
IPSJ Transactions on System LSI Design Methodology Vol.7 46–55 (Feb. 2014)

[DOI: 10.2197/ipsjtsldm.7.46]

Regular Paper

SAT-based Automatic Rectification and Debugging of
Combinational Circuits with LUT Insertions

Satoshi Jo1,a) TakeshiMatsumoto2,b) Masahiro Fujita2,3,c)

Received: May 24, 2013, Revised: August 30, 2013,
Accepted: October 30, 2013, Released: February 14, 2014

Abstract: Introducing partial programmability in circuits by replacing some gates with look up tables (LUTs) can be
an effective way to improve post-silicon or in-field rectification and debugging. Although finding configurations of
LUTs that can correct the circuits can be formulated as a QBF problem, solving it by state-of-the-art QBF solvers is
still a hard problem for large circuits and many LUTs. In this paper, we present a rectification and debugging method
for combinational circuits with LUTs by repeatedly applying Boolean SAT solvers. The proposed method first finds a
candidate of LUT configurations that can correct a given circuit by SAT solvers. Then, it checks the correctness of the
candidate by checking equivalence between the circuit with LUTs and its specification. Although this can be solved as
SAT problem, we introduce to use commercial equivalence checker to improve the efficiency. If the result of the check
is “not equivalent”, an input pattern showing the non-equivalence will be added, and the method repeats with the pat-
tern added. Through the experimental results on ISCAS ’85 benchmark circuits and Open RISC 1200 microprocessor
design, we show our proposed method can quickly find LUT configurations for large circuits with many LUTs, which
cannot be solved by a QBF solver.

Keywords: partially programmable circuit, Boolean satisfiability, Quantified Boolean Formula, look-up table

1. Introduction

Due to the continuous increase of chip size and complexity, it
is extremely difficult to generate 100% correct fabricated chips.
There are varieties of reasons why designers cannot use the manu-
factured chips as they are: logical and electrical bugs, last minutes
changes of specifications, various and complicated manufactured
faults, and others. If there are no in-field programmability in the
chips, they cannot simply be used, or significant efforts may be re-
quired from the usage aspect of the chips, such as large revisions
of their controlling software in order to hide the problems from
the end-users of the chips. Moreover, when designing large chips,
such as SoCs, many advanced features must be implemented as
quickly as possible, and so, it is very helpful to incorporate IPs
(Intellectual Properties: reusable circuit blocks) into a new design
as much as possible. IPs may not be used as they are, as their
functionality including their interfaces can be slightly incompati-
ble to the rest in the chip. If there are in-field programmability in
the IPs, such incompatibility can be rectified and the IPs can be
used with re-programming.

1 Department of Electrical Engineering and Information Systems, The
University of Tokyo, Bunkyo, Tokyo 113–8656, Japan

2 VLSI Design and Education Center, The University of Tokyo, Bunkyo,
Tokyo 113–0032, Japan

3 CREST, JST
a) jo@cad.t.u-tokyo.ac.jp
b) matsumoto@cad.t.u-tokyo.ac.jp
c) fujita@ee.t.u-tokyo.ac.jp

A preliminary version of this paper has been published in the pro-
ceedings of the 21st Asia Test Symposium, pp.19–24, November, 2012
(DOI:10.1109/ATS.2012.55).

Studies in the errors and bugs of microprocessors show small
additional programmability could be sufficient in most cases [1].
By introducing small amount of in-field programmability, large
portions of the problems of the chips may be avoided without
disabling intended functionalities (which are typically newly-
developed enhanced ones), while they have to be disabled by
workarounds in software if programmability is not introduced.

Introducing programmability to gate-level circuits is recently
studied in Ref. [2]. In the work, PPC (Partially Programmable
Circuit) has been proposed. In PPC, some of the original (sets
of) gates are replaced with look-up tables (LUTs) or multiplexers
whose functionality can be modified in the fields just like FPGA
by utilizing scan chains or others. PPC has been evaluated re-
cently from the viewpoints of design rectification under errors,
bugs, faults, and Engineering Change Order (ECO, small changes
of specification), and it has been shown that significant percent-
ages of the problem can be avoided by introducing small numbers
of LUTs into the designs [3].

In this paper, following the idea of PPC, we present several tar-
get problems which can be solved by introducing programmable
circuits into combinational circuits, that is, replacing some of
the original gates with LUTs. Then, we propose a circuit rec-
tification and debugging method to efficiently solve those prob-
lems using SAT solvers. Although the selection of LUT inser-
tions/replacements in the target designs is just based on simple
heuristics or random selections, our rectification and debugging
method can deal with much larger circuits than the techniques
shown in Ref. [3], which is confirmed by experimental results on
several benchmark designs including 16-bit combinational mul-

c© 2014 Information Processing Society of Japan 46

IPSJ Transactions on System LSI Design Methodology Vol.7 46–55 (Feb. 2014)

tipliers which are considered to be hard to analyze with Boolean
methods, such as SAT and BDD.

As can be seen from Ref. [3], the problems can be formulated
as satisfiability problem of Quantified Boolean Formula (QBF),
which we call QBF evaluation problem (or QBF problem, in
short) in this paper. That is, the problem is formulated as sat-
isfiability checking of the following statement:
“Under appropriate programs for LUTs (existentially quantified),

the circuit behaves correctly for all possible input values (univer-

sally quantified)”

When satisfiable, a program for LUTs with which the statement
is satisfied is a solution of the problem. In Ref. [3], state-of-the-
art QBF solvers with some heuristic problem decomposition on
parallel computing machines are used to solve the QBF evalua-
tion problems. Although QBF solvers have been improved a lot
recently, the QBF evaluation problems they can solve are much
smaller than the normal SAT problems, as the complexity of QBF
evaluation problems is much higher than that of normal SAT
problems. So in Ref. [3], only relatively small benchmarks are
tried.

