
IPSJ Transactions on System LSI Design Methodology Vol.6 34–41 (Feb. 2013)

[DOI: 10.2197/ipsjtsldm.6.34]

Regular Paper

An Efficient Algorithm for 3D NoC Architecture
Optimization

Xin Jiang1,a) Ran Zhang1 TakahiroWatanabe1

Received: May 25, 2012, Revised: August 30, 2012,
Accepted: October 30, 2012, Released: February 15, 2013

Abstract: With the progress of 3D IC integration technologies, the application of 3D Networks-on-chip (NoCs) has
been proposed as a scalable and efficient solution to the global communication in the interconnect designs. In this
work, we propose a new procedure for designing application specific irregular 3D NoC architectures. This procedure
does not only satisfy the variability of the highly customized SoC designs, but also achieve significant performance
improvement. The objective is to improve both communication latency and power consumption under several 3D
constraints. A Genetic Algorithm (GA) based efficient algorithm is applied to optimize both the topology and floor-
plan. Numerical experiments are implemented on standard benchmarks by comparing the method application in 3D
architectures with the 2D designs and then comparing the architecture obtained by our proposed algorithm with both
classical topologies and custom based topologies. The experimental results show that the architectures by our design
algorithm can achieve more performance improvement than other algorithms and the proposed algorithm also proves
to be a time efficient method for exploration in the large solution space.

Keywords: 3D NoC, Genetic Algorithm, topology, floorplan

1. Introduction

As the on-chip technology achieves significant development in
recent years, rapid rise in interconnects delay and power con-
sumption due to smaller wire cross-section, tighter wire pitch,
and longer lines that traverse across larger chips is severely limit-
ing IC performance enhancement in current and future nodes. 3D
integration with multiple active Si layers stacked vertically is a
promising method to overcome this scaling barrier as it replaces
long inter-block global wires with much shorter vertical inter-
layer interconnects [1]. As a main bottleneck for the high perfor-
mance IC integration, the global interconnect technique usually
plays a critical role in the on-chip systems. The application of
Network-on-Chip (NoC) models for 3D systems instead of bus
architectures proves to be a much more scalable and efficient so-
lution to the global communication in the interconnect designs.
The on-chip networks should have low communication latency
and low power consumption, and could be designed for particular
application traffic characteristics. The basic architecture design
including topology and floorplan for the 3D NoC synthesis al-
ways performs as a fundamental factor in the whole network per-
formance enhancement. As for the topology design, some clas-
sical topologies such as mesh, Butterfly Fat Tree, torus etc. have
taken on a lot of drawbacks due to their limitations and inflex-
ibilities in the highly customized 3D systems, and the floorplan
optimization for further performance improvement can also fail
to be achieved.

1 Graduate School of Information, Productions and Systems, Waseda Uni-
versity, Kitakyushu, Fukuoka 808–0135, Japan

a) jiangxin@ruri.waseda.jp

In this work, we develop a new procedure for the 3D NoC ar-
chitecture optimization which not only satisfies the variability of
the customized 3D integration system designs, but also achieves
significant performance improvement. A series of efficient algo-
rithms are used to explore the minimum cost topology and op-
timized floorplan in order to decrease the power consumption
and communication latency under the hardware and software con-
straints. In the customized topology design process, the number
and size of switches are determined and physical links (including
both vertical and horizontal links) between switches and cores
are established through a three-step progressive optimization. In
the multi-layer floorplan optimization process, switches in each
layer are allocated and the definite positions for each switch are
obtained as a result. The both optimization processes of topology
and floorplan are interrelated and interact on each other, there-
fore we design a method for simultaneously considering the link-
age and allocation of the switches. The linkage results are auto-
matically adjusted according to the locations of switches, and the
determination of locations is based on the establishment of the
linkage. Since the architecture optimization process is NP-hard,
a GA based heuristic algorithm is applied for efficient and deep
search in the extremely large solution space. A combination of
different representation schemes is applied in GA solution pro-
cess and a 3D performance model involving both optimization
factors is adopted for evaluation. Experimental results show that
our proposed method is efficient for the high performance and
low power 3D NoC architecture optimization, which is adaptive
for different 3D integration systems.

This paper is organized as follows: Section 2 covers previous
research related to the study. Section 3 details the design algo-

c© 2013 Information Processing Society of Japan 34

IPSJ Transactions on System LSI Design Methodology Vol.6 34–41 (Feb. 2013)

rithms used to achieve the objective. Section 4 illustrates the ex-
perimental analysis. Finally, Section 5 concludes this paper.

