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Abstract: This paper describes a method to generate a computational model for formal verification of hardware-
dependent software in embedded systems. The computational model of the combined HW/SW system is a program
netlist (PN) consisting of instruction cells connected in a directed acyclic graph that compactly represents all execution
paths of the software. The model can be easily integrated into SAT-based verification environments such as those based
on Bounded Model Checking (BMC). The proposed construction of the model allows for an efficient reasoning of the
SAT solver over entire execution paths. Program netlists are compositional. The paper presents how they can be com-
bined to model interrupt-driven systems. We demonstrate the efficiency of our approach by presenting experimental
results from the formal verification of an industrial LIN (Local Interconnect Network) bus node, implemented as a
software driver on a 32-bit RISC machine.
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1. Introduction

Formal approaches based on property checking are enjoying
increasing popularity when verifying the functional correctness
of Systems-on-Chip (SoCs). More and more advanced commer-
cial technology becomes available that provides solutions for for-
mally verifying the hardware of an SoC. However, there is a
growing need to also incorporate the low-level software into the
formal verification methodology. In state-of-the-art embedded
systems, low-level system software is tightly coupled with the
hardware structures on which it is running. Separate proofs of
hardware and software correctness are often not sufficient to as-
sess the overall behavior of the embedded system. This problem
increases as the borderline between hardware and software is be-
coming blurred in highly optimized application-specific designs
where the semantics of a program are sometimes only defined in
a specific hardware context [1]. In this paper, we propose a com-
putational model that can be used to integrate low-level software
verification into hardware verification environments, thus allow-
ing for verification of low-level software in its particular hardware
environment.

1.1 Comparison with Related Work
Formal verification of software is a field that has been stud-

ied extensively over several decades. A good overview on basic
approaches, especially as they are relevant in the context of em-
bedded system design, is provided in Refs. [2] and [3].
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Typically in those approaches, the software is described by
“simple programs” as some kind of (finite) state transitions sys-
tem that are processed by model checking and related techniques.
Programs are given in high-level languages like C. Methods
adopting an unbounded paradigm [4], [5], [6], [7], [8], [9], [10]
and a bounded paradigm [11], [12], [13] can be distinguished.
Differences between tools and techniques result from the under-
lying proof methods (enumerative (stateful, stateless), symbolic)
and the employed abstraction techniques (iterative abstraction-
refinement based on localization reduction and/or predicate ab-
straction).

Most characteristics which differentiate the approach proposed
in this paper from previous ones result from our objective to
verify hardware-dependent low-level software. In hardware-
dependent software verification the behavior of a program is ex-
amined with respect to its impact on the concrete hardware on
which it is running. This is important when verifying the detailed
behavior of the hardware/software interface in an embedded sys-
tem. For example, an SoC bus system can be composed from
hardware and software components. In order to verify protocol
compliance of the bus we need to analyze the detailed behavior
of the software with respect to the signals of the concrete hard-
ware. The model we propose here therefore contains objects that
directly represent signals of the hardware architecture. The prop-
erties that can be verified in our model may relate software be-
haviour to concrete hardware signals. The same hardware signals
can be referenced in standard property checking applied to the
surrounding hardware so that both, the software and the hardware
behaviour of the system, can be covered without gaps.

Most software verification techniques reported in literature, on
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the other hand, are hardware-independent. The semantics of the
program is defined by a high-level language and the program be-
havior is examined independently of the target hardware plat-
form. The proposed approach leverages many elements of ex-
isting software and hardware verification techniques. Its novelty
results from how these elements are combined to create a compu-
tational model that is adequate for verifying hardware-dependent
software. This will be discussed in the following paragraphs.

A straightforward approach to hardware-dependent soft-
ware verification can be based on Bounded Model Checking
(BMC) [14]. A Register Transfer Level (RTL) description of the
CPU and its memory with the considered program is unrolled
for a finite number of steps that is determined by the maximum
number of clock cycles along the program’s longest execution
path [15], [16]. This immediately creates a model that represents
the entire program semantics in terms of the underlying hard-
ware. Obviously, such a brute-force approach is not tractable
for HW/SW systems of realistic complexity. For this reason, a
specific abstraction mechanism for this scenario was proposed in
Ref. [16].

In spite of its complexity, such a hardware-style BMC ap-
proach is actually attractive for hardware-dependent software ver-
ification since the hardware can be easily represented at the de-
sired level of detail. For example, we may represent the hardware
by the concrete RTL implementations or, depending on our ver-
ification objectives, by an abstract CPU model at the Instruction
Set Architecture (ISA) level. Since we wish to have a hardware-
dependent view on the program it is an attractive feature of this
approach that the entire behavior of the program is represented
implicitly by the unrolled hardware. Note that the complexity is-
sues related to this approach do not only result from the sheer
size of the unrolled model. A main drawback of this approach
arises from the fact that not only the computational semantics of
the individual program steps but also the entire control flow of the
program is represented only implicitly by the hardware. A BMC
approach formulated like this does not have any explicit view on
the actual execution paths of a program. This makes SAT reason-
ing on such a model inefficient since the knowledge on possible
execution paths must be learned in a tedious way through back-
tracking, clause learning and related concepts.