Recently, a new approach to solve QBF evaluation problems
has been proposed [4]. By utilizing CEGAR (Counter Example
Guided Abstraction Refinement) paradigm, which has been used
with lots of success in formal verification area [5], [6], QBF prob-
lems can be solved by repeatedly applying normal SAT solvers.
The evaluation results in Ref. [4] show that QBF solvers with CE-
GAR paradigm outperform the other QBF solvers significantly.
Inspired from this approach, in this paper, we show a method
which tries to solve a satisfiability problem of QBF for rectifica-
tion and debugging of combinational circuits with LUTs by re-
peated applications of normal SAT solvers. In this paper, first, we
propose to simply apply the method in Ref. [4] to solving QBF
problems in order to find the configurations of LUTs. Then, we
improve its efficiency by introducing to use equivalence check-
ers. Equivalence checkers are used in our method, instead of
SAT solvers in Ref. [4], when we check whether a candidate so-
lution of a QBF problem is really a solution of the problem. The
proposed method is complete in the sense that it finishes with a
solution if there exists, or proves there is no solution, under suf-
ficient given time. Experimental results show that much larger
circuits with much more LUTs than Ref. [3] can be examined by
the proposed method. For example, 16 bit combinational multi-
pliers with 100 LUTs can be analyzed within several minutes.

Our contributions can be summarized as follows:
• Our proposed method reduces the original QBF problems

shown in Ref. [3] into a series of two SAT problems, one
for partial requirements coming from universally quantified
variables, and the other for checking equivalence between
rectification candidates and specifications.

• The former SAT problems are relatively easy as only vari-
ables which represent truth table values of the inserted LUTs
are treated as primary inputs. So, as long as the numbers of
inserted LUTs are not large (less than several hundred or so),
they can be solved very quickly.

• The latter SAT problems are basically equivalence check-
ing between two combinational circuits. Therefore, we can

utilize the well developed Boolean comparison methods,
such as Refs. [7], [8], [9], which will dramatically improve
the performance. There are well developed commercial-
ized tools that implement most of the techniques. As such
Boolean equivalence checkers can deal with circuits hav-
ing millions of gates, at least theoretically we can say such
large circuits may potentially be rectified and debugged with
proposed method. Through experimental comparisons, we
show that solving the latter SAT problems can be faster when
commercial equivalence checkers are used instead of normal
SAT solvers.

• Although our implementation used in the experiments are
relatively very simple and naive, the results are surprisingly
good compared with the previous results [3], in terms of cir-
cuit sizes and processing speed.

• As discussed in Section 1.1, our proposed method has many
potential applications in circuit design and debugging which
requires efficient solving methods such as ours to solve prob-
lems with practical size. For example, using our method, we
can do debug or ECO for circuits implemented on FPGAs
even after routing and placement are done. Even if debug or
ECO happens after its layout is finalized on an FPGA, we
can apply the proposed method to change only LUT func-
tionality. This could be very useful for FPGA based designs
as well as FPGA based prototyping.

The paper is organized as follows. In the next section, we clar-
ify the problems we are trying to solve and show possible practi-
cal applications where our proposed method can effectively work.
In Section 3, related works on the use of programmable circuits
for rectification and debugging are reviewed. Then in the follow-
ing section, the proposed method is presented with details. In
Section 5, experimental results with ISCAS ’85 benchmark cir-
cuits are shown. The last section gives concluding remarks.

1.1 Target Applications
Figure 1 shows some examples of target applications that our

proposed method can solve. In those applications, it is essential
to find a configuration, i.e., truth table values for LUTs and/or
selecting variable values for MUXes, with which the entire logic
circuit behaves equivalently to the given specification. However,
in such applications, methods to find such configurations have
to deal with a large number of logic gates and LUTs/MUXes,
in practice. Although only LUTs are inserted in circuits as pro-
grammable logics, in this paper, extension to handling MUXes
and other types of programmable logics is straightforward.
Bug correction.

Debugging gate-level designs is still a large concern in VLSI
designs. There are some existing works to identify the possi-
ble locations of bugs such as Refs. [13], [21], which enables us
to know which locations should be corrected. However, those
methods cannot provide a logic function of each bug location to
correct the entire circuit. Assume a set of LUTs and a logic spec-
ification on primary inputs and outputs are given, our proposed
method finds a configuration of each LUT for correction, which
means that a corrected logic function at some location in the cir-
cuit can be automatically derived. Note that those inserted LUTs

c© 2014 Information Processing Society of Japan 47

IPSJ Transactions on System LSI Design Methodology Vol.7 46–55 (Feb. 2014)

Fig. 1 Target applications.

are not necessarily required to be physically implemented in the
circuit. In this way of using programmability, the purpose is find-
ing a logic function for correction at some specified location. Fig-
ure 1 (a) shows this situation.
Specification change.

In a similar way to bug correction discussed above, our pro-
posed method can solve a specification change problem if a set
of gates that can be changed with constraints on timing and other
constraints and a new logic function are given.
Post-Silicon Validation.

As shown in Ref. [2], adding programmability in circuits can
improve the chance of validation after VLSI chips are fabricated.
In this case, programmable devices such as LUTs and MUXes
are physically implemented in circuits, and our proposed method
tries to find a configuration of them so that the fabricated circuit
can behave correctly even with faults and/or design bugs. This is
shown in Fig. 1 (b).
Bug correction of FPGAs without changing routing and
placement.

Nowadays, FPGA is widely used to implement or emulate de-
signs. While it has a great advantage that it can be re-programmed
when a design is changed (due to refinement, debug, specifica-
tion change, and others), re-synthesis takes a long time since it
includes time consuming physical synthesis. Therefore, if we can
re-program only logic LUTs in FPGAs and keep the original rout-
ing and placement results, as shown in Fig. 1 (c), the runtime of
re-synthesis can be reduced much. We consider this as one of the
most important applications of the proposed method.

2. Illustrative Example

In this section, we briefly explain how our method works to
solve problems described in Section 1.1.

Assume that a combinational circuit shown in Fig. 2 is the orig-
inal design. Also assume that the designers have decided to use
2-input LUTs. Note that using 2-input LUTs is just an example.
Although we use 2-input LUTs throughout the paper, any num-
bers of inputs can be processed in the same way. If we introduce a
LUT having N inputs, we need 2N variables to represent its truth
table.