2. Related Works

The role of 3D IC integration in ensuring performance growth
has become increasingly important, which has attracted more
and more researches in the recent years. Potential and limits
of 3D integration were quantified in Ref. [2] by analyzing the
theoretical performance of various 2D and 3D topologies. Ref-
erence [3] explored a 3D IC model for constructing multi-layer
blocks and evaluated the performance improvement for the ver-
tical integration. Different representation methods were pro-
posed in Refs. [4], [5], [6] to solve the 3D floorplan problem. In
Ref. [7], thermal-driven design flows including 3D routing algo-
rithms were implemented in 3D ICs.

Recent researchers have paid much attention to the 3D NoCs
designs in the communication interconnect of 3D integration. In
Ref. [8], opportunities and challenges associated with 3D NoCs,
nanophotonic communication, and wireless interconnects were
outline and compared. In Ref. [9], the performance of 3D NoC
architectures were evaluated and the functionality of in terms of
throughput, latency, energy dissipation and wiring area overhead
compared to traditional 2D implementations were demonstrated.
Problems relating to standard topologies with distinctive charac-
ters in NoCs were instructed in Ref. [10]. Mapping and place-
ment of cores onto standard NoC topologies has been explored in
Refs. [11], [12], [13], [14]. Exploration of irregular application
specific topologies designs were researched in Refs. [15], [16]
and [22], and different algorithms were used for the synthesis
procedure. In Ref. [22], the first stage for establishing the core to
switch connectivity is based on min-cut partition, which doesn’t
execute a complete search for the total solution space, and the
switch position and switch connectivity are optimized separately.
Since the optimizations of topology and floorplan are interrelated
on each other, the two procedures should be considered simulta-
neously. In this paper, we also explore an irregular application
specific 3D NoC design by developing an efficient method con-
sidering both optimization processes simultaneously.

3. Design Algorithms

The system architecture design is illustrated in Fig. 1. In
this system, we input communication parameter files, core floor-
plan files, mathematical model, and the corresponding parame-
ters. The communication parameter files describe the application
bandwidth, latency, message types etc.. The core floorplan files
describe the core locations and core communication graph. Given
the input data, the system executes the encoding, perturbation,
decoding, and selection as its optimization procedure. Finally the
system generates the optimized architecture including topology
and floorplan for each layer in the 3D system.

We adopt progressive three optimization steps and apply differ-
ent algorithms in each step. The first step is aiming at optimizing
the flow paths and deleting the redundant links in general. The
second step is to further trim the network by using the minimum
links. The third step intends to reconstruct the network by com-
bining some nodes and reforming some new nodes, which needs

Fig. 1 Application specific 3D NoC system design flow.

Fig. 2 Example of 3D NoC optimization results.

deep search of the whole network. Firstly, we assign a switch for
each core to formulate a regular mesh and then apply the short-
est path algorithm to search the minimum cost paths for the en-
tire network, based on which, physical links between cores and
switches are reconstructed to decrease the cost. In the second
step, we implement the minimum spanning tree algorithm in the
reconstructed network to decrease the cost by further trimming
the redundant connections between the network nodes. In the
last step, different switches are merged together to improve the
performance, and the optimized floorplan in each layer are deter-
mined. We apply a Genetic Algorithm based algorithm to search
the optimal merging way and definite positions for the switches
in each layer. An example of the optimization result is illustrated
in Fig. 2. Figure 2 (a) is the input core floorplan in two layers, and
(b) is the optimized application specific NoC architecture for (a).
As shown in Fig. 2 (b), the linkage between cores and switches
and the switch positions in each layer are finally determined. The
reason why we adopt a customized architecture is as follows. If
we use a traditional regular topology like 3D mesh, every core
will need a switch, and more physical links will also be added. By
using our customized architecture instead of the above classical
regular topologies, switches and links may be saved, so that sys-
tem performance including power and latency can be improved
greatly.

3.1 Preliminaries
The methodology and algorithms are designed based on the

graph. We use the core communication graph as the input of our
system, representing the packets transmission relations between
any two cores.

Definition 1 The core communication graph CCG(V, E) is a

c© 2013 Information Processing Society of Japan 35

IPSJ Transactions on System LSI Design Methodology Vol.6 34–41 (Feb. 2013)

Fig. 3 Core communication graph CCG.

Fig. 4 Switch cost graph S CG.

directed graph, with each vertex ci ∈ V representing a core and
the directed edge (ci, c j) ∈ E representing the communication
from the core ci to c j. The bandwidth of traffic flow from core ci

to c j is represented by bwi, j and the latency for the flow is repre-
sented by lati, j. An example of the CCG for 3D mesh topology is
illustrated in Fig. 3.

We start our algorithm by initially assigning a switch for each
core, and the core communication graph can be transformed to
switch cost graph. We use this graph as the foundation of subse-
quent calculation and analysis.

