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Abstract: Inter-processor communication and synchronization are critical problems in embedded multiprocessors.
In order to achieve high-speed communication and low-latency synchronization, most recent designs employ dedi-
cated hardware engines to support these communication protocols individually, which is complex, inflexible, and error
prone. Thus, this paper motivates the optimization of inter-processor communication and synchronization by using
application-specific instruction-set processor (ASIP) techniques. The proposed communication mechanism is based
on a set of custom instructions coupled with a low-latency on-chip network, which provides efficient support for both
data transfer and process synchronization. By using state-of-the-art ASIP design methodology, we embed the commu-
nication functionalities into a base processor, making the proposed mechanism feature ultra low overhead. More im-
portantly, industry-standard compatible programming interfaces supporting both message-passing and shared-memory
paradigms are exposed to end-users to ease the software porting. Experimental results show that the bandwidth of the
proposed message-passing protocol can achieve up to 703 Mbyte/s @ 200 MHz, and the latency of the proposed syn-
chronization protocol can be reduced by more than 81% when compared with the conventional approach. Moreover,
as a case study, we also show the effectiveness of the proposed communication mechanism in a real-life embedded
application, WiMedia UWB MAC.

Keywords: multiprocessor system-on-chip (MPSoC), application-specific instruction-set processor (ASIP), message-
passing, shared memory, synchronization

1. Introduction

In recent years, the multiprocessor system-on-chip (MPSoC)
has emerged as an appealing solution for high performance and
complex embedded applications. Among the existing multipro-
cessor systems, shared-memory and message-passing are two
predominant communication infrastructures. Shared-memory
provides programmers with a simple memory abstraction simi-
lar to a uniprocessor that is particularly well suited for programs
that exhibit fine grain sharing. Certain other types of communi-
cation, such as the transfer of coarse grain data, can sometimes
be achieved more efficiently through message passing, though it
significantly increases the data management burden on the ap-
plication programmer. The complementary nature of the shared-
memory and message-passing communication styles has recently
led to the popularity of hybrid architectures, which implement
the message-passing on top of distributed shared-memory archi-
tectures [1], [2], [3]. And a prominent example of such archi-
tecture is the Cell processor [4], jointly developed by IBM, Sony
and Toshiba. By supporting both message-passing and shared-
memory, these architectures provide much more flexibility for
designers to explore the design space.
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However, the integration of multiple communication abstrac-
tions in a single architecture, on the other hand, complicates the
hardware implementation and challenges the underlying infras-
tructure to support each individual protocol efficiently. Most ex-
isting multiprocessor solutions employ dedicated hardware en-
gines to support different communication protocols, individu-
ally. For example, the Cell processor employs DMA engines for
message-passing and atomic units for synchronization between
threads [5]. However, one primary drawback of such approach is
the performance overhead related to the hardware configuration
(e.g., DMA programming) and interrupt handling (e.g., DMA
transfer completion interrupt, lock available interrupt). In the
context of MPSoC, these overheads are not negligible, since fine-
grained parallelisms can be highly sensitive to communication
latency [2], [6]. Moreover, using separated hardware blocks, re-
spectively for message-passing and synchronization, also results
in area and power overhead, especially for resource-constrained
embedded systems.

Therefore, this paper attempts to provide fast and effi-
cient inter-processor communication by using the state-of-the-art
application-specific instruction-set processor (ASIP) approaches.
Our research focuses on two classes of communication that are
important for multiprocessors: message-passing (block transfer)
and synchronization using locks and barriers. And the contribu-
tion of this work comes twofold: (i) we propose a novel ASIP-
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based on-chip communication mechanism to efficiently support
both data transfer and process synchronization under a unified
message-passing protocol; (ii) both high-level communication
programming interfaces and the underlying architecture are pro-
vided to facilitate the application-to-platform mapping at user
level. We implement the proposed communication mechanism
using a hybrid shared-memory and message-passing architecture.
In this architecture, processors, on the one hand, are connected
via a dedicated low-latency network for data transfer and syn-
chronization. On the other hand, a shared bus is attached to all
processors, enabling a typical shared-memory based addressing
mode. The proposed communication mechanisms are embedded
into a base processor by using the ASIP technology, LISA [7].
Analysis and exploration of the proposed communication proto-
cols have been carried out by using a cycle-accurate simulation
environment. Experimental results show that our proposed com-
munication approach achieves a significant latency reduction and
features much better scalability when compared with the conven-
tional approaches based on dedicated hardware.

The rest of the paper is organized as follows. In Section 2, we
present a brief overview of related work, which is followed by our
software programming model in Section 3. In Section 4, we ex-
plain the hardware implementation of the proposed communica-
tion mechanism. Experimental results are presented in Section 5,
which is followed by future work in Section 6 and conclusion in
Section 7.

2. Related Work

With the emergence of MPSoC, managing inter-processor
communication is always a hot topic and many research groups
have been working in this area. Among these researches,
message-passing and synchronization are the two most important
protocols.

In order to handle the message-passing, most multiproces-
sor systems leverage dedicated hardware supports. The Inter-
Processor Communication Module (IPCM) [8] offered by ARM
is a typical register-based messaging interface for passing short
messages between processor nodes. Besides the limited band-
width, another drawback of this approach is that the main pro-
cessor has to handle the complete transfer, thus taking cycles
away from the main computation. Hence, in order to provide
efficient transfer with high throughput, most existing multipro-
cessor systems employ DMA-like engines to facilitate message-
passing. Several early designs, such as Cray T3D [9] and Philips
Eclipse [10], implement message-passing within a single address
space and support large block transfer through a DMA engine.
In several recent works, message-passing built on distributed
memory architecture is proposed. For example, Ref. [11] em-
ploys scratchpad memories coupled to DMA engines to support
message-passing between two nodes. Another prominent exam-
ple is the Cell processor [5], which exhibits eight processing el-
ements (PEs) equipped with local storage. Through the private
DMA engine, the individual PEs of Cell processor can access any
of the remote memories directly. Although using DMA engines
for data transfer is efficient, programming DMA jobs and pro-
cessing the related interrupts incur software overheads on every

message. And these overhead sources are non-trivial, especially
for parallel applications that feature fine granularity messages.
Unlike these works, this paper intends to reduce this overhead
by using dedicated message-passing instructions coupled with a
low latency interconnection. Through a high-level programming
interface, these communication features are exposed to program-
mers, enabling very easy and low overhead communication man-
agement.