In contrast, software verification techniques usually follow a
path-oriented approach where paths are traced and represented
in an explicit way. This is, for example, the case in approaches
based on Symbolic Execution, such as Refs. [17], [18]. Symbolic
execution enumerates program execution paths and checks condi-
tions for verification along these paths by specialized verification
algorithms. Symbolic formulas are created that explicitly repre-
sent all possible input scenarios along the considered paths.

While an explicit representation of the program’s control flow
is certainly a strong advantage of this approach it can be consid-
ered a disadvantage that also the program’s computation is rep-
resented by formulas, which are explicitly generated. Especially
in the context of hardware-dependent verification these formulas
and the specialized verification algorithms may become overly
complex. When compared to the approach proposed here, it may
be considered a disadvantage that the evaluation of the program

flow is mingled with reasoning to prove the considered proper-
ties. In a hardware-dependent environment, the proof goal may
need to be examined in combination with a large number of paths,
leading to an explosion of the symbolic formulas.

In CBMC [13] a different hardware-independent approach is
taken where conventional BMC is used to build a SAT formula
for the program computation based on unrolling the control flow
graph (CFG) of a C program. This combines some of the advan-
tages of BMC with a path oriented view on the program. Note,
however, that the SAT formulas built by CBMC operate directly
at the C level. The semantics of the C statements is directly en-
coded into the generated model. This is adequate for hardware-
independent software verification, as intended by CBMC, but be-
comes an obstacle when verifying hardware-dependent software
based on machine instructions. Rather than directly operating on
hardware descriptions, as proposed by our approach, verification
by CBMC or by other hardware-independent verification meth-
ods would require to model the machine program as well as the
surrounding hardware in a high level software language.

1.2 Basic Idea
Taking all of this into account, clearly, in hardware-dependent

software verification the control flow and the computation of a
program need to be considered separately and have to be rep-
resented and processed in different ways. Therefore, this paper
proposes a computational model that splits the overall verifica-
tion tasks into two phases.

In the first phase, the program semantics is only considered to
the extent needed to evaluate its control flow. We generate an
execution graph that explicitly represents the control flow, and
apply pruning and merging techniques automatically. This leads
to an explicit representation of the control flow, as in Symbolic
Execution. However, the program computation, as it is evaluated
for solving verification tasks, is completely ignored in this phase,
and no symbolic formulas to represent the program computation
are generated at all. The program’s computation is instead rep-
resented in an implicit way by hardware models. This is sim-
ilar as in hardware-dependent BMC approaches. Thus, for our
hardware-dependent software verification approach we combine
an implicit representation of the program computation by hard-
ware with the advantages of a path oriented representation of the
control flow as it is used by most hardware-independent verifi-
cation methods. Technically, in order to make the control flow
explicit, a special control structure will be incorporated into our
hardware-dependent computational model.

The resulting model is called program netlist. It contains all
relevant information for verifying the functional correctness of
the software including the communication details required for in-
terfacing with the hardware environment. For example, when the
hardware environment interfaces with the CPU using interrupt
requests. Our hardware-dependent model contains signals that
model interrupt events and their priorization. This allows us to
verify the functional behaviour of the interrupt service routines
in conjunction with the hardware-implemented interrupt mecha-
nisms. Correctness of the context switch and the involved pri-
orization mechanisms are examples of proofs which can be per-
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Fig. 1 Unrolling a CFG into an execution graph.

formed on the proposed model.
We can also exploit its compositionality when modeling

interrupt-driven systems, as will be described in Section 3.
In the second phase of our approach, the actual verification task

is solved by applying a standard property checker to the generated
model. Compared to a brute-force BMC approach, a SAT solver
will greatly benefit from the explicit control flow representation
in this model. In contrast to Symbolic Execution approaches, it is
now left to the intelligence of the SAT solver to enumerate paths

and to explore the hardware-represented program computation

only to the extent needed for proving a given property.
A program netlist models executions of programs that are fi-

nite. Assuming finite paths is valid, especially for low-level em-
bedded software such as interrupt-based driver services or real-
time tasks. The basic mechanism for generating a program netlist
is to first transform a control flow graph into an intermediate data
structure that models the finite execution paths of the software.
The control flow graph of the software is iteratively “unrolled” at
branching nodes. The unrolling is controlled by auxiliary prop-
erty checks on intermediate versions of the generated model.

Figure 1 illustrates this process. The control flow graph shown
on the left is unrolled node by node into the execution graph
shown on its right, until branching node c is reached. We then
perform two property checks, one for each branch, on the inter-
mediate model corresponding to the shown execution graph. The
properties check whether there can be an execution run of the
software such that this branch is taken. If the branch condition
depends on an external input with arbitrary values both branches
are determined to be active and will be further unrolled.

In our example, the left branch fulfills this condition, and we
continue unrolling the nodes d and f. The right branch of node c

is checked in the same way. Also for this branch there exists an
execution. The second graph displays the situation after continu-
ing the unrolling with nodes e, b and c. Again, branching node c

is visited. The left branch can be proven to be taken in some
program execution. However, instead of creating a new copy of
node d, we reuse the existing instance of d as shown. This pro-
cess, called “merging,” is important to keep the model compact.

In our example, also the right branch of the second node c can be
shown to become active in some program run. The third execu-
tion graph on the right shows the result after one further unrolling
of the loop. This time the right-branch condition at node c is
never fulfilled, hence there is no further unrolling here.