Definition 2 The switch cost graph S CG(S , L) is a directed
graph, with each vertex si ∈ S representing a switch and the di-
rected edge li, j = (si, s j) ∈ L representing the connection from
the switch si to s j. A weight w(li, j) is attached to each edge rep-
resenting the cost of establishing the switch link. An example of
the S CG for 3D mesh topology is illustrated in Fig. 4.

The cost w(li, j) on each link is set to be the combination of la-
tency and power consumption of the traffic flow from switch si to
s j, which depends on the size of switches, the connectivity of the
switches to other switches, and the length of physical links. The
parameter definitions of the cost functions are listed in Table 1.
The cost function for establishing a physical link between si and
s j can be calculated as:

w(li, j) = α ∗ pi, j + (1 − α) ∗ ti, j (1)

Where pi, j is the power consumption from si to s j (pi, j =

pi + p j), ti, j is the latency from si to s j (ti, j = ti + t j), and α is
a weight parameter. pi (p j) is a power consumption at switch
node si (si) and ti (t j) is a latency at si (si). They are calculated
by the following equations:

pi = psi + phi + pvi (2)

psi = pdsi + pssi + plsi (3)

Table 1 Notations of the model.

psi The power of crossbar switch i
phi The power of horizontal channel i
pvi The power of vertical channel i
pdsi The dynamic power of crossbar switch i
pssi The short-circuit power of crossbar switch i
plsi The leakage power of crossbar switch i
tai The arbitration logic delay of switch i
tsi The switch delay of switch i
thi The delay of horizontal channel i
tvi The delay of vertical channel i
NF The number of flows in CCG

phi = pdhi + pshi + plhi (4)

pvi = pdvi + psvi + plvi (5)

ti = tai + tsi + thi + tvi (6)

The total power P and latency T in the whole network can be
represented by:

P =
NF∑
j=1

(∑
psi|all switch i in f low j +

∑
phi|all horizontal link i in f low j

+
∑

pvi|all vertical link i in f low j

)
(7)

T = max
j=1,2,...,NF

(∑
(tai + tsi)|all switch i in f low j

+
∑

thi|all horizontal link i in f low j +
∑

tvi|all vertical link i in f low j

)

(8)

From the above definitions and functions, we can formulate our
cost model as:
Minimize

α ∗ P + (1 − α) ∗ T (9)

Subject to

ni ≤ Nmax sw,∀i = 1, 2, ..., |S | (10)

N3D ≤ Nmax ill (11)

Where ni represents the number of ports of switch i, Nmax sw

is the maximum size of a switch and Nmax ill is the maximum
number of vertical links. The objective is to improve both power
consumption and latency. The parameter α can be used to make
trade-offs between power and latency. Equation (10) ensures the
size of each switch will not surpass the maximum size accord-
ing to the frequency, and Eq. (11) ensures that the total number
of vertical links will not surpass the maximum vertical links con-
straints.

In the initialization step, we input the communication param-
eters, such as the application bandwidth, latency, message types
etc.. The system will then generate the corresponding S CG ac-
cording to the input CCG. The weight in each edge of S CG

w(li, j)(can be seemed as item cost) is calculated by using the cost
function (1). The total cost for every flow in CCG which is cal-
culated by Eq. (9) is the summation of each item cost. It can be
used for cost evaluation in every optimization algorithm.

c© 2013 Information Processing Society of Japan 36

IPSJ Transactions on System LSI Design Methodology Vol.6 34–41 (Feb. 2013)

Fig. 5 Example of the design algorithm.

3.2 Overview of the Design Algorithms
The overview of the design algorithms are detailed in Algo-

rithm 1. An example of the illustration for the progressive op-
timization procedure is shown in Fig. 5. In the initialization,
each core is assigned a switch, and we can get S CG from the
input CCG (Fig. 5 (a)) and cost computation functions (shown in
Fig. 5 (b)). In Fig. 5 (a), the weight in each edge represents the
bandwidth between the core pairs. Let’s derive w(l1,2) and w(l2,1)
as an example. The parameters and bw1,2 = 230 are firstly input
to Eqs. (3), (4), (5) and (2) to get p1 = 28.23 and p2 = 25.47, and
then input to Eq. (6) to get t1 = 8.58 and t2 = 5.64. Please refer
Refs. [1], [10] and [20] for detailed calculation, but it is omitted
here due to the paper length limitation. We set α = 0.5, and input
the resulting p1,2 and t1,2 to Eq. (1) to calculate w(l1,2) = 33.96.
To calculate w(l2,1), since there is no traffic flow from C2 to C1,
we assign bw2,1 = 1, so that w(l2,1) = 42.55. S CG is a mesh
architecture which is bidirectional with channels in both direc-
tions between connected nodes. However, in the application spe-
cific network, not all the channels are actually in use for message
transmission. Deleting additional links which take a great impact
on the switch size is a major factor for decreasing the intercon-
nect cost. Therefore, we are focusing on constructing the least
cost architecture by limiting the least cost directed path for every
source and destination node of the flows in CCG. At the first step,
we apply Dijkstra’s algorithm [17] to find the minimal cost path
for each flow in CCG. For each pair of nodes in the network,
we delete the links that take higher cost but do not influence the
required data flow transmission, and the minimum cost paths are
reserved to formulate the new switch connectivity graph (NS CG)
(shown in Fig. 5 (c)). For example, according to the shortest path
calculation, for the flow from s1 to s2, the cost of path {s1, s3,
s2} is smaller than that of {s1, s2}. Then we select the minimum
cost path s1, s3 and s2 and delete the high cost link (s1, s2). After
shortest path selection, there still exist links that can be removed

