. 10 (b) are also given and we assume

that the interconnection delays between the three huddles as

Dw(Dist(h1, h3)) = Dw(Dist(h1, h2)) = Dw(Dist(h2, h3)) = 1 ns.

Register delays are given by Dreg(h1) = Dreg(h2) = Dreg(h3) =
0.5 ns.

At the initial phase, a data transfer table DT ( fi, hk) is con-

Voltage-decreasing phase

( 1 ) Pick up a huddle h j with the largest priority Ps(h j) among the
huddles executed with the voltage vh. Change its voltage from vh
to vm.

( 2 ) Perform the initial phase again (Fig. 7).
( 3 ) If the result does not satisfy the control step constraint, we assign

the original voltage vh to h j.
( 4 ) Repeat the above steps 1–3 until all the huddles with the voltage

vh are tried.
( 5 ) Pick up a huddle h j with the largest priority Ps(h j) among the

huddles executed with the voltage vm. Change its voltage from vm
to vl.

( 6 ) Perform the initial phase again (Fig. 7).
( 7 ) If the result does not satisfy the control step constraint, we assign

the original voltage vm to h j.
( 8 ) Repeat the above steps 5–7 until all the huddles with the voltage

vm are tried.

Fig. 9 Voltage-decreasing phase algorithm.

(a) DFG.

(b) Placement information. (c) Data transfer table.

Fig. 10 Inputs of our scheduling/binding.

structed first. Figure 10 (c) shows the constructed data transfer

table DT ( fi, hk) and the input DFG is scheduled as in Fig. 10 (a).

Since Fig. 10 (a) does not satisfy the control step constraint, we

execute the voltage-increasing phase next.

In the voltage-increasing phase, we pick up the huddle h3

in Fig. 10 (b) with the voltage vl having the smallest priority.

Figure 11 (b) shows the result that the huddle voltage V(h3) is

changed from vl to vm. After that, DT ( fi, hk) is re-constructed

and the initial phase is executed again. In this case, we have

DT ( fi, hk) as in Fig. 11 (c) and we have a scheduling result of

Fig. 11 (a). Since Fig. 11 (a) satisfies the control step constraint,

we execute the voltage-decreasing phase next.
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(a) DFG.

(b) Placement information. (c) Data transfer table.

Fig. 11 Outputs of our scheduling/binding.

In the voltage-decreasing phase, we first pick up a huddle with

the voltage vh with the largest priority but there exists no hud-

dles with the voltage vh in Fig. 11 (b). Then we pick up the huddle

h3 with the voltage vm having the largest priority and its huddle

voltage V(h3) is changed from vm to vl. In this case, we obtain a

scheduling result of Fig. 10 (a) when we execute the initial phase

again. However, since Fig. 10 (a) does not satisfy the control step

constraint, V(h3) is returned to the original voltage vm.

In a similar way, the voltage-decreasing phase continues.

However, the result satisfying the control step constraint can not

be obtained. So we can finally have a result of Fig. 11 (a) satisfy-

ing the control step constraint with the smallest energy consump-

tion. �

4.3 Register/Controller Synthesis and Floorplanning
In the register/controller synthesis and floorplanning step, reg-

ister and controller configuration in each huddle is determined
according to the result of a scheduling/binding step and then hud-
dle placement is optimized. The same algorithm with GDR ar-
chitectures [13] is applied to the register/controller synthesis for
HDR architectures. Since we can determine which components
are assigned to each huddle, we can also determine the total area
of each huddle.

Huddle placement as well as its height and width is opti-
mized by using a simulated annealing (SA) strategy based on a
sequence-pair representation [11]. In our floorplanning, power
network resources are considered as in Ref. [8]. In SA optimiza-
tion, its cost function cost is expressed by

cost =
ABB

Atotal
+ α

V
Tclock

+ β
W

WMAX
+ γ

APNR

Atotal
(6)

where ABB is the rectangle area which includes all the huddles

(dead space may be included), Atotal is the sum of huddles’ area
(dead space is not included), Tclock is the clock period constraint,
V is the sum of violations of clock period constraint, W is the
wire length, WMAX is the max wire length calculated by (rectan-
gle area’s height + width) × the number of wires, and APNR is the
sum of power network resource. α, β and γ are parameters.