The resulting data structure is a directed acyclic graph repre-
senting explicitly all possible finite execution paths of the pro-
gram. Importantly, each node in the execution graph on the right
side of Fig. 1 can be traversed at most once by a specific program
run and corresponds to a well-determined computational step in a
specific program location. This together with the finiteness of the
model is exploited to create a program netlist where each node in
the execution graph of Fig. 1 is instantiated with a description of
a single hardware instruction executed in that step.

Note that the explicit representation of the program’s control
flow, as expressed by the execution graph, allows us to consider,
at each of its nodes, the system under the constraint that only
one specific instruction is executed by the CPU. This drastically
simplifies the logic required for describing the combined hard-
ware/software behavior.

We will show in Section 2 how this explicit view on the control
flow, as it is common in hardware-independent software verifica-
tion, is combined with an implicit hardware representation of the
program computation, like in standard BMC for hardware.

For representing interrupt-driven low-level software architec-
tures we propose a procedure in which the computational mod-
els corresponding to each software component are first gener-
ated independently and then combined into a global represen-
tation. This relies on the fact that program netlists are compo-
sitional. For an efficient composition we propose a simplifica-
tion scheme that reduces the complexity of the final model drasti-
cally. Reference [19] presents a composition scheme that is based
on related concepts for simplifications. However, their approach
differs from ours as it is based on an explicit model checking
paradigm in which software components are not handled inde-
pendently during model generation.

The remainder of the paper is organized as follows. Section 2
introduces the proposed hardware-dependent, bounded computa-
tional model for low-level software verification. We show how to
incorporate the circuit description into a program netlist that is au-
tomatically generated from the control flow graph of the program.
The discussion begins with developing the basic model and then
describes how we reduce its complexity by merging (Section 2.1)
and by pruning of dead branches (Section 2.2). The modeling of
interrupts using program netlists is presented in Section 3. Fi-
nally, in Section 4 we report on two case studies evaluating the
proposed model.

2. Hardware-dependent Software Model

The following analysis is based on finite unrollings of the tran-
sition logic of an FSM model of the processor and its program.
We show how the elements of the program netlists can be viewed
as the results of logic optimization operations such as logic du-
plication, relocation of multiplexers, simplification by constant
propagation and node merging. In this view, it becomes evident
why the constructed model is both, compact, and correct.
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Fig. 2 Example of a control flow graph.

Fig. 3 Abstract HW/SW model.

We model a machine program based on a simple definition of
a control flow graph (CFG) as a graph G = (V, E) with a set of
nodes V and a set of edges E ⊆ V × V . While usually the nodes
of the CFG are interpreted as basic blocks, in our case, they rep-
resent machine instructions. A machine instruction C is a pair
C = (a, w) of an instruction address a and the instruction word w
stored at that address in the program memory. There is an edge
(vi, v j) between two instructions vi and v j if the program can make
a transition from vi to v j.

Figure 2 shows an example of a control flow graph of a
machine program. The control flow graph can also be under-
stood as an abstract finite state machine controlling the combined
hardware-software system. The nodes of the graph correspond to
its control states.

The basis of our analysis is a finite state machine model of the
combined hardware and software as shown in Fig. 3. The ma-
chine program is stored in the program memory. For simplicity,
we assume that the program location is fixed and known a priori.
Extensions of the methodology to code relocation as it happens
during linkage and loading are straightforward and will not be
discussed here. In our abstract HW/SW model, there is a finite
state machine called program control consisting of the machine
program and the program counter (PC) of the processor. The in-
puts to this state machine are a jump command and a jump des-
tination. The outputs of the state machine are the PC value and
the instruction word w of the machine instruction at the memory
address a pointed to by the PC.

Figure 4 shows the program control FSM of the model in more
detail.

The remainder of the model is a finite state machine (called
datapath, cf. Fig. 3) consisting of the program state, input ports

and output ports and instruction logic. The program state (PS)

Fig. 4 Program control FSM.

Fig. 5 Instruction logic block.

can be further divided into the variables of the software in
data memory, and the architectural state (AS) comprising the
programmer-visible processor registers. The input ports are lo-
cations in the system’s data memory space that are written by the
environment (e.g., by some peripherals) and read by the program.
Likewise, the output ports are data locations where the program
writes its results. This interchange of information with the envi-
ronment can be carried out using independent or shared commu-
nication channels as in memory-mapped I/O systems. The block
“instruction logic” as shown in Fig. 5 contains a description of
the programmable hardware at a level of abstraction that is ap-
propriate for the overall verification task. For example, it can be
an RTL description, a system-level description of a virtual pro-
totype, or an Instruction Set Architecture (ISA) level description
of a processor. As will be shown, our method will always instan-
tiate this hardware description restricted to a specific instruction.
Therefore, in a pre-processing phase, we derive an “instruction
cell” for each processor instruction by restricting and simplifying
the hardware description for the considered instruction.

The signal w represents the instruction word located at the pro-
gram address a. It is used to select the instruction cell corre-
sponding to the current program location (PC) and to multiplex
its results back to the program state and/or to the output ports of
the model. Control flow machine instructions as, for example, the
conditional branch instruction BEQ in Fig. 5, are special in that
they produce two signals, jump J and destination D, that are both
fed back to program control.