Algorithm 1 3D NoC architecture optimization
Input: CCG(V, E), S CG(S , L), cost function,
library of network components
Output: optimized network topology and floorplan
begin

S CG = InitialSwitchalLocation (CCG)
cost = cost function (S CG)

for i = 1 to number of flows in CCG do
ShortestPath (S CG, cost)

end for
delete the paths with higher cost
update the links and weights in SCG
NS CG = ConstructNewGraph (S CG)
MS T =MiniSpanningTree (NS CG, cost)
project MS T to CCG
delete unnecessary links according to MST
update the links and weights in NSCG
NS CG′ = ConstructNewGraph (NS CG)

Switch Merging & Allocation (NS CG′, cost)
update the nodes and links in NS CG′
output the best network topology and floorplan

end

for further optimization. Take Fig. 5 (c) for example, the link (s3,
s4) is on a minimal cost path between s3 and s4, but we can find
another alternative path {s3, s2, s4} or {s3, s7, s4} in the current
topology. So this link (s3, s4) can be removed. For the deep
exploration, we try to find the minimum spanning tree (shown in
Fig. 5 (d)) by use of Prim’s algorithm [18] and then project it back
to the required data flow in CCG. By this projection to CCG, the
links necessary for flow transmission but not in the spanning tree
are reconstructed in the switch connectivity, such as the link (s3,
s7) and (s5, s7) in Fig. 5 (e). This process is the second step. As a
result, the switch connectivity with the minimum communication
cost is obtained (shown in Fig. 5 (e)). In the third step, we apply
a GA based algorithm to further optimize the topology by merg-
ing the appropriate switches together and allocate each merged
switch in the floorplan. Finally we output the optimal customized
3D architecture (shown in Fig. 5 (f)).
Let m and n be the number of edges and nodes in the network re-

c© 2013 Information Processing Society of Japan 37

IPSJ Transactions on System LSI Design Methodology Vol.6 34–41 (Feb. 2013)

Algorithm 2 Switch Merging & Allocation by GA
Input: NS CG′(S , L), cost function, GA parameters
Output: optimized network topology and floorplan
begin

t ← 0
initialize Pt by encoding method
evaluate Pt by decoding method
while (not gen = Maxgen) do

create C(t) from P(t) by crossover routine
create C(t) from P(t) by mutation routine
evaluate C(t) by decoding routine using (9)

as the evaluation function
select P(t + 1) from P(t) and C(t) by using

Tournament Selection
t ← t + 1

end
output the best network topology

end

spectively. The computational complexity of Dijkstra’s algorithm
and Prim’s algorithm is O(n2) in worst case, and the complexity
of GA is O(m ∗ n).

3.3 GA Based Optimization
The switch merging and allocation problem is NP-hard [22],

and the searching space for this problem is extra-large, which
makes it intractable for deterministic algorithms. In this step,
we design a GA based heuristic algorithm for efficient and deep
search. The details of application of GA are shown in Algorithm
2, where Pt is the set of parents at the t-th generation for switch
merging and allocation, C(t) is the offspring in current generation
t, and gen and Maxgen be the current generation and the maxi-
mum generation respectively. In the switch merging part, we as-
sume that only the switches on the same layer can be merged, so
the algorithm implements every search cycle in each layer sep-
arately. The switch allocation is based on the result of switch
merging and the encoding procedure is implemented after the en-
coding of the merging part. We use the function from the cost
model to simultaneously evaluate the results from switch merging
and allocation in the decoding procedure. The output of the algo-
rithm is the optimized 3D architecture including both the topol-
ogy and floorplan.
3.3.1 GA Representation

We use two kinds of chromosomes to represent the switch
merging way and the positions for merged switches respectively.
For switch merging, we design a two-section chromosome: Sec-
tion 1 is a series of random numbers from 1 to the number of
switches, representing the switches for merging; Section 2 con-
sists of random numbers from 0 to the number of unmerged
switches, representing which switches are merged together. The
switches are partitioned into several groups according to the rep-
resenting numbers in Section 2. When we generate an item, the
number of unmerged switches is decreased correspondingly. Fig-
ure 6 illustrates an example of the representation method for
switch merging. In this example, there are 5 switches, and the
series number in Section 1 means switch 1, 4, 3, 2 and 5. In
Section 2, we firstly generate 2 from 1 to 5, which means the
first two switches (switch 1 and 4) are merged together. Then the
number of unmerged switches is decreased to 3, and we generate
2 from 1 to 3, meaning the next two switches (switch 3 and 2) are

Fig. 6 Example of chromosome for switch merging.