The initial solution of floorplan at each iteration is the floorplan
solution represented by its sequence-pair of the previous result so
that the entire iteration in Fig. 6 can converge gradually. Initial
temperature Ti in floorplan at the i-th iteration of the synthesis
flow is computed by

Ti+1 = KTi (7)

where K is also a parameter and set to be K < 1 *2.
Note that Step (ii) of register/controller synthesis and floor-

planning and Step (iv) of register/controller synthesis and floor-
planning in Fig. 6 are completely the same steps.

4.4 Huddling
In huddling, we merge adjacent huddles into a single huddle

based on the floorplan result. Since the floorplanning cost is cal-
culated by Eq. (6), huddles that should be merged into a single
huddle must be placed close to each other.

In order to determine huddles that should be merged, adjacency
Ad j(h j, hk) for huddles h j and hk ( j � k) is defined by:

Ad j(h j, hk) =

[
H(h j)

2
+

H(hk)
2

]
+

[
W(h j)

2
+

W(hk)
2

]

− Dist(h j, hk). (8)

Ad j(h j, hk) will be positive when h j and hk are adjacent and
Ad j(h j, hk) will be negative when h j and hk are placed far away *3.
Figure 12 (a) shows the case that the two huddles are adja-
cent and Ad j(h j, hk) will be calculated by Ad j(h j, hk) ≥ 0. Fig-
ure 12 (b) shows the case that the two huddles are not adjacent
and Ad j(h j, hk) will be calculated by Ad j(h j, hk) < 0. HC(h j, hk)
shows the number of inter-huddle connections between huddles
h j and hk where HC(h j, hk) ≥ 0.

Then we can define the priority Ph(h j, hk) which shows
whether huddle h j and hk should be merged or not:

Ph(h j, hk) = Ad j(h j, hk) · HC(h j, hk). (9)

In a similar way, Ph(h j, hk) will be positive when h j and hk are ad-
jacent and Ph(h j, hk) will be negative when h j and hk are placed
far away. We first pick a pair of huddles whose Ph value is the
largest and check whether this pair of huddles satisfy the merg-
ing condition. When they satisfy the merging condition, they are

*2 In our experiments, we set α = 100, β = 1, γ = 0.5 and K = 0.9.
*3 Ad j(h j, hk) can be positive even if the two huddles h j and hk are not adja-

cent, but we can say that the two huddles are close enough if Ad j(h j, hk)
is positive. This is because of the following reason:

The merging priority Ph(h j, hk) in Eq. (9) should represent the amount
HC(h j, hk) of data transfers in each combination of huddles. However,
two huddles which are placed far away should not be merged into a sin-
gle huddle since a floorplanning result indicates some optimal situation.
Therefore we also require the criterion how much close the two huddles
are placed. Thus we define Ad j(h j, hk) as in Eq. (8). In fact, our huddling
works well in our experiments in Section 5.
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(a) Huddles h j and hk are adjacent. (b) Huddles h j and hk are not adjacent.

Fig. 12 An example of adjacency Ad j(h j, hk).

(a) Placement. (b) Priority Ph(h j, hk) between the two
huddles

Fig. 13 Inputs of huddling.

(a) Placement. (b) Priority Ph(h j, hk) between the
two huddles

Fig. 14 Outputs of huddling.

merged into a single huddle. The merging condition here is de-
fined by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
V(h j) = V(hk) and

h j and hk satisfy the huddle size constraint.

(10)

We continue to find a pair of huddles that satisfy the merging
condition until no pairs of huddles satisfy the merging condition.

In our huddling, we do not consider overlapping of existing
huddles and merged huddles and all pairs of huddles satisfying
the merging condition are merged. This overlapping will be re-
solved at Step (iv) of register/controller synthesis and floorplan-
ning. By introducing this approach, we can have as small number
of huddles as possible and will have a floorplanning result con-
sistent with Step (i) of scheduling/binding.