Inter-processor synchronization, such as locks and barriers,
is another important and well-studied communication problem
for multiprocessors. In early multiprocessor systems, synchro-
nization operations are normally implemented by using the ba-
sic processor-provided atomic read-modified-write instructions,
such as swap instructions in ARM and lwarx/stcwx instruc-
tions in PowerPC. However, with the trend towards an in-
creasing number of processors, the traffic contention caused by
the polling of shared variables grows rapidly [12], which may
slow down the system performance significantly. Thus, a lot of
works [13], [14], [15] propose various hardware-supported mech-
anisms to provide interrupt-based synchronization without traffic
contention. However, the expensive cost of interrupt handling, on
the other hand, makes these solutions only applicable for thread
level parallelism. In order to achieve faster synchronization for
exploring finer grained parallelism, several recent works have
proposed hardware solutions that rely on dedicated networks [16]
or special cache implementations [17]. However, for the embed-
ded MPSoC, both solutions are very expensive in terms of area
and power, and must be considered carefully. Unlike all the above
approaches, this paper jointly considers the synchronization is-
sue with the co-existing message-passing protocol and proposes
a unified mechanism to support both of them. By utilizing the
existing message-passing network, we can achieve fast synchro-
nization at a very low area cost.

Besides the above hardware-based approaches, several recent
works [18], [19], [20] have proposed the use of commercial ex-
tensible processors [21] to deal with inter-processor communica-
tion. However, two primary drawbacks of these approaches are:
(i) they strongly rely on the underlying processor, Xtensa, which
prevents them from being applicable to most general contexts;
(ii) since the micro-architecture of the Xtensa processor is not al-
lowed to be modified, the restricted design space, on the other
hand, constrains the designer to tailor the processor to best fit the
communication protocols. Unlike these works, our research cov-
ers from the ASIP micro-architecture to the high-level program-
ming model, which provides a complete communication solution
for multiprocessor design.

This paper also extends our previously published work [22]
in several aspects. We propose an entirely new inter-processor
communication mechanism that features lower latency and lower
complexity. More importantly, the associated programming in-
terfaces, which are fully compatible with the industry stan-
dards, are provided to facilitate the application porting. Fur-
thermore, the underlying architecture is extended to support both
message-passing and shared-memory programming models, en-
abling much more design space and flexibility for practical de-
signs.
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Fig. 1 ASIP-based MPSoC design framework.

3. Software Programming Model

3.1 ASIP-based MPSoC Design Methodology
Figure 1 shows the MPSoC design methodology we used in

this work. It consists of two parallel design chains: SW chain and
HW chain. The boxes with a solid boundary specify steps in the
basic methodology, whereas the boxes with a dashed boundary
denote our added steps to integrate the basic steps as an entity to
support the proposed inter-processor communication. Moreover,
the boxes covered by gray denote the files generated by automatic
tools.

On the HW side, our MPSoC framework makes use of the
LISA methodology [7] to design each individual ASIP. The
LISA compiler can automatically generate RTL code and soft-
ware tools, including a cycle-accurate SystemC model, instruc-
tion set simulator (ISS), assembler and linker. The generated
ASIP model, along with the other HW components, can then
be integrated into the proposed hybrid shared-memory/message-
passing architecture for MPSoC creation. In this work we use
Synopsys Platform Architect [23] to simulate the entire MPSoC
at system-level. Real hardware design, such as RTL simulation,
FPGA and chip implementation, can also be carried out using the
generated RTL.

On the SW side, the native LISA methodology suffers a pri-
mary design bottleneck in automatically generating C-compiler,
since it requires the ASIP designer to become intimately famil-
iar with compiler knowledge, which is a particularly difficult task
for a processor architect [24]. Thus, we develop an ASIP pro-
gramming interface, enabling programmers to add new instruc-
tions in C language. Then, in order to support the common inter-
processor communication primitives such as synchronization and
message-passing, we predefine a range of special instructions
through this programming interface. These primitives are ex-
ported to programmers as a set of communication APIs, enabling
them to manage the communication very easily. The behavior of
these communication instructions is added to our base processor
using LISA language. This enables the processor to support these
communication features natively. Moreover, the proposed hybrid
shared-memory and message-passing MPSoC architecture offers
an underlying infrastructure to support this on-chip communica-
tion.

Figure 2 further explains the ASIP programming interface in

Fig. 2 An example of ASIP programming interface: (a) custom instruction
format, (b) conventional C code of endian conversion, (c) definition
of a new instruction, (d) call new instruction in C code, (e) generated
machine code.

detail. As shown in Fig. 2 (a), it consists of three programmable
fields: (i) operation code fields (opcode 1, opcode 2) are used
by instruction decoder to identify this instruction; (ii) register
fields (dest-reg, src1-reg, src1-reg) offer three optional regis-
ters, two source registers and one destination register, as the
operands for this instruction; (iii) immediate value field (imm7)
allows designers to include a 7-bit value in the instruction. Fig-
ure 2 (b)–(e) shows a simple example to customize a special in-
struction, byteswap, which performs a 32-bit endian conversion
operation. Figure 2 (b) describes this operation in conventional C
code, which normally requires many execution cycles. However,
through our programming interface, this operation can be cus-
tomized to be a single instruction, which is shown Fig. 2 (c). The
definition of the new instruction is similar with a common func-
tion. The function body starts with the statement TCTXINST,
which is followed by an explicit definition of the operation code
fields. The register fields and imm7 field are defined through the
arguments of the function. In this example, only two registers,
src1-reg and dest-reg, are used. In the caller function, as shown in
Fig. 2 (d), the key word TCT REG is used to explicitly specify the
general register for this new instruction. During compiling, our
compiler treats the byteswap as an intrinsic function, whose call is
substituted by the defined instruction code. And the arguments,
such as register ID and immediate value, are automatically in-
serted to the associated fields of the instruction. On the HW side,
the behavior of the instruction should be added to the base proces-
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Table 1 Instruction-set architecture of proposed communication mechanisms.

Operation Assembler Action

Single-word Msg.
(Control Token) msg send Rn Rd 〈imm7〉 Send Rn and imm7 to PE ID Rd

msg receive Rn Rd 〈imm7〉 Send Rn and imm7 to PE ID Rd

Block Transfer
mbox enable Rn Set block transfer size specified by Rn
mbox store Rn Rd Send data addressed by Rn to PE ID Rd
mbox load Rn Load received data to address Rn

sor in LISA language. Then, the generated assembler and linker
can further translate the text-based assembly codes into a single
executable object containing the custom instructions, which are
shown in Fig. 2 (e).