Fig. 7 Example of switch allocation and its chromosome.

merged. The third item equals to 1, representing switch 5 is in a
separate group, without being merged with others. At this time,
the number of unmerged switches is decreased to 0, which means
the switch merging process has been completed. The remaining
items are all set to 0. From this chromosome, we get the solution
as “switch 1 and 4, switch 3 and 2 are merged respectively.”

Chromosomes for switch allocation are generated after the
merging chromosomes, and the lengths are determined accord-
ing to the number of switches after merging. The optional areas
for allocation are partitioned into several rectangle regions. These
regions are defined by the coordinates from the lower left to the
upper right, and they are numbered in sequence from left to right.
We use the region number, x-coordinate, and y-coordinate to rep-
resent one optional position for the merged switch as illustrated
in Fig. 7. The x-coordinate and y-coordinate are generated ran-
domly in the available range of the corresponding region. In this
example, there are 3 merged switches and 3 regions for switch
allocation (1, 2, and 3 in this figure). We in turn generate the re-
gion number, x-coordinate, and y-coordinate for the 3 switches
respectively and form a 9-item chromosome. The corresponding
positions for each switch are shown in the floorplan.
3.3.2 GA Operators

We apply Insertion Mutation for Section 1 of the merging chro-
mosome. For Section 2, we use Exchange Mutation in part of the
population, and regenerating new individuals in the other part.
Through this way, both the stability and diversity are maintained.
Regenerate Probability is used to set the percentage for regener-
ating mutation. Order crossover is applied for Section 1 of the
merging chromosome after mutation operator. An example of ap-
plication of mutation and crossover for the merging chromosome
is shown in Fig. 8.

For the allocation chromosome, we apply two different muta-
tion methods. One is to fix the region number and change the x, y
coordinate, the other is to regenerate a new chromosome. The po-

c© 2013 Information Processing Society of Japan 38

IPSJ Transactions on System LSI Design Methodology Vol.6 34–41 (Feb. 2013)

Fig. 8 Example of mutation and crossover for the merging chromosome.

sition points must be changed within the valid ranges of regions,
and infeasible solutions are trimmed in the mutation procedure.
3.3.3 Evaluation and Selection

We utilize the cost model as the fitness function to evaluate the
solutions from decoding both the merging and allocation chromo-
somes. We try to find the solution that consumes the minimum
cost including both power and latency, and the solutions that vio-
late the constraints are trimmed by being set to an extra large cost
value. Tournament Selection is used to retain the best solution in
every generation.

4. Numerical Experiments and Analysis

For the experiments, the NoC component library [19] is used.
The parameter values for the power and latency models are deter-
mined by 45-nm technology low power libraries [20]. The verti-
cal interconnects using TSVs are implemented based on the mod-
els in Ref. [21]. The proposed algorithms have been implemented
in C# .Net language on a 2 GHz Windows workstation. The pa-
rameters for implementing the GA based algorithm are listed in
Table 2.

We design three different experiments to test the effectiveness
and efficiency of our proposed algorithm. In the first experiment,
standard benchmarks on different scales are used to test the ef-
ficiency of our algorithm. In the second experiment, we make a
comparison between the NoC application in 2D and 3D layout.
In the third experiment, the effectiveness is tested by comparing
the optimized architecture results through our proposed algorithm
with the results by other algorithms.

4.1 Experimental Results on Standard Benchmarks
The proposed algorithm has been tested on three benchmarks

on different scales: DSP Filter with 6 cores [23], MPEG4 De-
coder with 12 cores [24] and a realistic multimedia SoC bench-
mark (D 26 media) with 26 cores [22]. The architecture is de-
signed on to 3 layers in 3D, and the maximum number of vertical
links, Nmax ill = 25. The weight parameter α between power and
latency in Eq. (9) is initially set to 0.5. Then we regulate this pa-
rameter from 0–1, which means the preference is towards power
or latency, and corresponding optimized topologies are different.
For each α value, we normalize each power and latency to the
average power and latency respectively and get the normalized
value as the fitness value for GA optimization. We take 100 runs,
and get the average best values as the final result. According to
the results, we select the typical α values and list the implemen-
tation results in Table 3, and the final optimized architecture in
each layer for application on MPEG4 Decoder with α equals to
0.5 is illustrated in Fig. 9. As there are various communication

Table 2 GA implementation parameters.