Example 4. Figure 13 shows an example of huddling. The hud-

dle pair of h3 and h4 are picked up since they have the maximum

priority Ph(h3, h4) = 15. Since V(h3) = V(h4) = vl and they also

satisfy the huddle size constraint, they satisfy the merging condi-

tion. Then h3 and h4 are merged into a single huddle h3.

We check other pairs of huddles, but h1 and h2 do not satisfy

the huddle size constraint and other pairs of huddles have differ-

ent supply voltages.

Overall, we can finally have a new huddle configuration as in

Fig. 14 (a). �

4.5 Unhuddling
In Section 4.4, we have proposed a huddling step which merges

several huddles into a single huddle, but a synthesis solution may
fall into a local minimum if we only deal with huddling. We need
an unhuddling step which partitions a single huddle into several
huddles.

In unhuddling, we also utilize huddle placement information.
Let DTs( fi, hk) and DT f ( fi, hk) be data transfer tables for a func-
tional unit fi and a huddle hk, just after (i) scheduling/binding step
in the current iteration and just after (iv) register/controller syn-
thesis and floorplanning step in the current iteration, respectively.
Then we check whether the following equation holds true or not:
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DTs( fi, hk) < DT f ( fi, hk). (11)

If Eq. (11) holds, a data transfer delay from fi to hk may violate
the given clock period constraint. In this case, we can consider
that assigning fi to huddle h j(= Hud( fi)) may cause this viola-
tion. We eliminate fi from h j, construct a new huddle hl, and
assign fi to the new huddle hl. hl is placed so as to overlap hk.
In (ii) register/controller synthesis and floorplanning step of the
next iteration, registers and controller for the new huddle hl will
be constructed and the overlap of huddles will be resolved.

If no pairs of huddles satisfy Eq. (11), this means that the cur-
rent floorplanning satisfies the scheduling/binding result. Then
we will finish the the iterative improvement loop.

5. Experimental Results

We have implemented the proposed algorithm in C++. The al-
gorithm has been applied to DCT (48 nodes), Jacobi (48 nodes),
EWF3 (102 nodes), and FIR filter (75 nodes). Table 3 shows
the functional unit specification and Table 4 shows the level
converter specification [18]. All the functional units were as-
sumed to have a bit width of 16, and their specifications were
obtained by synthesizing them beforehand based on the CMOS
90 nm technology. Controllers were synthesized by Synopsys De-
sign Compiler in each iteration. The interconnection delays were
assumed to be a proportion to square of the wiring length and
an interconnection delay is set to be 1 ns when wiring length is
250 μm [13] *4. Energy consumption is obtained using Synopsys
Design Compiler.

We compare our proposed algorithm targeting HDR architec-
tures with multiple supply voltages (“MHDR” in Table 5) to a
GDR architecture synthesis algorithm [13] (“GDR” in Table 5),
MCAS for RDR architectures [2] (“RDR” in Table 5), and our
proposed algorithm targeting HDR architecture with a single sup-
ply voltage (“HDR” in Table 5). We further compare our al-
gorithm with the following strategy: we first perform the ex-
isting multiple supply voltage aware scheduling [20]; Based on
this voltage assignment to each operation, we perform MCAS for
RDR architecture (“Ref. [20] + RDR” in Table 5), and perform
our algorithm targeting HDR architectures (“Ref. [20] + HDR”
in Table 5). The clock period constraint was given to be 2.5 ns in
all the experiments.

Table 5 summarizes the experimental results. In Table 5 “CS
constraints” shows the control step constraint. “Control steps”
shows the number of required control steps after synthesizing
each circuit. “Area” and “Rectangular area” in Table 5 repre-
sent the sum of module/huddle area and the minimum rectangle

*4 In Ref. [13], 1 ns per 250 μm is used but it may be too large for CMOS
90 nm technology. In Ref. [13], they use the values in ITRS ’05 [4] and
obtain the ratio between gate delay and interconnection delay in CMOS
45 nm technology. Then they apply this ratio to CMOS 90 nm technology
and obtain converted interconnection delays as 1 ns per 250 μm. This is
because multi-cycle interconnect communication used in RDR and GDR
architectures is required in technology nodes finer than 65 nm technol-
ogy. Since we also use CMOS 90 nm technology here, we use this con-
verted interconnection delays.