Table 1 summarizes the instruction-set architecture (ISA) of
the proposed communication mechanism. It consists of two
classes of operations: single-word message and block transfer.
The former is used to send and receive a single-word control to-
ken, e.g., lock/barrier synchronization and SW interrupt, between
processor nodes. And the latter is used for sending and receiving
multi-word data blocks in multiprocessor systems. More details
of these two operations are explained in Sections 3.3 and 3.4, re-
spectively.

3.2 Parallel Programming Model
Given our goal of providing facilities for multiprocessor pro-

gramming, we attempt to make our proposed communication
instructions fully compatible with the industry-standard parallel
programming models. Currently there are three widely used pro-
gramming models, OpenMP [25], POSIX threads (Pthreads) [26]
and Message Passing Interface (MPI) [27]. OpenMP is a set of
directive-based APIs used for developing parallel applications on
shared-memory platforms. Using these compiler directives, the
developers do not need to explicitly set up synchronization and
communication and so on. OpenMP directives layered at high
level encapsulate the low-level communication primitives so as to
facilitate the programming difficulty. However, the drawback of
OpenMP is that it may increase the overhead of data movement,
false sharing and threads contention.

Unlike the OpenMP model, both Pthreads and MPI are low-
level multiprocessor APIs, which are more economic and power
efficient for embedded systems. However, they require develop-
ers to explicitly create and terminate threads, and explicitly set up
synchronization and communication. Pthreads is a predominant
shared-memory programming model. It provides a set of APIs
for thread management, synchronization and scheduling, which
are typically supported by a user level library. MPI, on the other
hand, is a message-passing programming model for distributed-
memory platforms. It supports both point-to-point and collec-
tive communication via messages. No memory is shared among
the processes, and all information has to be explicitly exchanged.
Thus, compared with Pthreads, MPI involves more low-level im-
plementation details and is more difficult to code.

The complementary nature of the Pthreads and MPI program-
ming model has recently led to the popularity of mixed mod-
els with both Pthreads and MPI. By supporting both message-
passing and shared-memory, these models provide much more

Fig. 3 Single-word message programming interface: (a) message-passing
instructions, (b) examples of lock enter and lock leave API, (c) 32-
bit message format.

flexibility for designers to explore the design space. Thus, our
proposed communication primitives and the underlying architec-
ture aim to be compatible with these two programming models.
In the following two subsections we will show how to map the
proposed synchronization and block data transfer primitives to
Pthreads and MPI, respectively.

3.3 Single-word Message Programming Interface
The single-word message programming interface, as shown in

Fig. 3, allows multiprocessor programmers to directly initiate a
single-word (32 bit) message between processors. It is based on
a pair of custom instructions, msg send/msg receive, whose for-
mat is shown in Fig. 3 (a). msg send is used to send a message,
e.g., synchronization request and SW interrupt, to another pro-
cessor. While msg receive is used to acquire a message from an-
other processor, and hence, further includes two communication
phases, one is to send a request and the other is to wait for the
reply message.

As an example, Fig. 3 (b) shows two synchronization APIs
modeled through this interface. These two APIs are used to ac-
quire and release a numbered lock, respectively. The input argu-
ment lock id, which specifies the lock number, is the content of
the message. dest id denotes the ID of destination processor who
receives the message. Two general registers, REG8 and REG9,
are allocated to pass these two arguments to the msg send in-
struction. The last argument of msg send, which is an integer
value, indicates the control token of the message. In this exam-
ple, one control token is lock acquisition and the other is lock

release. When executing the msg send instruction, the proces-
sor generates a message, whose format is shown in Fig. 3 (c), and
broadcasts it to the specified processor.

As this example shows, this programming interface is well-
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Fig. 4 Block transfer programming interface: (a) block transfer instruc-
tions, (b) examples of MPI Send and MPI Recv APIs, (c) 32-bit re-
quest message format.

compatible with the Pthreads synchronization primitives, e.g.,
lock and barrier management. Moreover, it also allows designers
to define other specific primitives, e.g., thread management and
event notification, according to their target implementations.

3.4 Block Transfer Programming Interface
Data block transfers are commonly used communication prim-

itives for sending and receiving multi-word messages in multipro-
cessor systems. In this work, we match these operations to a pair
of custom instructions, mbox store and mbox load, whose format
is shown in Fig. 4 (a). The mbox store instruction transfers the
data starting from a specified address (in src1 reg) to the destina-
tion processor (specified in src2 reg). The destination processor,
on the other hand, uses the mbox load instruction to move the
received data from the buffer to a specified address (in src1 reg)
located in its local storage. If the buffer is empty when mbox load

is executing, the processor is suspended until any data is received.
In contrast, if a transfer request is initiated when the destination
buffer is full, this request is denied until any space is available.
(More detailed communication protocol will be illustrated in the
next section.)

Figure 4 (b) illustrates an example of mapping these instruc-
tions to MPI block transfer APIs. We list the arguments that most
directly impact the block transfer protocol and show how to use
them in the proposed instructions. The MPI Send API sends a
data block addressed by the buf parameter to the destination pro-
cessor specified by the dest parameter. count specifies the number
of elements to be sent. MPI Send first invokes the mbox enable

instruction to configure the message length by setting an internal
register. Then, mbox store is called to initiate a transfer request
shown in Fig. 4 (c), which is followed by the data transfer when
the request is granted. The MPI Recv API, on the other hand,
fetches the received data by calling the mbox load instruction.
buf specifies the initial address of the received data, and count

specifies the data length.

4. Hardware Architecture

4.1 MPSoC Architecture
In this paper, a hybrid shared-memory and message-passing

Fig. 5 Hybrid shared-memory and message-passing MPSoC architecture.