Then, a set of candidate locations (there are many other sets as

Fig. 2 An example combinational circuit.

Fig. 3 A set of candidates to be replaced by 2-input LUTs.

Fig. 4 After all candidates are replace by 2-input LUTs.

well) can be the ones shown in Fig. 3, and if all are replaced with
2-input LUTs, the circuit becomes the one shown in Fig. 4. There
are design decisions to be made in terms of which types of LUTs
should be introduced (i.e., the number of LUT inputs) and where
they should be inserted (maybe all possible locations, or any sub-
sets of them). Once these are fixed and decided by the designers,
we can generate QBF to be solved for each problem we like to
deal with, such as bug fixes, ECO, fault tolerance, and others as
shown in Fig. 1.

For a given circuit with LUTs and logic specification, our pro-
posed method tries to find a configuration (i.e. truth table val-
ues of LUTs) to satisfy the specification. In this example, as-
sume its logic specification of the output out is represented as
S PEC(a, b, c, d, e, f , g, h), the QBF that needs to be solved for
satisfiability is:

∃(LUT con f ig.).∀{a, b, c, d, e, f , g, h}.out

= S PEC(a, b, c, d, e, f , g, h)

c© 2014 Information Processing Society of Japan 48

IPSJ Transactions on System LSI Design Methodology Vol.7 46–55 (Feb. 2014)

where LUT con f ig denotes a set of truth table values of all in-
serted LUTs. Since the formula has only one universal quentifier,
it is a two-level QBF. Solving those generated QBF are the target
of our proposed method which will be shown in the later sections.

3. Related Works

3.1 Debugging and ECO Methods for Gate-level Circuits
Efficiency of debugging and ECO is a key issue in mod-

ern VLSI designs. In Ref. [13], a debugging method based on
Boolean satisfiability is proposed for gate-level circuits. This
method identifies logic gates that need to be replaced with an-
other logic function in order to make all given counterexamples
corrected for the same input patterns. This is achieved by insert-
ing a multiplexer at an output of each logic gate, which enables
for a logic circuit under debugging to select either the original
value computed in the circuit or an arbitrary value given by the
other input of the multiplexer. Such logic gates can be found
by formulating the problem as a satisfiability (SAT) problem and
solving with SAT solvers. If all counterexamples are corrected
by selecting the appropriate value through the free variable of the
input of the multiplexer at an output of a gate, the circuit can
be corrected by replacing the gate with another logic function, at
least for those counterexamples.

To improve the efficiency of ECO in VLSI design, it is very
important to make re-synthesized portions as small as possi-
ble [10], [11]. Recently Krishunaswamy et al. address this prob-
lem by optimizing a logic difference between a circuit under ECO
and a modified functional specification [12]. The optimization
is realized by identifying equivalent sub-circuits to the modi-
fied specification, based on SAT-based equivalence checking. To
avoid re-doing time-consuming placement and routing processes,
programmability in a circuit under ECO plays an important role.
In Ref. [14], Yoshida et al. proposes a patchable hardware archi-
tecture where functional modifications are achieved by introduc-
ing memory elements in a circuit. The architecture consists of
a programmable datapath, a fixed controller, and a memory for
patches. According to given functional modifications, control
signals are generated using the patch memory instead of the con-
troller. Also, in Ref. [2], a partially-programmable circuit (PPC)
is proposed to improve yield. In PPC, some logic gates are re-
placed with LUTs to introduce programmability, which enables
ECO even after manufactured without additional placement and
routing. In PPC, efficiently finding a configuration of LUTs to
meet ECO is essential in practical use. In this paper, targeting a
circuit where some original gates are replaced by LUTs, we pro-
pose a way to quickly find the LUT configuration.

3.2 QBF Solvers
Solving LUT configurations for a given functional specifica-

tion can be formulated as a QBF evaluation problem [3]. There
are many techniques proposed to efficiently solve QBF prob-
lems [18], [19], [20], and the performance of solvers has been im-
proved over the last decades, which can be seen in a series of com-
petitions called QBFEVAL [15]. However, even for the state-of-
the-art solvers, solving industrial-sized practical QBF problems
is still a hard problem.

Recently, Boolean SAT-based QBF solving are proposed in
Ref. [4], [16]. Here, let us briefly explain how the method in
Ref. [16] works for 2-level QBFs in the form of ∃X∀Y.φ, where
φ is a propositional formula and X and Y denote a set of vari-
ables, respectively. When this QBF is satisfiable, we call a val-
uation of X a solution of the problem if it satisfies the formula.
If no such valuation of X exists, the QBF is unsatisfiable. The
QBF problem can be rewritten as a Boolean SAT problem for
∧μ∈B|Y |φ[Y/μ], where B|Y | denotes a set of valuation of Y . The
method first takes one or more valuations of Y , which is denoted
as W ∈ B|Y |. Then, ∧μ∈Wφ[Y/μ] is solved as a Boolean SAT prob-
lem. If UNSAT, it immediately means the original QBF problems
are elaborated to value 0. Otherwise, SAT solvers generate a val-
uation ν of X which satisfies φ for all valuations of Y in W. Then,
the method checks whether ν is a solution of the QBF problem,
which is solved as another Boolean SAT problem. If ν is not
a solution (i.e., some valuations of Y do not satisfy φ with ν),
a counterexample is generated by SAT solvers and added to W.
This process is repeated until a solution ν is found or the QBF is
proved to be unsatisfiable. If the number of iterations is small, we
can quickly find a solution of a given QBF evaluation problem by
the method.