In this abstract model, both finite state machines – program
control and data path – are synchronized with the same clock sig-
nal. One tick on this abstract clock corresponds to the execution
of a single instruction in the program.

The proposed model for hardware-dependent software is now
obtained by a special unrolling of this abstract model driven by
the CFG of the program. In standard Bounded Model Check-
ing (BMC) [14] we would unroll the abstract model for a num-
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Fig. 6 Unrolling the abstract model. PS denotes program state, PC denotes
program counter. Input and output ports are not shown.

Fig. 7 Unrolled abstract model with conditional jump.

ber of time frames starting from some instruction in the machine
program (Fig. 6). By “time frame,” in the following, we mean
one instance of the transition logic of the considered finite state
machine. In this unrolling, the program counter is uniquely de-
termined until there is a conditional jump. When the program
counter in a time frame is a constant value then also the instruc-
tion word is constant. The instruction logic can be simplified by
constant propagation so that it only contains the instruction cell
corresponding to the instruction word.

In the unrolling, the select signal named jump of the branch
multiplexer in Fig. 4 is fed with logic ‘0’ for non-branching in-
structions, logic ‘1’ for unconditional jumps and with some logic
function of the registers for conditional jumps. Note, however,
that already at the first conditional jump in the unrolling the out-
put of the multiplexer yielding the new PC value is no longer a
constant function, i.e., no constants can be propagated and the
time frames following the conditional jump contain the full in-
struction logic as well as the instruction memory of the abstract
processor model of Figs. 3 and 4.

Figure 7 shows an example of unrolling the programmed hard-
ware between control states b and f of the CFG of Fig. 2. The first
instruction (b) is a non-branching instruction, the next instruction
(c) is a branching instruction. Obviously, already the values of
the program counter PC2 and the program state PS2 are no longer
uniquely determined and hence no logic simplification by con-
stant propagation is possible for the third and all subsequent time
frames. (For reference, the upper part of Fig. 7 shows the control
flow states modeled by the the unrolling. For example, the third
time frame models two possible instructions, (d) and (e), at two
program locations.)

However, consider the multiplexer accounting for the condi-
tional jump. We can move this multiplexer across the blocks con-
nected to its output, creating copies of these blocks in each of its
inputs. This duplicates the logic; however, since the PC value is
then again uniquely determined in each of the copies the propaga-
tion of constants can continue, significantly simplifying the logic.
Figure 8 shows the results of moving the multiplexer of the first
conditional jump to the end of the unrolling. The upper thread

Fig. 8 Duplicating logic by moving a jump multiplexer.

Fig. 9 Instruction cell for branching.

of time frames shows the case for the select signal J2 = 1, i.e., a
jump to destination D2 is taken at t = 2. The lower thread shows
the case where the jump is not taken, i.e., J2 = 0 and the program
counter is simply incremented.

Of course, every relocation of a jump multiplexer doubles the
logic at the output of the multiplexer. We could imagine moving
all jump multiplexers of a given unrolling to the end. This would
create a tree structure with as many leaves as there are execution
paths between the first and last instruction of the unrolling. Each
duplicated time frame can be simplified by constant propagation
so that its instruction logic block contains only the instruction
cell for a single instruction. The resulting logic tree is a combina-
tional circuit representing all execution paths through the unrolled
machine program. Each time frame represents one instance of a
machine instruction C = (a, w) with the instruction word w stored
at program memory address a. The size of the execution tree is
exponential in the number of conditional jumps within the pro-
gram. Fortunately, by merging of nodes, this tree can be turned
into a more compact, directed acyclic graph. We will discuss how
and when to do that shortly. The advantage of this construction
has already been discussed in Section 1: it exposes the program’s
control flow in the hardware-dependent model. Execution path
fragments between branching and merging points are represented
explicitly. This is in contrast to a simple BMC unrolling of the
transition relation which represents all execution paths in a sin-
gle chain of time frames. The resulting structure is the program
netlist, our proposed computational model for verification.

The program netlist is constructed from three types of com-
ponents: instruction cells for branching instructions, instruction
cells for non-branching instructions and so-called merge cells.
Figure 9 shows an instruction cell for branching instructions.
The instruction logic block drives the jump signal, J. Instead
of routing J directly to the multiplexer that was relocated (as in
Fig. 8) we instead carry a bit-signal called “active” along with
each thread of time frames. This signal is generated from a de-
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Fig. 10 “Merge cell” for recombining execution paths.

Fig. 11 Instruction cell for non-branching instructions.

Fig. 12 Program netlist after merging.

multiplexer controlled by J. It is asserted for the taken branch
and de-asserted for the non-taken branch for a given program run.
The functionality of the relocated multiplexer is implemented by
a merge cell (Fig. 10). This cell simply passes the values of the
program state PS that is marked with the active bit to its out-
puts. This construction is functionally equivalent to the original
one with multiplexers. It simplifies building the program netlist
from modular components and it allows identification of “dead
branches” as will be discussed below.

Figure 11 shows an instruction cell for non-branching instruc-
tions (such as datapath or move instructions). In this cell, the
input “active” bit is simply copied to the output. Note that in the
instruction cells, both the program location, a, and the instruction
word, w, have fixed values.