Fig. 6 Block diagram of processing element.

architecture is designed to provide efficient support for different
styles of parallel programming. As depicted in Fig. 5, this archi-
tecture consists of two communication domains, shared-memory
and message-passing. In the shared-memory domain, conven-
tional functional blocks, such as processors, hardware accelera-
tors, memory blocks, I/O blocks, etc., are connected through the
shared bus (AMBA). The address of each HW component could
be configured as either shared or private space depending on the
application. Distributed memories for program’s instructions and
data are attached with each node to relieve the shared bus from
traffic contention. On the other hand, the message-passing do-
main connects all the processing nodes, along with a synchroniza-
tion controller (SYNC), in a point-to-point network. This on-chip
network is dedicated to interprocess communication, e.g., syn-
chronization and block transfer. Our processing elements (PEs)
are tightly coupled with this network through a dedicated inter-
face. Every PE can directly initiate communication via the cus-
tom instructions that are illustrated in Section 3. The SYNC is
a hardware engine dedicated to centrally coordinating the syn-
chronization operations. As far as synchronization is concerned,
such as locks and barriers, PEs have to negotiate with the SYNC
through message passing.

4.2 Processing Element
The base PE that we use for embedding the proposed commu-

nication mechanism is a 32-bit RISC-style core with dual instruc-
tion pipelines. Figure 6 shows the architecture of this PE. The
basic instructions, such as arithmetic and logic operations, local
load-store, branch operations etc., execute on the 4-stage main
pipeline. The 3-stage sub-pipeline, on the other hand, offers an
extension to the main pipeline for executing multi-cycle instruc-
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Table 3 Gate count breakdown of proposed ASIP @ 200 MHz.

Tech. Main Core Comm. AHB Total Gate Area

Proposed 90 nm 31,049 3,354 5,089 39,493 0.096 mm2

Ref. [22] 0.18 µm 25,088 12,619 None 37,707 0.49 mm2

Table 2 Specification of proposed ASIP.

Proposed Ref. [22]

ISA Support
· 32 bit RISC · 32 bit RISC
· Communication · Communication

Pipeline
· 4 stage (main-)

4 stage· 3 stage (sub-)
Interrupt IRQ None
Bus I/F AHB None
Comm. Programming Programmable Compiler-decided
Design Methodology LISA RTL

tions, e.g., load-store via AHB interface and sending messages
via TX interface. Moreover, a receiver component is coupled
with the main core to deal with hardware interrupts and messages
received from RX interface. Among these components, hazard
signals are carefully controlled to protect the pipeline from data
hazard.

The proposed PE uses local memories (PMEM and DMEM) to
hold program instructions and data. On the other hand, it can also
access external address space directly through the AHB bus inter-
face. This makes the PE well-compatible with industry-standard
platforms, thus enabling easy integration with other functional
components. In addition, a data buffer is attached with the PE for
storing the received data blocks. The main core can copy these
data to its local storage through dedicated instructions. Since the
receiver and data buffer are independent from the main pipeline,
the PE can perform program execution and data reception in par-
allel.

Table 2 gives a summary of the proposed PE. Its basic ISA
is derived from our previous work Ref. [22]. However, this work
further optimizes this PE by extending the pipeline and enabling
the interrupt and AHB bus support. More importantly, a to-
tally new communication mechanism that is programmable and
industry-standard compatible is proposed to ease the communi-
cation programming. The proposed PE is described in LISA lan-
guage, whose compiler can automatically generate synthesizable
RTL. We synthesize this PE using TSMC 90 nm technology. Re-
sults show its maximum achievable frequency is 350 MHz. Ta-
ble 3 reports its area breakdown at 200 MHz. Compared with
the one in Ref. [22], the proposed PE features AHB extensibil-
ity, enabling the shared-memory addressing mode. Moreover, the
new communication mechanism reduces the hardware complex-
ity significantly, resulting in an approximate 73% area saving of
the communication component. Note that the area difference of
the main core component is due to the fact that the proposed PE is
described in LISA, while the one in Ref. [22] is directly described
in RTL.

4.3 Processor Interconnection
This section describes the processor interconnection in more

detail, to provide a basis for the description of the communication
protocols in later sub-sections. We focus on the portions which
most directly impact the message-passing protocols we proposed;

Fig. 7 Communication ports.

Table 4 Communication protocol.

Request from transmitter
REQ Send request and waiting for response
TRANS Data transfer is in progress
Response from receiver
ACK Acknowledge, grant the request
NACK Negative acknowledge, reject the request
LACK Retried-acknowledge, notify to retry the request

this is not intended to be a complete description of the network.
More details can be found in our previous published work [22].

The processor interconnection built in the message-passing do-
main is a point-to-point, full crossbar network. Details of the in-
terface signals between PEs and the interconnection network are
illustrated in Fig. 7. The output port of each PE consists of a 2-bit
TX control, a 2-bit RX control, a 32-bit data and an n-bit desti-
nation vector. Input ports, on the other hand, consist of a 2-bit
TX control, a 2-bit RX control and a 32-bit data line, which are
autonomously arbitrated by a n:1 MUX (n is the number of nodes
in the network).

The possible request protocols are NULL, REQ, and TRANS,
while the possible response protocols are NULL, ACK, LACK and
NACK. The meaning of these signals is explained in Table 4. The
communication is always initiated by sending a REQ from the
transmitter. The receiver, upon receiving a REQ, may respond
with either an ACK to grant the request or a NACK to reject it,
which depends on the status of the receiver. Upon receiving an
ACK, the transmitter asserts a TRANS signal on the control bus,
and simultaneously starts sending data. On the contrary, when
responded back with a NACK, the transmitter moves into sleep
mode, waiting for a LACK response to wake it up.

4.4 Inter-processor Synchronization
Parallel applications are often required to synchronize between

different PEs to ensure correct execution. This paper focuses on
two common synchronization primitives: lock and barrier. The
lock provides a mutual exclusion operation allowing only a single
PE to hold a lock at any one time. Locks are typically used to as-
sure exclusive access to shared resources, code, or data structures.
Barrier is another important synchronization primitive used to
force a rendezvous of all PEs. For example, when a PE reaches
the barrier, it must wait until all others arrive as well, and only
then can all proceed.

The proposed synchronization mechanism, including both lock
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Fig. 8 Lock synchronization: (a) lock algorithms in SYNC, (b) lock synchronization flow.

Fig. 9 Barrier synchronization: (a) barrier algorithms in SYNC, (b) barrier synchronization flow.