Note that, when the technology node is changed, the absolute energy
itself must be changed but we can have the similar energy decreasing
trend and at least we must have almost the same decreasing ratio in dy-
namic energy in Table 5.

Table 3 Functional unit specification.

Functional Area Delay Dynamic Leak
Unit [μm2] [ns] energy power

[fJ] [μW]

Adder (1.2 V) 386 0.75 92 3.9
Adder (1.0 V) 386 1.22 64 3.2
Adder (0.8 V) 386 2.71 41 2.6

Subtractor (1.2 V) 417 0.78 97 4.2
Subtractor (1.0 V) 417 1.27 67 3.5
Subtractor (0.8 V) 417 2.82 43 2.8
Multiplier (1.2 V) 2,161 1.65 1,135 19.8
Multiplier (1.0 V) 2,161 2.70 788 16.5
Multiplier (0.8 V) 2,161 6.00 504 13.2

Divider (1.2 V) 6,066 6.25 2,306 837.6
Divider (1.0 V) 6,066 10.21 1,601 698.0
Divider (0.8 V) 6,066 22.69 1,234 524.0

Table 4 Level converters specification [18].

Vin - Vout Area Delay Dynamic Leak
[μm2] [ns] energy [fJ] power [μW]

1.2 V - 1.0 V 113 0.17 83 49.1
1.2 V - 0.8 V 113 0.22 71 32.3
1.0 V - 1.2 V 113 0.17 76 45.0
1.0 V - 0.8 V 113 0.30 55 18.3
0.8 V - 1.2 V 113 0.22 86 39.1
0.8 V - 1.0 V 113 0.30 55 18.3

area including all of them. “Dynamic energy” and “Leak energy”
represent dynamic energy consumption and leakage energy con-
sumption. “All Energy” shows the sum of “Dynamic energy” and
“Leak energy.” “Iterations” shows the number of iterations re-
qured by each algorithm. “CPU Time” shows CPU time to syn-
thesize each circuit.

The experimental results show that the smallest area is “GDR,”
HDRs (“HDR,” “Ref. [20] + HDR,” “MHDR”), and RDRs
(“RDR,” “Ref. [20] + RDR”) in that order. However, “GDR” ar-
eas can be sometimes become larger than “HDR” areas. This
is because of the following reason: “GDR” has shared register
groups but, since its synthesis flow is too complicated as pointed
out in Section 2, several registers cannot be shared into any shared
register group but become local regsters in order to meet the tim-
ing constratins. On the other hand, our “HDR” has a strucutre of
huddles and all the regsters in each huddle must be shared into
shared regsters.

Between the areas considering single supply voltage and those
considering multiple supply voltages, the latter will be larger in
most cases. This is because the level converter area must be added
and the results considering multiple supply voltages decrease reg-
ister sharing. However, “MHDR” areas can be sometimes be-
come smaller than “HDR” areas. This is just because of our pro-
posed algorithm cannot always have an optimal (or semi-optimal)
result. Since our proposed algorithm is based on an iterative im-
provement flow, it sometimes fall into an local optima. In the case
of EWF3 applied to HDR, it is just the case.

The experimental results show that the dynamic energy con-
sumption of our proposed algorithm “MHDR” is reduced by a
maximum of 48.2% and an average of 25.2% compared with the
other algorithms. All energy consumption of “MHDR” is also
reduced by a maximum of 48.1% and an average of 22.4% com-
pared with the other algorithms. The leakage energy consumption
of “MHDR”is reduced by a maximum of 60.3% , but is increased
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Table 5 Experimental results.