ID Parameter

Value

Switch merge

Section 1

Switch merge

Section 2

Switch

allocation

1 Popsize 200 200 200

2 MaxGen 1000 1000 1000

3
Crossover

Probability
0.7 # #

4
Mutation

Probability
0.7 0.8 0.4

5
Regenerate

Probability
0.6 0.5

flows and network scales, the performance improvement differs
from benchmark to benchmark. As shown in Table 3, in each re-
spective benchmark, the optimized number of switches almost re-
mains the same with various α values, and this number is always
smaller than the corresponding number of cores, which means
that the application of regular topologies is not a good choice in
irregular core architectures. For example, MPEG4 benchmark
has 12 cores but 3 switches are enough in our proposed archi-
tecture. The optimized switch locations in each layer are distinct
by changing the value of α, which means when the preference
of cost is changing from power to latency, we will get different
optimal floorplans even with the same topologies. From the exe-
cution time, we can find our proposed algorithm is very efficient
even with large scale applications.

4.2 Comparison Between 2D and 3D Application
We implement 2-layer and 3-layer architecture in 3D applica-

tion on the MPEG4 Decoder benchmark, and make comparison
with the 2D architecture. In the 2D implementation, the same
CCG is used as an input communication parameter, but placed in
a 2D floorplan. The same algorithms are applied to the 2D with-
out iteration in multi-layers, and we don’t consider the vertical
links constraints. The variation of performance values along with
different switch counts in 3D and 2D implementations are shown
in Fig. 10. From this figure we can see the best architecture with
minimum power and latency in 3D application appears when the
switch count equals to 3, and the 3D architecture outperforms the
2D counterpart in the evolving process. The average power and
latency reduction evaluated by the cost function is 33.06% for
2-layer and 35.09% for 3-layer when comparing 3D to 2D imple-
mentations.

4.3 Comparison between Different Algorithms
We compare the application specific architecture generated by

our algorithm implemented on D 26 media benchmark with the
architecture on traditional 3D mesh topology and then with the
results by using the algorithm in [22] and the results by Simu-
lated Annealing (SA) algorithm. In the SA implementation, we
use the same representation and evaluation as our GA. The per-
turbations are selected from the GA mutation, insertion mutation,
exchange mutation and regenerate mutation. We use a tempera-
ture schedule of the form Tk = γTk−1, k = 1, 2, 3,The starting
parameters T0 and γ are set by taking account of input size and

c© 2013 Information Processing Society of Japan 39

IPSJ Transactions on System LSI Design Methodology Vol.6 34–41 (Feb. 2013)

Table 3 Implementation results on benchmarks.

Bench
Number of switches Switch allocation in each layer (layer, x, y) Cost α ∗ P + (1 − α) ∗ T

Time (s)
α = 0.5 α = 0 α = 1 α = 0.3 α = 0.5 α = 0 α = 1 α = 0.3 α = 0.5 α = 0 α = 1 α = 0.3

DSP 5 5 5 5

(0,185,117)

(0,182,110)

(1,161,136)

(2,180,98)

(2,179,65)

(0,167,116)

(0,173,102)

(1,166,130)

(2,179,125)

(2,167,106)

(0,137,111)

(0, 121,104)

(1,140,101)

(2,154,127)

(2,144,109)

(0,174,126)

(0, 185,121)

(1,185,111)

(2,184,99)

(2,185,114)

37.55 9.26 65.81 26.22 135

MPEG4 3 3 3 3

(0,94,64)

(1, 92,66)

(2,91,62)

(0,57,70)

(1,54,71)

(2,53,70)

(0,67,70)

(1,59,68)

(2,59,69)

(0,55,70)

(1,63,64)

(2,60,65)

45.45 11.18 79.73 31.75 544

D 26 4 4 3 4

(0,351,193)

(1,436,2)

(2,319,71)

(2,314,85)

(0,15,113)

(0,312,10)

(1,218,5)

(2,103,154)

(0,16,105)

(1,3,171)

(2,20,155)

(0,7,9)

(1,105,20)

(2,66,14)

(2,12,137)

66.05 29.18 122.86 78.40 1456

Fig. 9 Implementation results for 3 layers MEPG4 application.

Table 4 Comparison results between different algorithms.