Fig. 10 Timing diagram of synchronization protocol.

and barrier, leverages messages passed between the PE and the
SYNC. Figure 8 (a) shows the lock algorithms used by the SYNC
and Fig. 8 (b) illustrates a scenario whereby two PEs acquire the
same lock sequentially. PE 1 is assumed to acquire the lock by
sending a 32 bit message, which includes the lock ID and initia-
tor PE ID, to the SYNC (detailed message format is described in
Section 3.3). Upon receiving the acquisition message, the SYNC
checks the specified lock according to the algorithms shown in
Fig. 8 (a). Since the lock is initially free, the SYNC replies an
ACK to grant PE 1’s acquisition, and meanwhile, updates the lock

to busy. On the PE side, PE 1 continues its program execution
upon receiving the ACK. On the other hand, PE 2 is assumed to
acquire the lock after it becomes busy. Thus, instead of ACK,
the SYNC replies a NACK, and hence, makes PE 2 move to sleep
mode. In this context, the SYNC puts PE 2 on to the lock’s wait-
ing list, which is a simple vector register for marking the PE ID.
When PE 1 releases the lock, the SYNC first replies an ACK, thus
enabling PE 1 to continue execution. And then, since the lock

becomes available, a LACK is signaled to arouse the PE 2 from
sleep mode. Upon waking, PE 2 retries the lock. And this time,
an ACK can be replied to PE 2, which allows it to proceed.

Figure 9 shows the barrier algorithms used by SYNC and a
typical synchronization scenario consisting of two PEs. Simi-
larly, the barrier operation is also initiated by sending the SYNC

a message, which carries the barrier ID, initiator PE ID and the
pe num specifying the number of involved PEs for this barrier.
In this example, the pe num is 2, since two PEs are required to
synchronize. Upon receiving a barrier request, the SYNC incre-
ments the barrier counter by one, which maintains the number of
arrived PEs. After incrementing the counter, the SYNC checks
to see if the counter equals pe num, that is, if it is the last PE
to have arrived. In this example, PE 1 arrives first, and thus, a
NACK is replied making it move to sleep mode. Then, the SYNC
marks the pending PE 1 by updating the waiting list. When PE 2
also arrives at the barrier by sending another message, the SYNC
replies ACK, since all required PEs have been reached. At the
same time, a LACK is signaled to arouse the PE 1 from sleep
mode, enabling it to proceed. Then, the SYNC resets the counter
and the waiting list for the next barrier.

Figure 10 further shows the timing diagram of the proposed
synchronization protocol. As we can see, it costs only one cycle
(starting from the execution stage of msg send instruction) for the
PE to send the synchronization request. Upon sampling the re-
quest, the SYNC spends two cycles processing it, and then replies
either ACK or NACK. Thus, the entire synchronization period un-
der the best scenario takes only 3 cycles. Whilst processing the
request, the SYNC ignores all the new input signals. Despite this,
the pending request is only delayed by 2 cycles in the worst case.
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Fig. 11 Data block transfer protocol: (a) data buffer structure, (b) block transfer flow.

Fig. 12 Timing diagram of data block transfer.

Table 5 Gate count of synchronization controller using TSMC 90 nm tech-
nology.

Num. of Lock & barrier∗ 2 4 8 16 32
Gate Count 1,058 1,563 2,598 4,635 8,696

∗Note: the Num. n means the SYNC support n locks and n barriers.

Moreover, there is no redundant traffic generated during the lock

and barrier waiting period, which is expected to be beneficial for
achieving good scalability. In the context of receiving LACK, the
PE uses only 1 cycle to recover from the sleep mode, and then
either proceeds or retries the pending request, depending on the
protocols.

Table 5 shows the area of the proposed SYNC by varying the
maximum number of locks and barriers. As shown, it costs only
1,058 gates to support 2 locks and 2 barriers. And supporting 32
locks and 32 barriers costs only 8,696 gates. Depending on the
target application, users can choose the appropriate setting.

4.5 Data Block Transfer
In Section 3.4, we have described the proposed custom instruc-

tions and the associated programming interfaces for data block
transfer (messages of multiple words). This section further illus-
trates the communication protocol and hardware implementation
for providing high-speed block transfers between PE nodes.

Our proposed PE is attached with a buffer memory, as de-
scribed in Section 4.2 and Fig. 6, for temporarily storing the re-
ceived data. This buffer, whose size is 1 Kbyte, works in a first-
in-first-out (FIFO) manner. As shown in Fig. 11 (a), it further
consists of 16 data blocks (FIFO depth is 16) and each block can
accommodate up to 16 single-word messages. Depending on the
target application, this buffer size could be adjusted.

Figure 11 (b) shows a data movement initiated by PE 0 using
mbox store instruction, which is described in Section 3.4. The
specified data block located in PE 0’s data memory is transmit-
ted to PE 1. Figure 12 further shows the timing diagram of this
process. On the transmitter side, the transfer request, whose for-
mat is described in Section 3.4, is asserted at the execution stage
of mbox store instruction. Then, the transmitter PE is suspended

to wait for the response from the destination PE. If the receiver
is busy, for example, the data buffer is full, a negative acknowl-
edgment (NACK) is replied, which makes the sender PE move
into sleep mode. Once any block is consumed, the destination
PE sends a notification (LACK) immediately to arouse the wait-
ing PE. Then the pending transfer request is retried. If a positive
acknowledgment (ACK) is received, the data transfer is triggered.
This transfer lasts n cycles with one word per cycle, where n is
the word length of the data block. When the transfer is complete,
the execution of mbox store instruction is also finished and the
pipeline of the PE becomes normal.

On the receiver side, upon receiving a transfer request, it
checks data buffer and, if it is not full, replies a positive acknowl-
edgment (ACK) to grant the data transfer. Thus, in the best case,
the setup time of a transfer is only two cycles. After acknowledg-
ment, the receiver starts receiving the input data by storing them
to the buffer. It is noteworthy that the main core can continue
program execution while the receiver independently performs the
data reception. This is because the receiver component and the
buffer are independent from the main pipeline, even though they
are wrapped as an entity. After the reception is complete, the re-
ceiver signals the main core if it is waiting for the messages. Oth-
erwise, these data are temporarily stored in the buffer until the
mbox load instruction is executed to copy them from the buffer
to the data memory.

5. Experimental Results

In this section, we discuss the performance of the proposed
communication mechanism. As illustrated in Section 3.1, we de-
scribe the proposed PE in LISA language, which can be compiled
by Synopsys Processor Designer [28] to generate a cycle-accurate
SystemC model, ISS, RTL code and software tools. The MPSoC
architecture described in Section 4.1 is modeled at system level
using commercial ESL tools [23], which provide support for sys-
tem level platform creation, simulation and analysis. All the sim-
ulations in this section are carried out on this platform. More
detailed simulation setting and results of each protocol are pre-
sented in the following two subsections.
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Fig. 13 Block transfer performance: (a) latency and (b) bandwidth as a function of block size.