We show how the method works using the following example.
∃a, b∀c, d.(a + b + c + ¬d)(a + ¬b + ¬c + ¬d)(¬a + ¬b + c + d)
First, we take one or more valuations of (c, d). We take (0, 0) in
this example. Then, we solve the following SAT problem, where
c and d in the formula are substituted by 0. As the formula is SAT,
we get a valuation (a, b) = (0, 0) from SAT solvers, for example.
∃a, b.(a + b + 0 + ¬(0))(a + ¬b + ¬(0) + ¬(0))(¬a + ¬b + 0 + 0)

⇔ ∃a, b.(¬a + ¬b)
Next, we check whether (a, b) = (0, 0) is a solution of the orig-
inal QBF problem by checking whether there exist any valua-
tions of (c, d) which make the formula evaluated to 0. If exist,
(a, b) = (0, 0) is not a solution of the original problem, since a so-
lution must make the formula evaluated to 1 for any valuation of
(c, d). This can be checked by solving the following SAT prob-
lem. If (a, b) = (0, 0) is a solution of the original problem, the
following formula is unsatisfiable.
∃c, d.¬((0+ 0+ c+¬d)(0+¬(0)+¬c+¬d)(¬(0)+¬(0)+ c+ d))

⇔ ∃c, d.¬(c + ¬d)
Here, we get a valuation (c, d) = (0, 1) from SAT solvers, which
can be seen as a counterexample showing (a, b) = (0, 0) is not
a solution. Then, we check whether there exists any valuation
of (a, b) which satisfies the formula for both (c, d) = (0, 0) and
(c, d) = (0, 1) at the same time, by solving the following SAT
problem.
∃a, b.(a + b + 0 + ¬(0))(a + ¬b + ¬(0) + ¬(0))(¬a + ¬b + 0 +
0)(a + b + 0 + ¬(1))(a + ¬b + ¬(0) + ¬(1))(¬a + ¬b + 0 + 1)

⇔ ∃a, b.(a + b)(¬a + ¬b)
This time, we get a valuation (a, b) = (1, 0) and check whether it
is a solution of the original QBF problem or not.
∃c, d.¬((1+ 0+ c+¬d)(1+¬(0)+¬c+¬d)(¬(1)+¬(0)+ c+ d))

⇔ ∃c, d.¬(1)
The above formula is unsatisfiable, which means there is no valu-
ation of (c, d) which makes the formula evaluated to 0. Therefore,
(a, b) = (1, 0) is proved to be a solution of the given QBF prob-

c© 2014 Information Processing Society of Japan 49

IPSJ Transactions on System LSI Design Methodology Vol.7 46–55 (Feb. 2014)

lem. Please note that we need two valuations of (c, d) even though
there are four possible valuations.

In Ref. [4], the method is generalized to deal with an arbitrary
number of quantifiers. In this work, we apply this QBF solving
method based on counterexample guided abstraction refinement
(CEGAR) in order to derive LUT configurations in circuits with
LUTs and show the effectiveness through the experiments.

4. Proposed Method for Corrections with LUT

As discussed in the previous sections, our rectification and de-
bugging problem with LUT insertion is formulated as two-level
QBF problem. We basically replace sub-circuits with LUTs. If
we use 2-input LUTs, this replacement becomes the one shown in
Ref. Fig. 5. The 2-input LUT can be represented by introducing
four variables, v00, v01, v10, v11, each of which corresponds to the
value of one row of the truth table. Those four variables are mul-
tiplexed with the two inputs to the original gate as control vari-
ables. If we introduce M of 2-input LUTs, the circuit has 4 × M

more variables. We represent those variables as vi j or v (vector of
vi j). As shown in Fig. 6, v variables are treated as primary inputs
as they are programmed (assigned appropriate values) before us-
ing the circuit. t variables in the figure correspond to intermediate
variables for the circuit. They appear in the CNF of the circuit for
SAT/QBF solvers.

For simplicity, we assume single output combinational circuits
in the following, but as can be easily seen, extension to multiple
output circuits is straitforward. If the logic function at the output
of the circuit is represented as f (x) where x is an input variable
vector, after replacements with LUTs, the QBF to be solved for
satisfiability becomes:

∃v.∀x. f (v, x) = S PEC(x)

where S PEC is the logic function that represents the specification

Fig. 5 LUT is represented with multiplexed four variables as truth table
values.

Fig. 6 Introduction of one 2-input LUT into the circuit.

to be implemented.
Although this can be simply solved by any QBF solvers theo-

retically, as can be seen from the experimental results, only small
circuits or small numbers of LUTs can be successfully processed.
Instead of doing that way, we here like to solve given QBF prob-
lems by repeatedly applying normal SAT solvers using the ideas
shown in Ref. [4].

The basic idea is the following. Instead of checking all value
combinations on the universally quantified variables, we just pick
up some small numbers of value combinations and assign them
to the universally quantified variables. This would generate SAT
problems whose satisfiability is a necessary conditions for the
satisfiability of the original QBF. Please note that here we are
dealing with only two-level QBF, and so if universally quantified
variables got assigned actual values (0 or 1), the resulting formu-
lae become simply SAT problem. For example, if we assign two
combinations of values for x variables, the resulting SAT problem
to be solved becomes like:

∃v.(f (v, assign1)) = S PEC(assign1)

∧(f (v, assign2) = S PEC(assign2)),

where assign1 and assign2 are variable assignments to x, respec-
tively. Since assign1 and assign2 are assignments to the input
variables x, they are considered as input patterns for the circuit.
If the function S PEC is given as the gate-level circuit, the values
of S PEC(assign1) and S PEC(assign2) can be calculated sim-
ply by simulating the specification circuit. Even if not, we can
calculate them with respect to S PEC, anyway.

Then we can simply apply any SAT solvers to them. If there
is no solution (i.e., the result of the SAT problem is UNSAT), we
can conclude that the original QBF is also unsatisfiable. If there
is a solution found (i.e., the result of the SAT problem is SAT), we
need to make sure that that is actually a solution for the original
QBF problem. In this case, we can identify the value of v which
makes the formula satisfiable from the variable assignment gen-
erated by SAT solvers. Here, we denote this variable assignment
to v as v candidate. Please note that v candidate is a constant
vector where 1 or 0 is assigned to all variables in v. To check
v candidate is an actual solution of the original QBF problem,
we simply make sure the following:

∀x. f (v candidate, x) = S PEC(x)

This is again solved by SAT solvers by complementing the for-
mula:

(∀x. f (v candidate, x) = S PEC(x))

≡ ∃x. f (v candidate, x) � S PEC(x).

and checking if this has a solution or not. If this does not have
any solution, then the current solution v candidate is actually a
solution of the original QBF. But if this has a solution, say x sol,
that is a counter example for the current solution v candidate and
so is added to the conditions as shown below:

∃v.(f (v, assign1)) = S PEC(assign1)

∧(f (v, assign2) = S PEC(assign2))

c© 2014 Information Processing Society of Japan 50

IPSJ Transactions on System LSI Design Methodology Vol.7 46–55 (Feb. 2014)

Fig. 7 Target circuit with and without LUT.