2.1 Merging Nodes in the Program Netlist
Consider the example of a CFG from Fig. 2. Let us assume that

the loop between nodes b and g has a predefined number of itera-
tions. Let us further assume that the branch at node c depends on
an external input. Unrolling the model yields a program netlist
whose size is exponential in the number of loop iterations. How-
ever, if we relocate the jump multiplexer from node c not to the
end of the unrolling (as in Fig. 8) but only across nodes d and e to
the input of the instruction at node f then the size of the resulting
program netlist becomes much smaller (linear in the number of
iterations in this example).

Figure 12 shows the program netlist for the unrolling of nodes
b to f in Fig. 2.

In general, when we are moving a multiplexer forward through
the unrolling we may stop as soon as we reach a specific program

location a that is on the execution path of both, the taken and the
not-taken branch. This can strongly reduce the number of time
frames for which a duplication of logic is needed. We exploit this
idea to formulate a combined unroll-and-merge algorithm:
• Unroll the machine program instruction by instruction.
• Create branches at jump instructions and unroll the branches.
• If we encounter a PC value that has been visited before then

the corresponding instruction cell is a merge candidate:
– If merging does not create a cyclic path in the program

netlist then do insert a merge cell in front of the already
existing cell and merge the branches.

– If merging would create a cyclic path then do not merge but
create a new instance of the instruction cell.

Note that in this algorithm, we are not relocating multiplexers.
The program netlist is generated by instantiating instruction cells
and merge cells.

2.2 Pruning Dead Branches Automatically
A control flow graph with cycles contains execution paths of

infinite length. Accordingly, the program netlist corresponding to
such a CFG would be infinitely large. The low-level software that
we consider in this work (e.g., tasks with deadlines in a RTOS-
based system, interrupt-based drivers, etc.), however, typically
has finite execution times. In order to obtain program netlists
for such software components we have to deal with cyclic paths
in the CFG. A typical example is a for loop with a finite num-
ber of iterations. Take, again, the CFG of Fig. 2. The branch at
node g back to the beginning of the loop is taken N − 1 times
and then, always in the N-th iteration, not taken. We use a SAT-
based property checker to identify the branch conditions on the
fly when building the program netlist. This is done by automati-
cally generating and checking simple properties on the instances
of the active signal that is associated with each instance of the
program state. Each property checks for a specific active flag in-
stance whether there exists a run of the program for which this
flag becomes true, i.e., the corresponding instruction is reachable
on the unrolled execution path. In our example, the active flag
in the taken branch will be true N − 1 times and false in the N-
th iteration. This information is used to simplify the unrolling.
Branches that are determined to be in-active are marked “dead”
and will not be unrolled any further.

Note that loop conditions may depend on external inputs. Sim-
ilarly as in common approaches to hardware verification or worst-
case-execution-time (WCET) analysis, user-defined constraints
bound the number of unrollings of a loop in such a case.

The resulting program netlist is a compact and accurate repre-
sentation of all possible execution runs of the program as a com-
binational circuit. For a given set of assignments to the input vari-
ables of the model there is a distinct path of instructions executed
– these are marked “active” in the program netlist. The set of all
active signals in the program netlist provides global information
about the program flow. This is key when applying SAT-based
verification to the program netlist. When a SAT solver performs
backtracks on the program netlist it can prune out entire execution
paths, thus, dramatically improving its run time.

How is the program’s computation performed in this represen-
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tation? It is given by the outputs of the program netlist (a combi-
national circuit) where the values of registers and program vari-
ables depend not only on the input values of the program but also
on the set of assignments to the active flags representing a par-
ticular execution path. This is in contrast to symbolic execution
where the computation is represented as symbolic formulas only
in terms of program inputs but is generated explicitly for an ex-
ecution path. There, even at the presence of path pruning and
merging techniques, every distinct set of paths needs to be enu-
merated when solving a verification task. The symbolic expres-
sions for the state variables and the path conditions are generated
for every simulation. Each formula is a computational model for
a (possibly SAT-based) property checking instance. Also in our
approach, all paths are enumerated. However, this is shifted to a
pre-processing phase that neglects all of the program’s computa-
tion that is not relevant to its control flow. No formulas represent-
ing the computation along the paths are generated. Afterwards,
when solving the actual verification task on the program netlist,
the “intelligence” of a SAT solver is used to traverse this implicit
representation of execution paths with their associated computa-
tion in an efficient way.

A further advantage of this model is that it is compatible with
formal hardware verification techniques. Interaction between
hardware and software can be easily modeled. Also, when check-
ing properties we can leverage proof technology developed for
hardware verification.

3. Modeling Interrupts

In this section, we show how to model interrupt-driven low-
level software architectures based on the technique described
above. We present the basic idea for a typical interrupt-based
software architecture consisting of a set of interrupt service rou-
tines (ISRs) and a main program. The ISRs attend asynchronous
events produced by external hardware. The main program imple-
ments a specific set of tasks serving as the interface to the rest
of the software system. It communicates with the ISRs through
shared memory variables as in Fig. 13. The ISRs also read and
write device registers which are modeled as input or output ports.

When building the proposed model the following two steps
have to be taken:

( 1 ) Generate the individual program netlists for the program
components (ISRs, main program tasks).