Item

α = 0 α = 1 α = 0.3 α = 0.5

Time (s)Latency

(ns)
Latency improved

Power

(mw)
Power improved

Cost

α ∗ P + (1 − α) ∗ T
Cost improved

Cost

α ∗ P + (1 − α) ∗ T
Cost improved

Mesh topology 33.8 # 245.2 # 97.22 # 139.5 # #

Proposed algorithm 29.18 13.67% 122.86 49.89% 78.40 19.36% 66.05 52.65% 1456

Algorithm from Ref. [22] 30.23 10.56% 136.56 44.31% 81.94 15.72% 83.40 40.22% 3821

Algorithm by SA 28.78 14.85% 128.32 47.67% 82.76 14.87% 73.26 47.48% 1482

Fig. 10 Comparison results between 2D and 3D implementation.

extensive experimentation. In this experiment, we set γ = 0.9 and
T0 = 20000 comparing to the GA MaxGen. At each temperature
we attempt the same times moves as the size of the population
in our GA. The annealing process is halted when the tempera-
ture has been lowered 40 times since the last improvement was
recorded in the best-so-far.The comparison results are reported in
Table 4. When compared to the original 3D mesh topology in
the 1’st row, if we simply consider the power in the cost function
and ignore the impact of latency (α = 1), we can find our custom
based architecture can save the power by 49.89%. If the latency
is concerned independently (α = 0), we can see the latency re-
duction is 13.67%. If the power and latency are simultaneously

taken into account, the cost improvement achieves 52.65% with
α = 0.5, and 19.36% with α = 0.3. From the comparison results
in Table 4, we can find our proposed algorithm is more power
and latency effective. The algorithms in Ref. [22] include greedy
search which is quite time consuming, and the time complexity is
O(| Zmax || V |2| E || ln(| V |)). Our proposed algorithm is based
on heuristic searching, and we can see its time efficient from the
execution time. When comparing with the architecture optimized
by SA, in most cases our architecture results in better solutions
by simultaneously optimizing the topology and location.

5. Conclusions

In this paper, we proposed an efficient algorithm for designing
application specific irregular 3D NoC architectures. We adopt
a three-step progressive optimization procedure to automatically
explore the best solutions for improving power and latency in a
large scale searching space. The numerical experiments show that
custom based architecture can optimize the network performance,
including power and latency. By comparing with 2D applications,
the 3D system can improve the power and latency. When com-
paring with traditional 3D mesh and the architecture optimized
by other algorithms, our proposed algorithm can achieve good
implementing results within short execution time even with large
scale applications.

Acknowledgments This research was partly supported by

c© 2013 Information Processing Society of Japan 40

IPSJ Transactions on System LSI Design Methodology Vol.6 34–41 (Feb. 2013)

JSPS KAKENHI 23500069 and Program for Fostering Regional
Innovation by MEXT, Japan.

References

[1] Sheibanyrad, A., Ptrot, F. and Jantsch, A. (eds.): 3D Integration for
NoC-based SoC Architectures, Springer-Verlag (2010).

[2] Jantsch, A., Grange, M. and Pamunuwa, D.: The promises and limi-
tations of 3-D integration, Integrated Circuits and Systems, pp.27–44
(2011).

[3] Pavlidis, V.F. and Friedman, E.G.: Via placement for minimum inter-
connect delay in three-dimensional (3D) circuits, Proc. IEEE ISCAS,
pp.4587–4590 (May 2006).

[4] Ohta, H., Yamada, T., Kodama, C. and Fujiyosi, K.: The O-Sequence:
Representation of 3D-floorplan dissected by rectangular walls, Proc.
Research in Microelectronics and Electronics, pp.317–320 (2006).

[5] Berntsson, J. and Tang, M.: A slicing structure representation for the
multi-layer floorplan layout problem, Evolutionary Computing: Proc.
EvoWorkshops 2004, Vol.3005, pp.188–197 (2004).

[6] Hung, W.L., Link, G.M., Xie, Y., Vijaykrishnan, N. and Irwin, M.J.:
Interconnect and thermal-aware floorplanning for 3D microproces-
sors, Proc. the 7th International Symposium on Quality Electronic De-
sign, pp.98–104 (2006).

[7] Cong, J. and Zhang, Y.: Thermal via planning for 3-D ICs, Proc. IC-
CAD 2005, pp.745–752 (2005).

[8] Carloni, L.P., Pande, P. and Xie, Y.: Networks-on-chip in emerging in-
terconnect paradigms: Advantages and challenges, Proc. the 2009 3rd
ACM/IEEE International Symposium on Networks-on-Chip, pp.93–
102 (May 2009).

[9] Feero, B. and Pande, P.P.: Networks-on-chip in a three-dimensional
environment: A performance evaluation, IEEE Trans. Comput.,
pp.32–45 (Jan. 2009).

[10] Pavlidis, V.F. and Friedman, E.G.: 3-D topologies for networks-on-
chip, IEEE Trans. VLSI Systems, pp.1081–1090 (Oct. 2007).