5.1 Block Transfer Performance
In this section we evaluate the performance of the proposed

block transfer protocol by simulating some benchmarks. Since
the block transfer is built on fully-distributed memory architec-
ture and supported by a full crossbar point-to-point network, we
don’t consider the system scalability to be an important issue,
and the performance metrics we are concerned with mainly fo-
cus on the communication latency and throughput. Thus, we
setup a basic two-node system using the architecture described
in Section 4.1. Data blocks are sent and received between these
two nodes in a producer-consumer relationship. For data blocks
whose size is more than 16-word, the data commutation is car-
ried out in a pipeline style. This means the destination node starts
fetching the data buffer once the first 16-word block arrives, and
on the other hand, the subsequent data block is received in paral-
lel.

Figure 13 (a) shows the transfer latency for a range of sizes.
The elapsed time we measured starts at the point when the trans-
mitter node calls the MPI Send API, and ends at the point when
the receiver node finishes the MPI Recv API, which means all
the received data has been moved to the local storage. The re-
sult shows that it takes only 0.07 µs (14 cycles) to finish a 4-
byte message transfer. And the latency for a 16 Kbyte transfer is
23.31 µs (4,662 cycles). Figure 13 (b) presents the same results
in terms of bandwidth achieved by each transfer. The largest
transfers (16 Kbytes) achieved the highest bandwidth, which is
702.9 Mbytes/s.

Next, we consider the performance of the proposed block
transfer mechanism at a low level by comparing it with another
two message-passing implementations: IPCM and DMA engine.
IPCM [8] is a register based messaging interface for passing short
messages (up to 7 32-bit words) between processors. For larger
data transfer, the DMA engine is usually employed in many mul-
tiprocessor systems. In order to accurately measure the software
overhead of these two approaches, we build a typical AHB based
system using the library offered DMAC-PL080 [29] and IPCM-
PL320 [8] models. Data transfer programs are developed in C
running on our PE. For estimating the transfer latency of DMA,
we assume it has enough buffers to support simultaneous read and
write operations with bursts of 16-words (maximal burst length of
AHB bus). And the latency of a single AHB bus access (both read
and write) is assumed to be 4 cycles, which is minimal latency ac-
cording to AHB protocol [30].

Table 6 shows the latency breakdown of an N-word message
transfer (assuming N is a multiple of 16). The command issue

Table 6 Latency breakdown of an N-word length message transfer.

Phase IPCM DMA Proposed ASIP

Command Issue 12 29 6
Setup 4 4 2
Transfer 4×N N+(N/16)×4 N+(N/16)×2
Completion 82 82 0
Total Overhead∗ 98 115 8
∗Note: overhead is the sum of command issue, setup and completion.

phase specifies the time needed to configure the transfer, such as
describing the transfer size, the source and destination address.
In the absence of congestion, the proposed PE can setup the com-
munication in as little as two clock cycles (as shown in Fig. 12).
However, the IPCM and DMA engine are triggered by writing
their internal registers, which requires at least 4 cycles. The fol-
lowing latency is attributable to the data transfer. This latency
component strongly depends on the capability of the interconnec-
tion, e.g., burst length and data width. Our PE and the coupled
interconnection support up to 16-word burst with one word per
cycle. And the interval between two sequential burst could be as
little as 2 cycles. When using IPCM to pass messages, the data
transfers are directly done by the processors. Thus, the entire la-
tency to perform data movement is 4×N, where 4 is the latency
of a single AHB access. Regarding DMA, the theoretic trans-
fer latency it can achieve is N/16×4+N, where 16 is the max-
imal burst length and 4 is the interval between two sequential
bursts. Finally, in order to notify the complete transfer, both
IPCM and DMA generate interrupts, which requires additional
software overheads. However, our proposed PE locally counts
the message size that is exchanged during the setup phase. Thus,
the transfer can be terminated automatically without any delay.
Finally, as shown, our proposed PE outperforms the other two
implementations in both the fixed overhead portion and the vari-
able transfer portion.

5.2 Synchronization Performance
In this section, we present our experiments to evaluate the per-

formance of the proposed synchronization mechanism. First, we
compare the proposed approach against others by examining the
synchronization operation at a very low level in a controlled man-
ner. Then, several realistic benchmarks with fine-grained paral-
lelism are used to estimate the performance improvements.

For comparison, we implement a conventional polling-based
lock, using the same algorithms described in Section 4.4. In order
to ensure the atomic test-and-set operation [12], we use dedicated
registers addressed in the shared AHB space to store the lock vari-
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Fig. 14 Lock synchronization latency: (a) Non-contended lock latency, (b) Contended lock latency.

Table 7 Performance of lock synchronization at low level.

Phase Overhead Component Polling Interrupt ASIP
Non-contended
Acquisition Acquire the lock 16 16 13

Contended
Notification Notify lock availability 0 1 1
Wake up Recover from pending or sleeping 0 80 4
Retry Retry the pending lock 4 4 3
Total 4 85 8

Table 8 Introduction and configuration of the benchmarks used in this work.

Benchmark Introduction Problem Size Barrier count

Synthetic loop of four consecutive barriers 1,000 loops 4,000
Kernels 2 Cholesky conjugate gradient 1,024 elements, 1,000 loops 10,000
Kernels 3 inner product 1,024 elements, 1,000 loops 1,000
Kernels 6 linear recurrence equation 1,024 elements, 1,000 loops 1,022,000

ables. PEs are allowed to obtain the lock value by a single read
transaction. Based on this lock, we also implement polling-based
barriers using the centralized sense-reversal algorithm [12]. In
this algorithm, each PE increments a centralized shared counter
as it reaches the barrier, and spins until that counter indicates
that all PEs are present. We develop the associated primitives
and execute the test programs on our proposed PE. The result
of the interrupt-based lock is estimated according to an industry-
standard implementation [31].

The critical aspect we are concerned with is the latency of lock

and barrier operations. Since the barrier is built on top of lock,
here we first measure the latency of locks at low level. We con-
sider two different lock scenarios: contended and non-contended,
which are illustrated in Fig. 14. Non-contended lock, as shown
in Fig. 14 (a), means the lock is initially available for the initiator
(node B) and it can be obtained without any contention. On the
other hand, the contended context means the lock is held by an-
other PE (node A) when required. In this case, the overhead we
are concerned with is the time taken to hand-off the lock once it
is released, which is illustrated in Fig. 14 (b).