∧(f (v, x sol) = S PEC(x sol).

And then, the solving process is just repeated.
Checking v candidate is a solution of the original QBF prob-

lem is just an equivalence checking problem between two com-
binational circuits. Therefore, instead of solving by SAT solvers,
equivalence checker for combinational circuits can solve it faster.
Such equivalence checkers can check equivalence faster espe-
cially when two circuits have larger similarity, since it utilizes
internal equivalence points to decompose the problem to smaller
ones. The condition that two circuits have large similarity is sat-
isfied in many cases of our target applications. For example,
in post-silicon validation, some gates in the original circuit are
replaced with LUTs in the fabricated chip. Thus, equivalence
checker can utilize the similarity in checking equivalence.

Here, we show a rectification example of a circuit. The tar-
get circuit is shown in Fig. 7 (A). We replace AND gate in the
circuit with the 2-input LUT as shown in Fig. 7 (B). Our method
tries to find a truth table of the LUT which makes the functions of
these two circuits equivalent. If the logic function at the output of
the circuit with the LUT is represented as f (v, A, B,C,D), where
v represents the truth table of the LUT, the QBF formula to be
solved becomes:

∃v.∀A, B,C,D. f (v, A, B,C,D) = S PEC(A, B,C,D)

where SPEC is the logic function at the output of the original cir-
cuit. First, we take one or more input patterns of the circuit. In
this example, we take (A, B,C,D) = (0, 0, 0, 0) and assign them
to the two circuits. Then, the SAT problem to be solved becomes:

∃v.(f (v, 0, 0, 0, 0)) = S PEC(0, 0, 0, 0)

The satisfiability of this formula is a necessary condition for that
the original QBF problem has a solution. Solving this SAT prob-
lem, we get v = (0, 0, 0, 0) from SAT solvers as the formula is
SAT. n is a candidate of the truth table of the LUT. Next, we
check whether it is a real solution or not by solving the following
SAT problem.

∃A, B,C. f (0000, A, B,C,D) � S PEC(A, B,C,D)

If the result of this SAT problem is UNSAT, it means that there is
no input pattern which makes two circuits behave differently, and

Fig. 8 Overall flow of our proposed method.

the candidate v is proved to be a real solution. In this example,
the result is SAT and we get (A, B,C,D) = (1, 1, 1, 1) as a coun-
terexample. We add it to the conditions as an additional essential
qualification. Then, to find the next candidate of a solution, the
following SAT problem is solved.

∃v.(f (v, 0, 0, 0, 0)) = S PEC(0, 0, 0, 0)

∧(f (v, 1, 1, 1, 1) = S PEC(1, 1, 1, 1))

We repeat this process until a solution is found or the problem is
proved to have no solution. In this example, we get v = (1, 0, 0, 0)
as the next candidate of the truth table of the LUT by solving the
SAT problem above. To check whether it is a real solution or not,
the following SAT problem is solved.

∃A, B,C,D. f (1000, A, B,C,D) � S PEC(A, B,C,D)

This time, the formula above is UNSAT, and and v = (1, 0, 0, 0) is
proved to be a solution of the QBF problem.

The overall flow of the proposed method is shown in Fig. 8.
A specification and a target circuit with LUTs are assumed to be
given.

First, we prepare a set of input patterns to start with, which can
be generated in a random way, a user-guided, or others. For those
patterns, the expected output values are calculated for the speci-
fication. Then, the first SAT problem is generated and solved by
SAT solvers to find a configuration candidate of LUTs to satisfy
the specification. If it is UNSAT, we immediately conclude that
there is no configuration of LUTs to satisfy the specification. If
SAT, a configuration candidate is obtained from a variable assign-
ment that SAT solvers return.

Next, the method generates and solve the second SAT problem
to check this configuration candidate is an actual solution. The
SAT problem is made so that it is true when there exist one or
more input patterns that makes the outputs of the target circuit
different from the specification. If it is SAT, an input pattern to
make them inequivalent from each other is obtained from a vari-
able assignment by SAT solvers. This pattern is added to the first

c© 2014 Information Processing Society of Japan 51

IPSJ Transactions on System LSI Design Methodology Vol.7 46–55 (Feb. 2014)

Table 1 Experimental results for benchmarks having solutions.

Proposed sKizzo [18]
Benchmark Original LUT Solved Average time Average iterations Solved Average time

gates replaced (in 3,600 sec) (sec) (in 3,600 sec) (sec)

c499 202 10 20/20 0.7 3.2 20/20 7.7
20 20/20 1.2 6.5 20/20 18.3
50 20/20 3.4 16.8 17/20 279.2

100 20/20 7.3 30.4 6/20 880.8

c880 383 10 20/20 3.2 15.3 18/20 594.2
20 20/20 7.4 28.3 13/20 41.8
50 20/20 27.9 65.5 17/20 154.8

100 20/20 99.4 123.0 17/20 183.1

c1350 546 10 20/20 4.6 18.0 2/20 1,735.5
20 20/20 10.8 32.3 0/20 Time out
50 20/20 26.7 53.9 0/20 Time out

100 20/20 72.8 89.4 0/20 Time out

c1908 880 10 20/20 4.7 15.9 14/20 655.0
20 20/20 10.4 27.4 0/20 Time out
50 20/20 26.1 47.2 0/20 Time out

100 20/20 72.85 79.1 0/20 Time out

c2670 1193 10 20/20 5.5 11.0 20/20 1.8
20 20/20 14.7 21.0 14/20 25.9
50 20/20 65.2 48.6 14/20 835.8