( 2 ) Compose and interconnect the instances of the program
netlists to create the overall model.

The first step is performed in a straightforward way by call-
ing, for every single CFG belonging to the main program and the
ISRs, the program netlist generation procedure explained above.
The second step of combining the individual program netlist in-
stances requires additional consideration because, in principle, an
interrupt may happen any time (at any instruction). How many

Fig. 13 Example of the model for an interrupt-driven program.

times does a particular ISR need to be instantiated in the model
and how do we connect the corresponding program netlists to the
rest of the model? Clearly, creating an instance of every ISR and
inserting it between every two successive instructions that can be
interrupted is not feasible.

3.1 Simplification by Interrupt Transparency
Let us assume that every ISR correctly implements saving and

restoring of the program context. Then, a call of an ISR is trans-

parent to the interrupted program, i.e., the architectural state (de-
scribing the contents of all relevant CPU registers) for this pro-
gram is not altered by the interrupt.

We may verify transparency for an interrupt service routine by
checking a property directly on the program netlist of the ISR.
This is a preprocessing step that needs to be carried out only once
for every individual ISR. For a transparent ISR we know that
the only effect it can have on the rest of the software system is
through the shared memory locations it uses for communication.
These locations can be identified easily. Most shared memory
variable addresses can be found automatically through simple and
local semantic analysis of the program. For more complicated ac-
cesses, we can use an all-SAT enumeration to compute all shared
memory locations.

We can use these observations in order to simplify our model
drastically by instantiating ISRs only once between any two com-
munication operations on the shared memory variables as illus-
trated in Fig. 13. Let’s assume for example that the program
netlist (PN) called Main 1 in Fig. 13 contains a sequence of 30 in-
structions in which the main program does not access the shared
memory. The IRQ could happen in between any of the 30 in-
structions, however, its effect will not be observable by the main
program until it reads the shared memory. This happens for the
first time in PN Main 2. The actual time point of the IRQ occur-
ring is irrelevant in between these 30 instructions, only that it can
occur is important. Therefore, the shared memory variable in the
PN is modified between these two well defined states. This is rep-
resented as a second combinational logic block (labeled ISR-PN
Ins. 0) inserted “in parallel” with the PN of Main 1.

Another benefit of the nature of an interrupt handler is that its
program state resides exclusively in data memory so that it can
begin execution at an arbitrary architectural state. Therefore, the
program netlist representing the ISR is not connected to the ar-
chitectural state of the interrupted program. This significantly
reduces the complexity of the composed model. For example, in
Fig. 13, the ISR instances are connected only to the sub-set of the
main program’s state (PS) that represents the memory (S) shared
with the interrupt handler.

3.2 Interrupt Timing
How many instances of an ISR should be inserted between sub-

sequent accesses to shared memory (S) locations? This depends
on the HW/SW system being modeled and on the timing of the
hardware interrupt events. Remember that we model the software
at the ISA abstraction level. Concrete timing information is not
included in the model. The interrupt events are modeled through
user-defined constraints. In the current implementation of our
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tool, the user supplies interrupt event constraints by specifying
the minimum number of executed instructions between two inter-
rupts. The tool creates as many instances of an ISR between two
communication points as are possible according to the constraint.

3.3 Additional Hardware-Dependent Aspects
Modeling interrupts also means modeling priorization and con-

text switching. Interrupt priority resolution schemes are specific
to the hardware platform being used. Static and dynamic schemes
exist. Context switching is also platform-specific and usually in-
volves saving the return address (current PC), saving the contents
of the registers being used by the current program, saving status
registers and jumping into the interrupt handler. It depends on
the architecture which of these tasks are performed by the CPU
hardware and which need to be carried out by the software.

The context switching mechanism implemented in the CPU
architecture (such as saving of the return address) is modeled
through a platform-specific IRQ-init cell that is inserted at the be-
ginning of every program netlist representing an ISR. The IRQ-
init cell completes the correct functional behavior of the ISR and
is essential for the transparency check.

In our model, priority resolution is represented through a spe-
cial IRQ-decision cell. It is inserted at the program locations de-
termined by the analysis described in Section 3.1 and Section 3.2.
Its purpose is to flag its associated ISR netlist instance as active
if an interrupt event occurs and priority resolution accepts the in-
terrupt.

4. Experimental Results

The objective of our experimental studies is to show that it is
feasible to automatically generate program netlists for realistic
hardware-dependent, low-level software such that relevant verifi-
cation tasks become tractable for formal property checking.

The properties in our experiments describe the functionality of
the combined hardware and software, expressed in the behavior
of hardware I/O registers and memory cells belonging to the in-
terface of a given program. Propositional logic is used to express
conditions on the global I/O signals of the program to be verified.

We developed a software tool, FCK (Formal Checker Kaisers-
lautern), implementing the program netlist generation technique
described above. The front-end of FCK parses the machine code
of a given program and stores it as an internal data structure rep-
resenting the CFG of the program together with data flow infor-
mation. For the following experiments, the hardware is modeled
at the ISA level. The instruction set architecture is provided to the
tool in the form of a formalized register transfer description in an
input language with a syntax similar to hardware description lan-
guages. In its back-end, FCK is interfaced with MiniSat [20] for
automatically checking the auxiliary properties for model gener-
ation. Besides pruning and unrolling, these engines are also em-
ployed to resolve addresses related to indirect memory accesses
and to compute target addresses of jump instructions.