App. FUs CS Architechture Control Area Rectangular Dynamic Leak All energy Iterations CPU time
constraints steps [μm2] area [μm2] energy [pJ] energy [pJ] [pJ] [sec]

ewf3 Add×3 50 GDR 43 47,792 55,250 655.83 57.64 713.47 7 362.48
Mul×2 RDR 44 69,530 69,530 764.33 85.06 849.39 1 56.21

HDR 43 53,926 59,706 720.82 79.38 800.21 6 1,169.40
Ref. [20] + RDR 50 109,350 109,350 570.41 84.57 654.98 1 127.98
Ref. [20] + HDR 50 57,118 60,882 577.89 108.90 686.80 8 1,815.60

MHDR 50 44,049 48,208 520.20 91.07 611.27 2 487.20

fir Add×3 35 GDR 30 36,840 48,278 429.16 38.35 467.51 24 1,212.06
Mul×3 RDR 29 81,920 81,920 360.01 105.18 465.19 1 75.78

HDR 30 28,493 32,643 344.88 30.75 375.62 2 353.15
Ref. [20] + RDR 35 115,200 115,200 507.73 64.94 572.67 1 174.33
Ref. [20] + HDR 35 51,795 59,220 371.74 75.42 447.17 2 484.67

MHDR 35 40,231 49,580 284.64 44.63 329.27 2 484.10

fir Add×4 30 GDR 30 39,407 42,593 473.44 40.34 513.78 24 1,314.37
Mul×4 RDR 29 82,816 82,816 335.95 123.57 459.52 1 75.59

HDR 30 34,967 41,087 315.10 38.79 353.89 5 701.88
Ref. [20] + RDR 30 129,600 129,600 366.16 43.22 409.39 1 190.94
Ref. [20] + HDR 30 57,672 66,316 475.25 94.20 569.46 2 352.27

MHDR 30 48,011 59,175 246.41 49.09 295.49 2 576.32

jacobi Add×2 20 GDR 19 28,026 33,660 273.75 60.70 334.45 8 644.76
Sub×1 RDR 20 57,600 57,600 224.93 94.94 319.87 1 138.06
Mul×2 HDR 19 32,031 34,686 201.13 91.78 292.91 2 288.77
Div×2 Ref. [20] + RDR 20 115,200 115,200 224.32 119.43 343.74 1 144.62

Ref. [20] + HDR 20 35,124 38,340 163.21 100.32 263.52 2 448.74
MHDR 20 36,581 42,210 163.56 93.41 256.98 2 447.97

dct Add×4 10 GDR 8 53,864 58,378 208.48 11.00 219.48 24 1,378.30
Mul×4 RDR 9 81,476 81,476 220.75 13.69 234.45 1 74.29

HDR 8 55,709 58,450 196.58 14.66 211.24 2 505.71
Ref. [20] + RDR 10 115,200 115,200 235.79 52.98 288.76 1 194.40
Ref. [20] + HDR 10 42,272 44,544 202.21 22.56 224.77 3 746.99

MHDR 10 50,337 69,030 169.16 25.53 194.69 3 822.64

by an average 9.4% compared with the other algorithms. This is
because level converters increase the leakage energy, but the over-
all energy consumpation is much reduced compared with other
algorithms.

Note that the objectives of synthesis algorithms of “GDR,”
“RDR” and “HDR” are to minimize the required control steps.
Actually, their control steps are shorter than the control step con-
straints. All the energies in Table 5 are evaluated within the re-
quired control steps. These results can be fairly compared to
results obtained by “Ref. [20] + RDR,” “Ref. [20] + HDR” and
“MHDR.” The number of iterations in “MHDR” is up to three
and we can have CPU time comparable to the GDR synthesis al-
gorithm.

6. Conclusions

In this paper, we proposed huddle-based distributed register
architectures (HDR architectures) for multi-cycle interconnect
communications and a new energy-efficient high-level synthesis
algorithm targeting HDR architectures. Our proposed algorithm
reduced energy consumption by a maximum of 48.1% and by an
average of 22.4% compared with the conventional algorithms.

In the future, we will apply other energy-saving techniques
such as power gating and clock gating to our HDR architectures.
We also re-consider the convergence problem in our algorithm
and will develop an improved version.
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