100 20/20 207.6 87.4 10/20 1,899.2

c3540 1669 10 20/20 4.9 10.9 8/20 1,239
20 20/20 12.2 21.2 0/20 Time out
50 20/20 53.3 49.2 0/20 Time out

100 20/20 205.5 92.3 0/20 Time out

c5315 2406 10 20/20 7.35 13.0 0/20 Time out
20 20/20 19.3 23.7 0/20 Time out
50 20/20 79.5 52.9 0/20 Time out

100 20/20 236.8 92.7 0/20 Time out

c6288 2406 10 20/20 6.2 6.1 0/20 Time out
20 20/20 15.5 10.6 0/20 Time out
50 18/20 589.8 24.4 0/20 Time out

100 15/20 586.1 41.4 0/20 Time out

SAT problem and the process is repeated. Otherwise, the candi-
date is a solution. This second SAT problem can be solved by
combinational equivalence checkers, instead of SAT solvers.

5. Experimental Results

5.1 Setup
The proposed method has been implemented and evaluated

with ISCAS’85 benchmark circuits [23] and OpenRISC 1200 mi-
croprocessor design taken from Opencores [24]. For each circuit,
we replaced 10, 20, 50, and 100 of 2-input gates with LUTs ran-
domly and compared with the original logic functions as specifi-
cation. When the results by our proposed method are compared
with those by a QBF solver, we used the completely same designs
including LUT replacement, though LUTs are inserted randomly.

The implementation details are shown below:
• Our implementation accepts gate-level netlist designs writ-

ten in Verilog.
• The designs are processed with ABC (version

abc70930 [22]) and AIGER (version aiger-1.9.4 [25])
to translate to CNF formulae.

• PicoSAT (version picosat-936 [26]) and sKizzo (v0.8.2 [18])
are used as our base SAT and QBF solvers, respectively.

• Synopsys Formality is used as an equivalence checker.
• All experiments are run on CPU Intel(R) Core(TM)2 Duo

3.33 GHz with 4GB of memory.

Table 2 Experimental results for benchmarks that do not have solutions.

Bench- Original LUT Solved Average Average
mark gates replaced (in 3,600 sec) time (sec) iterations

c880 383 10 5/5 1.4 8.0
20 5/5 1.6 6.6
50 5/5 0.8 3.8

100 5/5 4.8 16.0

c2670 1193 10 5/5 3.8 7.8
20 5/5 7.2 11.8
50 5/5 8.8 11.2

100 5/5 15.8 14.2

c6288 2406 10 5/5 0.6 1.6
20 5/5 1.2 3.0
50 5/5 4.8 8.4

100 5/5 12.0 14.0

5.2 Comparison between Our Proposed Method and QBF
Solver

First, we conducted a set of experiments on combinational cir-
cuits taken from ISCAS’85 benchmarks in order to compare the
performance of our proposed method and QBF solver, sKizzo. In
this experiments, for each number of LUT replacement, we gen-
erated 20 different circuits.

The results are shown in Table 1. In the table, “Original gates,”
“LUT replaced,” and “Solved” denote the number of gates in the
original circuit before LUT replacement, the number of LUTs in-
serted, and the number of circuits the method could solve within
3,600 sec, respectively. Also, “Average time” and “Average iter-
ations” show the average processing time and the average num-
ber of iterations of the loop shown in Fig. 8, in all cases that the

c© 2014 Information Processing Society of Japan 52

IPSJ Transactions on System LSI Design Methodology Vol.7 46–55 (Feb. 2014)

method could solve. Note that cases we could not get a solution
within 3,600 sec are excluded from the average calculation.

As can be seen from the table, simple application of QBF
solvers can only solve the cases of small circuits with small num-
bers of LUTs, whereas the proposed method can solve almost
all cases (except for some cases of c6288 with large numbers of
LUTs) within several minutes.

An important thing we need to recognize in those results is the
numbers of iterations are relatively small. For example, c6288
with 100 LUTs has 32 primary inputs and 22 × 100 = 400 truth
table variables, however, only 41.4 iterations (i.e., 41.4 input pat-

Table 3 Experimental results for sequential circuits.

Bench- Time- Original LUT Solved Average Average
mark frames gates replaced (in 18,000 sec) time (sec) iterations

s9234 3 6081 10 20/20 1.3 1.1
20 20/20 2.3 2.2
50 20/20 4.4 3.8

100 20/20 8.5 6.3

5 10135 10 20/20 3.4 1.8
20 20/20 5.3 2.8
50 20/20 14.9 6.3

100 20/20 39.7 11.9

10 20270 10 20/20 13.2 3.0
20 20/20 23.6 5.1
50 20/20 79.8 11.5

100 20/20 221.4 20.6

s15850 3 10344 10 20/20 5.1 2.1
20 20/20 7.2 3.0
50 20/20 21.8 7.0

100 20/20 64.7 14.1

5 17240 10 20/20 12.0 2.5
20 20/20 27.4 5.2
50 20/20 105.3 12.8

100 20/20 363.3 25.7

10 34480 10 20/20 59.8 4.7
20 20/20 186.3 10.4
50 20/20 679.7 22.6

100 20/20 4,830.5 39.5

s38584 3 34344 10 20/20 5.6 0.7
20 20/20 7.7 1.2
50 20/20 14.3 2.5

100 20/20 20.1 3.4

5 57240 10 20/20 17.1 1.4
20 20/20 34.1 2.9
50 20/20 112.5 7.4

100 20/20 259.6 13.0

10 114480 10 20/20 290.0 7.2
20 20/20 738.4 13.5
50 20/20 7,686.0 23.0

100 8/20 4,830.5 39.5

Table 4 Experimental results for OpenRISC 1200 microprocessor design.