For evaluating our approach we formally verified two differ-
ent programs using FCK. The first program is a software im-
plementation of a synchronous serial receiver (Section 4.1). The
second program is an interrupt-based driver implementation of

Table 1 Serial synchronous receiver: Model generation.

# instructions program netlist CPU Mem.
Program CFG PN # vars. # clauses (s) (MB)
Serial RX 98 6,655 490,030 2,738,762 778 5,194

a LIN (Local Interconnect Network) master node (Section 4.3).
For both examples, we used a hardware architecture based on
the open-source 32-bit RISC processor Aquarius [21]. This ar-
chitecture implements the SuperH-2 instruction set architecture
by Renesas Electronics Corporation.

Section 4.2 describes experiments based on a software for an
embedded sensor platform that has been developed to evaluate
our fully automatic interrupt model generator.

The program netlists generated by FCK and MiniSat can be
used as design-under-verification (DUV) in any hardware veri-
fication environment. In the following experiments for proving
properties on program netlists we used the commercial tool One-
Spin 360MV [22] which is a state-of-the-art hardware property
checker. It was used as a black box, no adaptations to our model
were made. All experiments were conducted on an Intel Xeon
E5440 machine with 16 GB of RAM.

4.1 Synchronous Serial Receiver
The program for the synchronous serial receiver is an exam-

ple created by ourselves to investigate the behavior of the model
generation phase on loop-intensive software. The driver program
communicates with a simple I/O device by serially reading val-
ues from a 1-bit device data register, performing serial-to-parallel
conversion and storing the received data byte-wise in data mem-
ory. A new incoming bit is detected after a rising edge on the
synchronous input signal. Every bit is sampled three times in or-
der to detect whether it corresponds to a logic one or zero. A
message frame contains 32 bits of data. For a finite unrolling of
the software we needed to add an assumption based on the maxi-
mum idle time on the communication channel as a constraint for
model generation, stating that every incoming bit arrives within 5
consecutive read operations.

Table 1 summarizes the results of the program netlist gener-
ation phase: The program was written directly in assembly lan-
guage and contains 98 assembler instructions. After unrolling
into a program netlist (PN), the model contains 6,655 instruction
cells and 960 inputs (not shown).

The program was verified by means of a safety property cov-
ering all possible input scenarios. For each scenario it is checked
whether the data has been sampled, converted and stored cor-
rectly in memory. This was described by the property as a log-
ical equivalence comparing each bit read from the serial device
with the corresponding value stored in data memory. The overall
property was then expressed as the logical conjunction of all sin-
gle comparisons ensuring that all data bits belonging to a serial
frame were covered by the property. The check of the property
consumed 12 s of CPU time and 10 GB of memory.

4.2 Sensor Platform
A set of drivers for an embedded sensor platform has been cre-

ated to evaluate our approach to automatically composing pro-
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Fig. 14 Sensor platform: Communication structure.

Table 2 Sensor platform: ISR model generation.

program # instructions comm. # instances
component CFG PN points optimized naive
main 100 179 27 1 1
ISR adi 0 12 12 2 21 71
ISR adi 1 12 12 2 21 71
ISR rxi 0 64 68 9 105 1,775

gram netlists of interrupt service routines into a combined model.
The main focus of this experiment is to examine the behavior of
our model generator for complex communication structures be-
tween nested interrupt handlers and a foreground program.

The sensor platform implements a slave connected to a serial
communication interface (SCI). It receives two analog values via
analog/digital converters (ADC) and performs simple arithmetic
operations on these values. The received values and the result are
transmitted if a request from a master arrives via SCI. Two ISRs
handle the ADCs (adi 0 and adi 1) and the third one takes care
of the communication via SCI (rxi 0). The main routine takes the
values of the adi-ISRs, performs computations on them and stores
the result in the shared memory for the rxi 0. Figure 14 shows
an overview on which software components (boxes in the figure)
can access which shared memory locations (bubbles in the fig-
ure). The priorities (“pri.”) give the information which software
component can be interrupted.

Table 2 shows how many PN instances were needed for the
composed model and the respective size of those instances. The
overall model generation took less than 4 seconds of CPU time.
The total size of the assembler program is 161 instructions. There
exists only a single instance for the main program. For the ISR an
instance is created at every communication point, as explained in
Section 3. Due to its priority, rxi 0 can also interrupt the two adi-
ISRs. Hence, the more often they are instantiated the more often
we need an instance of rxi 0. The result in Table 2 shows that this
example has a complex communication structure that may lead to
a prohibitively large number of instances for the rxi 0 ISR. How-
ever, using the proposed concepts for modeling interrupts only
a small fraction of these instances is required (column 4) when
compared to the naive approach (column 5) without the simplifi-
cations of Section 3.1.

4.3 LIN Master Node Driver
The LIN bus is a communication standard [23] commonly em-

ployed in automotive embedded networks. The driver considered
in this experiment was developed by Infineon Technologies AG
for a node compatible with version 1.3 of the LIN specification.