[11] Hu, J. and Marculescu, R.: Exploiting the Routing Flexibility for
Energy/Performance Aware Mapping of Regular NoC Architectures,
Proc. DATE, pp.688–693 (2003).

[12] Murali, S. and Micheli, G.D.: SUNMAP: A Tool for Automatic Topol-
ogy Selection and Generation for NoCs, Proc. 41st annual DAC, pp.7–
11 (2004).

[13] Murali, S., and De Micheli, G.: Bandwidth Constrained Mapping of
Cores onto NoC Architectures, Proc. DATE, Vol.2, pp.20896 (2004).

[14] Bertozzi, D. et al.: NoC Synthesis Flow for Customized Domain Spe-
cific Multiprocessor Systems-on-Chip, IEEE Trans. Parallel and Dis-
tributed Systems, pp.113–129 (Feb. 2005).

[15] Murali, S., Seiculescu, C., Benini, L. and Micheli, G.D.: Synthesis
of networks on chips for 3D systems on chips, Proc. 2009 ASPDAC,
pp.242–247 (2009).

[16] Yan, S. and Lin, B.: Custom networks-on-chip architectures with mul-
ticast routing, IEEE Trans. VLSI Systems, pp.342–355 (2009).

[17] Johnson, D.B.: A note on Dijkstra’s shortest path algorithm, J. ACM,
Vol.20, No.3, pp.385–388 (July 1973).

[18] Kershenbaum, A. and Slyke, R.V.: Computing minimum spanning
trees efficiently, ACM ’72 Proc. ACM annual conf., Vol.1, pp.518–521
(1972).

[19] Stergiou, S. et al.: X pipes lite: A synthesis oriented design library for
networks on chips, Proc. DATE, Vol.2, pp.1188–1193 (2005).

[20] Pavlidis, V.F. et al.: Via placement for minimum interconnect delay in
three-dimensional (3D) circuits, IEEE International System-on-Chip
Conf., pp.4587–4590 (2006).

[21] Loi, I., Angiolini, F. and Benini, L.: Supporting vertical links for
3D networks-on-chip: toward an automated design and analysis flow,
Nano-Net ’07 Proc. 2nd international Conf. on Nano-Networks, (Sep.
2007).

[22] Seiculescu, C., Murali, S., Benini, L. and Micheli, G.De: SunFloor
3D: a tool for networks on chip topology synthesis for 3D systems on
chips, Proc. DATE, pp.9–14 (April 2009).

[23] Jalabert, A., Murali, S., Benini, L. and Micheli, G.De: X pipesCom-
piler: A tool for instantiating application specific Networks on Chip,
Proc. DATE, Vol.2, pp.884–889 (Feb. 2004).

[24] Gebhardt, D., You, J. and Stevens, K.S.: Link pipelining strategies for
an application-specific asynchronous NoC, Proc. 2011 5th IEEE/ACM
International Symposium on NoCS, pp.185–192 (May 2011).

Xin Jiang was born in Liaoning, China
on July, 1981. She received her B.E. de-
gree in Electronic Engineering in 2004,
from Shanghai Marine University. In
2006, she received her M.S. degree in
Shanghai Marine University. She then
joined Shanghai Easipass International
Co. Ltd., where she worked as a software

testing engineer from 2006 to 2008. She is currently working
toward a Dr. Eng. degree in Graduate School of Information,
Productions and Systems, from Waseda University. Her current
research interests include optimization algorithms in Electronics
DA designs. She is a member of IEICE.

Ran Zhang was born in Dalian, China on
April, 1985. She received her B.E. degree
in Electronic Engineering in 2008, from
Dalian University of Technology. In 2010,
she received her M.S. degree in Graduate
School of Information, Productions and
Systems, from Waseda University. She is
currently working toward a Dr. Eng. de-

gree in Waseda University. Her current research is optimization
algorithms for Electronics DA designs. She is a member of IE-
ICE.

Takahiro Watanabe was born in Ube,
Japan on October, 1950. He received
his B.E. and M.E. in Electrical Engineer-
ing from Yamaguchi University, and Dr.
Eng. from Tohoku University. In 1979, he
joined Research and Development Center
of TOSHIBA Corp., where he worked in
the field of LSI design automation. In Au-

gust 1990, he joined Yamaguchi University, the Department of
Computer Science and Systems Engineering, and in April 2003,
he moved to Waseda University, Graduate School of Information,
Production and Systems. His current research interests are EDA
algorithm, Microprocessor and MPSoC, NoC, FPGA and their
applications. He is a member of IEICE, IPSJ and IEEE.

(Recommended by Associate Editor: Yasuhiro Takashima)

c© 2013 Information Processing Society of Japan 41