Table 7 shows the low level comparison results. In the context
of non-contended lock, these three implementations feature al-
most the same latency. This is because the lock is initially avail-
able, which enables the PE to proceed without any contention.
However, when the context changes to the contended lock, the
results vary a lot. In the polling-based approach, the availabil-
ity of lock is monitored by continuously polling the lock address.
Thus, in the best case, when there is no traffic contention, the
waiting PE can obtain the lock once it becomes free, which costs
only 4 cycles (minimal latency of a single AHB bus read). Re-
garding the interrupt-based lock, the PE leverages an interrupt
notification for the availability of lock. Thus, polling the lock

variable is no longer needed, which can save bus traffic and en-

ergy. However, handling the interrupt, on the other hand, incurs
an expensive cost. In our PE, it takes at least 80 cycles to process
an interrupt, including checking the interrupt source, clearing the
interrupt and executing the interrupt handler. Our ASIP approach
also makes use of dedicated notifications for the availability of
locks. However, due to the elaborately designed communication
mechanism, it costs only 1 cycle for the SYNC to send the no-
tification, 4 cycles for the PE to recover from sleep mode and 3
cycles to retry the synchronization (as shown in Fig. 10).

From the above results, we can see that the latency of polling-
based lock is originally quite fast if the traffic overhead is ignored.
Using interrupt-based locks cannot essentially speed up a single
lock operation. Instead, it benefits the overall system performance
by alleviating the bus traffic. However, the expense of interrupt
handling prevents this solution from exploring fine-grained paral-
lelism which features a heavy communication-computation ratio.
Unlike these two implementations, our ASIP lock features both
low latency and contention-free.

Next, we consider several simple benchmarks: a synthetic
benchmark and various kernels from Livermore loops [32] (Ker-
nel 2, 3 and 6). A brief introduction and the configuration of
the used benchmarks are summarized in Table 8. The synthetic
benchmark is intended to measure the latency of barriers them-
selves. To do this, we follow the methodology described in
Ref. [12]: performance is measured as average time per barrier

over a loop of four consecutive barriers with no work or delays
between them, with the loop being executed 1,000 times. Liv-
ermore loops present a wide array of challenging kernels where
fine-grain parallelism is present but is hard to extract and exploit
efficiently. We follow the recommendations given in Ref. [17],
and focus on Kernels 2, 3 and 6. For detailed workload allocation
of these kernels, please refer to Ref. [17].

Figure 15 shows the experimental results of these four bench-
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Fig. 15 Performance using ASIP-barrier and polling-barrier: (a) Synthetic, (b) Livermore loops Kernel
2, (c) Livermore loops Kernel 3, (d) Livermore loops Kernel 6.

marks with an increasing number of PEs. We measure the execu-
tion time of each benchmark using both a polling-based barrier

and the proposed ASIP one. As shown in Fig. 15 (a), the latency
of the polling-barrier grows rapidly when the number of cores in-
creases. Whereas the latency of our proposed barrier varies only
a little, which exhibits a much better performance in scalability.
At the point where 7 cores work in parallel, the proposed bar-

rier achieves 92% latency reduction with respect to the polling-
based one. This improvement is further confirmed by the results
of kernels. As shown in Fig. 15 (b)–(d), using our proposed bar-

rier leads to a constantly increased performance as the number
of cores increases. However, in the context of the polling-based
barrier, the benchmarks are only speeded up at the initial phase.
When the number of cores reaches a certain point, the perfor-
mance decreases. For instance, in Kernel 2, the performance of
the polling-based barrier starts degrading when more than 5 cores
are involved. Regarding Kernel 6, similar results occur when the
core number reaches 6. This is because the performance degrada-
tion caused by traffic contention finally overwhelms the speedup
gained from parallel processing. Whereas our proposed barrier

does not generate any redundant traffic, and thus, features much
better scalability when the number of cores increases. In partic-
ular, Kernel 3 is an inner product loop, which is a very regular
parallel pattern. The balanced workload makes all the involved
cores finish their work within a similar period, and then arrive
at the barrier at almost the same time. This reduces the waiting
time for barrier, and thus, hides the drawbacks of polling. Fi-
nally, when 7 cores are given, using our proposed barrier speeds
up kernels 2, 3 and 6 by 1.4, 1.1 and 1.4, respectively, with respect
to the polling-based counterpart.

5.3 Case Study: UWB MAC Application
To study the performance of the proposed communication

mechanism in a more realistic context, we further examine it,
including both synchronization and block transfer, in a real-life
embedded application, WiMedia Ultra-wideband (UWB) media
access control (MAC) [33]. In this subsection we focus on the
parallel workload allocation and show how to map the proposed
primitives to an existing multiprocessor application. Then, exper-

Fig. 16 Superframe structure of WiMedia MAC.

iments are carried out to examine how the proposed communica-
tion mechanism influences the performance of the application.
More details of the MAC protocol and the complete UWB MAC
MPSoC can be found in our publication [34].

UWB is a well-known technology for short-range wireless
communications, as its MAC layer, WiMedia MAC defines a me-
dia access protocol for UWB network. It is a time-division mul-
tiple access MAC protocol, whose superframe structure is shown
in Fig. 16. Each superframe starts with a beacon period (BP),
which is followed by a data transfer period (DTP). Within the BP,
all devices in the network should collect the beacons from their
neighbors and pick up unoccupied beacon slots to transmit their
own beacon frames. Then, during the DTP, the devices, on the
one hand, must further process the received beacon frames, which
carry network information. On the other hand, the devices must
take care of the data transmission and reception, simultaneously.

In order to parallel this application, we partition the MAC SW
into four coarse-grained tasks: data reception (RX) task, data
transmission (TX) task, beacon (BCN) task, and an upper layer
application (main task). Each task is assigned a dedicated pro-
cessor. Figure 17 shows the detailed workload allocation, which
follows the Master-Slave paradigm [2]. All the MAC events, trig-
gered by MAC HW, are composed together by the main processor
(master), which is then in charge of reactivating the slave pro-
cessors (e.g., BCN, TX and RX) for a new task. As shown in
Fig. 17 (a), the beacon processor is activated to receive and trans-
mit beacon frames during the beacon period. When DTP starts,
the beacon processor works continuously to process the received
frame as well as prepare its own beacon frame for the next super-
frame. Meanwhile, the TX and RX processor are also triggered,
respectively, if there is any data transfer. All of these four tasks
share the same network and device information, which is indi-
cated by a set of data structures stored in the shared-memory. This
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Fig. 17 Parallel workload allocation: (a) task partition, (b) inter-task communication.