Table 3 LIN master node driver: Model generation.

program # instructions program netlist CPU mem.
component CFG PN # vars. # clauses (s) (MB)
LIN-Init 225 385 8,637 45,476 1.32 36
LIN-Main 85 84 1,898 8,760 0.13 27
LIN-ISR 790 1,138 130,499 624,463 11.00 102

We ported the original code of the driver to the Aquarius proces-
sor architecture.

In order to provide its functionality, the driver software archi-
tecture builds upon an interrupt service routine handling the com-
munication with a UART. Message transfers are initiated by a
message scheduler. Every time the transfer of a message field
is finished an interrupt request (IRQ) is produced by the UART.
Transaction completion is signaled to the message scheduler via
shared memory. In total, the LIN driver used for our experiments
contains 1,309 lines of C code. The code was compiled using the
GNU C compiler.

We created a computational model reflecting the behavior of
full bus transactions. In order to build the model we made the
following assumptions. The communication between scheduler
and the interrupt service routine (ISR) is done only via shared
memory, the scheduler is executed once between two consecutive
UART interrupts and initialization takes place after system reset.

In the first step, we generated the program netlists for the ini-
tialization, the message scheduler and the ISR. Table 3 shows the
results for this step.

To prove the assumption that the ISR communicates only via
shared memory the transparency check (Section 3.1) was per-
formed. The transparency property was formally proven. The
run time for this proof was less than one second and memory
consumption was 132 MB.

Next, we integrated the program netlists into a combined
model. The model was created under the constraint that the run-
time of the scheduler executed on the CPU is much shorter than
the time interval between two interrupt requests, which is a valid
assumption for the system under verification. Under this con-
straint only one instance of the ISR is needed for every run of the
scheduler. Subsequent executions of the ISR are represented by
concatenations of instances of the ISR program netlist, one for
each message field of the LIN frame. The situation is as depicted
in Fig. 13, each of the two instances of the ISR in the figure corre-
sponds to the transfer of one message field. The resulting model
contains 24,001 instructions and 62,592 primary inputs.

After the model generation phase properties could be checked
on the model. The properties we checked on the composed model
verify the compliance of the LIN master node with the specifica-
tion. Run times and memory consumed by the proof engine are
shown in Table 4.

Each property describes the behavior of the master node for a
complete LIN frame. For every field of the LIN frame a logical
comparison is performed between the expected protocol values
and the corresponding program netlist outputs. Depending on the
LIN field, the expected value is a constant or a logical function
in terms of the given program netlist inputs. In the case that the
node operates in transmission mode (TX) the values written to the
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Table 4 LIN master node driver: Property checking.

Property CPU (s) Mem. (MB)
RX frame 2 or 4 data bytes incl. checksum 7 1,459
RX frame 4 or 8 data bytes incl. checksum 17 1,641
RX frame 2 or 4 data bytes wrong checksum 7 1,361
RX frame 4 or 8 data bytes wrong checksum 28 1,545
TX frame 2 or 4 data bytes incl. checksum 6 1,206
TX frame 4 or 8 data bytes incl. checksum 15 1,548
Wrong PID or not matching ID 6 1,205
Wrong PID or not matching ID (8 Bytes) 14 1,566

UART transmission buffer are compared with the expected proto-
col values. Fields such as the message payload and the checksum
are expressed as Boolean functions of the input variables corre-
sponding to the data collected from the application interface via
shared memory. In receiver mode (RX) output variables corre-
sponding to the data written to the application interface via shared
memory are expressed as functions of the UART reception buffer.
In this case, input data is represented by means of free variables
so that all possible input values are considered in the proofs.

Besides proving the correctness of the generated frames the
properties also check the interaction between the software and the
UART including correct addressing of peripheral data and control
registers as well as their contents.

As can be noted, both, the run times for model generation as
well as the proof times for property checking, are quite short.

Note that available tools for software property checking are
not applicable to the hardware-dependent verification tasks con-
sidered here. For comparison, we also experimented with a stan-
dard BMC unrolling that, in principle, could be used to solve the
same verification tasks. As already shown in Ref. [16] standard
BMC runs out of steam after only a dozen program steps. In fact,
running property checking on the program netlist turns out to be
more efficient than standard BMC by several orders of magnitude.

5. Conclusion

This paper proposes a program netlist as an explicit represen-
tation of the program flow and a compact, implicit hardware rep-
resentation of the program computation for low-level embedded
system software. This is achieved by the proposed methodology
in which the overall verification task is split into two main phases:
program flow analysis and program verification. This supports
the compositionality of the proposed model. The program netlist
models all possible execution paths (program flow) and repre-
sents the program computation by instantiating instruction cells
of a given processor architecture.

Furthermore, modeling of interrupt-driven software using pro-
gram netlists has been introduced in our approach. By using the
compositionality of the program netlist it is possible to represent
interrupt-driven software. This is achieved by combining individ-
ual interrupt service routines (ISR) with the involved foreground
program. The composed model is optimized in size by taking
into account the transparency of an ISR with respect to the ar-
chitectural state of the interrupted program. As a consequence, a
drastic reduction of the number of needed ISRs instances can be
achieved. The transparency criterion can be easily verified using
a standard property checker. Our experiments show the feasibility
of the proposed methodology.

Future work will explore the application of program netlists in
low-level software equivalence checking.
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