Proposed (SAT solver only) Proposed (EQ checker)
Time- Original LUT Solved Average Average Solved Average Average
frames gates replaced (in 18,000 sec) time (sec) iterations (in 18,000 sec) time (sec) iterations

2 35402 10 20/20 31.0 5.5 20/20 169.1 5.4
20 20/20 61.5 9.0 20/20 277.5 9.0
50 20/20 188.2 18.2 20/20 639.0 19.7

100 20/20 499.5 31.7 20/20 1,153.3 35.3

3 53103 10 20/20 144.8 11.5 20/20 646.7 12.2
20 20/20 387.1 21 20/20 1,114.1 20.0
50 20/20 1,714.0 48.1 20/20 2,820.4 47.3

100 12/20 10,253.8 84.5 20/20 5,668.8 87.7

4 70804 10 20/20 1,310.0 16.9 20/20 1,685.4 18.0
20 20/20 1,945.0 35.0 20/20 1,685.4 35.0
50 1/20 17,588.0 64.0 20/20 9,094.4 82.0

100 0/20 Timeout Timeout 10/20 12,905.3 108.3

terns applied in the first SAT problem in Fig. 8) are required to
identify truth table values of all 100 LUTs. In the sense, the
results show that our proposed method works well to solve the
problem of finding LUT configurations in gate-level circuits.

5.3 No Solution Cases
To evaluate the performance of our proposed method for cases

that do not have solution, we applied our method to three IS-
CAS’85 benchmark circuits, c880, c2670, and c6288. In the ex-
periments, we intentionally changed the specification circuits so
that the target circuit with LUTs cannot behave equivalently to
the specification for any LUT configuration.

Table 2 shows the results. All results in Table 2 show that
the proposed method can actually prove the non-existence of so-
lutions. As can be seen from the table, such cases are solved
relatively faster with less iterations than cases having solutions.

5.4 Sequential Circuits
Three sequential circuits taken from ISCAS’85 benchmark

were experimented. To handle sequential circuits, we unrolled
them in 3, 5, and 10 timeframes (clock cycles) and replaced each
flip-flop with a single wire. The resulting circuits are just combi-
national, and our proposed method can handle them without any
extension. For LUT insertion, we inserted LUTs before the time-
frame unrolling, that is, a unrolled circuit has T×N LUT instances
after unrolled, where T is the number of unrolled timeframes and
N is the number of LUTs inserted before unrolled. In addition,
by unrolling timeframes, one LUT in a circuit before unrolled is
replicated T times, but those T LUTs have the same truth table
values.

The results are shown in Table 3. “Timeframes” denotes the
number of unrolled timeframes. In the experiments, the upper
limit of runtime was set to 18,000 sec. Compared to the re-
sults shown in Table 1, the average number of iterations tends
to smaller when the number of replaced LUTs are same. A pos-
sible reason to explain this trend is the ratio of LUTs over total
gates. Since the possible truth table values that a LUT can take
are constrained by surrounding logic gates, we can say that less
number of input patterns (i.e., constraints) are required to find a
configuration of LUTs if the ratio of LUTs is smaller. Also, from
the results in Table 3, we can see that the number of iterations in-
creases almost linearly with the number of LUTs, which implies

c© 2014 Information Processing Society of Japan 53

IPSJ Transactions on System LSI Design Methodology Vol.7 46–55 (Feb. 2014)

the number of iterations does not explode when a large number
of LUTs are inserted in circuits.

5.5 Microprocessor Designs
To evaluate how much speed-up can be achieved by introduc-

ing combinational equivalence checker in solving the second SAT
problem, we applied our proposed method to OpenRISC 1200
microprocessor design with several different settings shown in
Table 4. From the results in the table, we can see that using
an equivalence checker improves the performance for problem
instances with 3 or 4 timeframe unrolling and 50 or 100 LUTs.
However, for circuits with less gates and less LUTs, using an
equivalence checker reduces the performance due to the over-
head in invoking the equivalence checker. We can conclude that
equivalence checker is more useful in our proposed method when
circuits has more gates and more LUTs, compared to using SAT
solvers for checking equivalence.

6. Conclusions

In this paper, we have shown a rectification and debugging
method for combinational circuits with LUT insertions based on
QBF formulation. The QBF problems are not solved by QBF
solvers for satisfiability, but solved by repeatedly applying nor-
mal SAT solvers. The experimental results show significant im-
provement over existing methods especially for large circuits and
circuits having many LUTs. This is partly because the number of
iterations to find and check a solution candidate is small in most
cases. In addition, we propose to utilize combinational equiva-
lence checkers to accelerate solving SAT problems to check that
a solution candidate is actually a solution. This utilization of
equivalence checkers makes the method faster for large circuits
with many LUTs, which is confirmed through the experiments.

References

[1] Sarangi, S., Narayanasamy, S., Carneal, B., Tiwari, A., Calder, B. and
Torrellas, J.: Patching Processor Design Errors with Programmable
Hardware, IEEE Micro, Vol.27, No.1, pp.12–25 (2007).

[2] Yamashita, S., Yoshida, H. and Fujita, M.: Increasing Yield Using
Partially-Programmable Circuits, The 17th Workshop on Synthesis
And System Integration of Mixed Information technologies (SASIMI
2010), pp.237–242 (2010).

[3] Mangassarian, H., Yoshida, H., Veneris, A.G., Yamashita, S. and
Fujita, M.: On error tolerance and Engineering Change with Partially
Programmable Circuits, The 17th Asia and South Pacific Design Au-
tomation Conference (ASP-DAC 2012), pp.695–700 (2012).

[4] Janota, M., Klieber, W., Marques-Silva, J. and Clarke, E.M.: Solv-
ing QBF with Counterexample Guided Refinement, The 15th Interna-
tional Conference on Theory and Applications of Satisfiability Testing
(SAT ’12) (2012) (to appear).

[5] Das, S. and Dill, D.L.: Counter-example based predicate discovery in
predicate abstraction, 4th International Conference on Formal Meth-
ods in Computer-Aided Design (FMCAD 2002), pp.19–32 (2002).

[6] Clarke, E.M., Gupta, A. and Strichman, O.: SAT-based
counterexample-guided abstraction refinement, IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, Vol.23,
No.7, pp.1113–1123 (2004).