Table 9 Introduction and configuration of the benchmarks used in this work.

Event Introduction Block Transfer Lock Barrier

Bcn TX transmit beacon frame 1 0 0
Bcn RX receive beacon frame 1 2 0
Bcn Process process beacon frame 1 7 0
Data RX receive data frame 1 3 2
Data TX transmit data frame 1 3 2

Fig. 18 WiMedia MAC MPSoC architecture.

program is developed so as to short the SW processing delay by
distributing the workload over multiple processors. According to
this partition, block data transfer, as shown in Fig. 17 (b), is used
to activate the slave processors along with the initial task data.
lock synchronization is necessary when accessing the shared data
structures. Moreover, barrier is required to synchronize the MAC
tasks and the upper layer application executed on the main pro-
cessor. For instance, the main processor has to use barrier to al-
low the RX processor to proceed only once the movement of the
currently received frame is complete. Table 9 summarizes the
measured MAC events and the number of used communication
primitives.

Figure 18 shows the architecture of the UWB MAC MP-
SoC, which derives from the proposed hybrid shared-memory and
message-passing architecture. It consists of four processors for
MAC SW execution, each of which is assigned a dedicated MAC
task. A MAC HW module, which is connected with the AHB
bus, is used to accelerate the time critical operations, e.g., data
encryption/decryption and payload transfer. A set of configura-
tion registers are provided for the SW to control the HW. On
the other hand, the HW triggers the SW processing via interrupt
when any event occurs. The shared data structures are stored in
a shared-memory, which is connected with the shared AHB bus.
Moreover, a set of necessary peripherals are provided to support
the application.

To obtain the performance improvement, we compare the pro-

posed ASIP communication mechanisms (ASIP from now on)
with the conventional implementation, which we refer to as
HW. In this conventional implementation, IPCM [8] is used for
message-passing and the lock/barrier is based on a busy-wait
polling mechanism. Figure 19 shows the execution cycle of each
MAC event using both the ASIP mechanism and the HW one.
The execution cycle is broken down into four categories: Barrier

is the time spent on barriers; Lock is the time for lock synchro-
nization; Block is the time spent for block transfer; and Busy is
the remaining time without communication. As we can see, using
the proposed communication mechanism consistently delivers a
better performance than the conventional counterpart. However,
we also observe that, compared with the simple benchmarks used
in previous subsections, the application shows a lesser reduction
in the execution cycle. This is due to the fact that the realis-
tic embedded application doesn’t feature that high a degree of
communication. In more depth, the BCN TX event presents a re-
duction of 22.9%. This reduction mainly stems from the block
transfer primitive. Moreover, since our block transfer mechanism
does not need to load or store messages through the AHB bus,
the Busy portion is also reduced. However, with the increased
workload in BCN RX and BCN Process events, the impact of
communication becomes more lightweight. Thus, BCN RX and
BCN Process events present lesser reductions, which are 7.6%
and 5.0%, respectively.

Figure 19 (b) further shows the performance results of data RX
and data TX events with an increased payload length. For exam-
ple, RX 128 B denotes the data RX event with a frame payload
length of 128 bytes. Besides the block transfer and lock prim-
itives, barrier is used in these events to synchronize the main
processor and RX (or TX) processor during the data movement.
As the graph shows, using the proposed mechanism shortens the
barrier period significantly, because our proposal can avoid the
bus traffic contention caused by busy-wait polling. When the
payload length increases, the barrier portion becomes heavier,
which makes this acceleration more evident. Finally, as the pay-
load length increases from 128 bytes to 512 bytes, the execution
cycle reduction obtained in the data RX event also grows from
18.2% to 21.5%, and that obtained in the data TX event grows
from 12.9% to 14.5%.
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Fig. 19 Performance comparison between proposed communication mechanism and conventional one:
(a) execution cycle of BCN TX, BCN RX and BCN Process events, (b) execution cycle of Data
RX and Data TX events with various payload length.

6. Future Work

This paper examines the performance of the proposed commu-
nication mechanism using a few simple benchmarks and a real-
life application. Future work will be focused on extending this
research to more widely used standard benchmarks and applica-
tions. In order to do so, we notice that there are two issues that
need to be resolved in our future work.

First, the proposed communication mechanisms are layered at
a very low level. Even though they support basic synchronization
and block transfer operations, a higher level programming library
that provides a rich set of communication and thread management
primitives is necessary for practical development. Thus, the port-
ing of a complete multiprocessor RTOS to the proposed ASIP and
the setting up of the corresponding compilation environment will
be carried out to ease the application development.

Another goal of future research is to integrate the proposed
communication instructions into high-level synthesis tools, e.g.,
the OpenMP model and Ref. [22]. In this work, all the parallel
benchmarks and application are hand-parallelized by crafting the
communication manually, which is a very time-consuming and
error-prone process. Thus, leveraging high-level synthesis tools
to parallel the application and insert the communication instruc-
tions automatically will significantly benefit the development of
the multiprocessor application.

7. Conclusion

This paper explores ASIP techniques for the optimization of
on-chip multiprocessor communication. We focus on two classes
of communication protocols, block transfer and synchronization,
and propose a unified message-passing mechanism to support

both of them. The proposed mechanism achieves fast and low-
overhead communication by making use of a set of special in-
structions coupled with a dedicated processor interconnection.
Through a high-level programming interface, these custom in-
structions are exposed to users to facilitate the management of
communication. Furthermore, this solution also features low-
complexity, since it avoids the additional cost of dedicated com-
munication engines, which are often used by state-of-the-art mul-
tiprocessor systems.

Cycle-accurate simulations have been carried out using com-
mercial ESL tools. The results show the proposed communica-
tion mechanism can achieve a bandwidth of up to 703 Mbyte/s @
200 MHz for data block transfer. And the latency of synchroniza-
tion operations can be reduced by more than 81% with respect
to the conventional polling-based synchronization. More impor-
tantly, this improvement becomes more evident as the system is
scaled up. Finally, as a case study, we also prove the effective-
ness of the proposed communication mechanism by using it in a
real-life embedded application, WiMedia UWB MAC.
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