[7] Jain, J., Mukherjee, R. and Fujita, M.: Advanced Verification Tech-
niques Based on Learning, 32nd Annual ACM/IEEE Design Automa-
tion Conference, pp.420–426 (1995).

[8] Kuehlmann, A., Paruthi, V., Krohm, F. and Ganai, M.K.: Robust
boolean reasoning for equivalence checking and functional property
verification, IEEE Trans. Computer-Aided Design of Integrated Cir-
cuits and Systems, Vol.21, No.12, pp.1377–1394 (2002).

[9] Mishchenko, A., Chatterjee, S., Brayton, R.K. and Een, N.: Improve-
ments to combinational equivalence checking, 2006 IEEE/ACM Inter-

national Conference on Computer-Aided Design, pp.836–843 (2006).
[10] Brand, D., Drumm, A., Kundu, S. and Narain, P.: Incremental synthe-

sis IEEE/ACM International Conference on Computer-aided Design
(1994).

[11] Fujita, M., Kakuda, T. and Matsunaga, Y.: Redesign and Automatic
Error Correction of Combinational Circuits, Logic and Architecture
Synthesis, G. Saucier (Ed.), pp.253–262, North-Holland: Elsvier Sci-
ence Publishers B.V. (1991).

[12] Krishunaswamy, S., Ren, H., Modi, N. and Puri, R.: DeltaSyn: An
Efficient Logic Difference Optimizer for ECO Synthesis, 2009 Inter-
national Conference on Computer-Aided Design, pp.789–796 (2009).

[13] Smith, A., Veneris, A., Ali, M.F. and Vialas, A.: Fault Diagno-
sis and Logic Debugging Using Boolean Satisfiability, IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, Vol.24,
No.10, pp.1606–1621 (Oct. 2005).

[14] Yoshida, H. and Fujita, M.: An energy-efficient patchable accelera-
tor for post-silicon engineering changes, 9th International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS
2011), pp.13–20 (2011).

[15] Peschiera, C., Pulina, L., Tacchella, A., Bubeck, U., Kullmann, O. and
Lynce, I.: The Seventh QBF Solvers Evaluation (QBFEVAL’10), 13th
International Conference on Theory and Applications of Satisfiability
Testing (SAT 2010), pp.237–250 (2010).

[16] Janota, M. and Marques-Silva, J.: Abstraction-Based Algorithm for
2QBF, 14th International Conference on Theory and Applications of
Satisfiability Testing (SAT 2011), pp.230–244 (2011).

[17] Benedetti, M.: Evaluating QBFs via Symbolic Skolemization, 11th
International Conference on Logic for Programming, Artificial Intel-
ligence, and Reasoning, 11th International Conference (LPAR 2004),
pp.285–300 (2004).

[18] Benedetti, M.: sKizzo: A Suite to Evaluate and Certify QBFs, 20th In-
ternational Conference on Automated Deduction (CADE-20), pp.369–
376 (2005).

[19] Ginuchiglia, E., Marin, P. and Narizzano, M.: Reasoning with Quan-
tified Boolean Formulas, Handbook of Satisfiability, pp.761–780,
(2009).

[20] Ginuchiglia, E., Narizzano, M. and Tacchella, A.: QuBE++: An Ef-
ficient QBF Solver, 5th International Conference on Formal Methods
in Computer-Aided Design (FMCAD 2004), pp.201–213 (2004).

[21] Safarpour, S., Mangassarian, H., Veneris, A., Liffiton, M.H. and
Sakallah, K.A.: Improved Design Debugging Using Maximum Satis-
fiability, Formal Methods in Computer Aided Design (FMCAD 2007),
pp.13–19 (2007).

[22] Brayton, R.K. and Mishchenko, A.: ABC: An Academic Industrial-
Strength Verification Tool, 22nd International Conference on Com-
puter Aided Verification (CAV 2010), pp.24–40 (2010).

[23] Hansen, M.C., Yalcin, H. and Hayes, J.P.: Unveiling the ISCAS-85
benchmarks: A case study in reverse engineering, IEEE Design and
Test, Vol.16, No.3, pp.72–80 (1999).

[24] OpenCores Homepage, available from 〈http://opencores.org/〉.
[25] AIGER Homepage, available from 〈http://fmv.jku.at/aiger/〉.
[26] Biere, A.: PicoSAT Essentials. Journal on Satisfiability, Boolean Mod-

eling and Computation (JSAT), Vol.4, pp.75–97 (2008).
[27] sKizzo – a QBF solver, available from 〈http://skizzo.info/〉.

Satoshi Jo received his B.S. degree in
electronic engineering from The Univer-
sity of Tokyo, Tokyo, Japan, in 2013.
He is currently a Master’s course student
in the Department of Electrical Engineer-
ing and Information Systems, The Univer-
sity of Tokyo. His research interests in-
clude formal verification and debugging

of hardware designs.

c© 2014 Information Processing Society of Japan 54

IPSJ Transactions on System LSI Design Methodology Vol.7 46–55 (Feb. 2014)

Takeshi Matsumoto received his B.S.,
M.S., and Ph.D. degrees in electronic en-
gineering from The University of Tokyo,
Tokyo, Japan, in 2003, 2005, and 2008,
respectively. He has been a member of
VLSI Design and Education Center in
The University of Tokyo since 2008. His
research interests include computer-aided

design and formal verification, especially for high-level designs
of digital systems.

Masahiro Fujita received his Ph.D. de-
gree in engineering from The University
of Tokyo, Tokyo, Japan, in 1985. He then
joined Fujitsu Laboratories Ltd., Atsugi,
Japan. From 1993 to 2000, he was with
Fujitsu’s U.S. research office and directed
the CAD Research Group. In March
2000, he joined the Department of Elec-

tronic Engineering, The University of Tokyo, as a Professor. He
is currently a Professor with the VLSI Design and Education Cen-
ter, University of Tokyo. He has been involved in many research
projects on various aspects of formal verification.

(Recommended by Associate Editor: Kiyoharu Hamaguchi)

c© 2014 Information Processing Society of Japan 55

