
IPSJ Transactions on System LSI Design Methodology Vol.7 81–90 (Aug. 2014)

[DOI: 10.2197/ipsjtsldm.7.81]

Regular Paper

A Delay-variation-aware High-level Synthesis Algorithm
for RDR Architectures

Yuta Hagio1,a) Masao Yanagisawa2 Nozomu Togawa1,b)

Received: December 5, 2013, Revised: March 13, 2014,
Accepted: April 26, 2014, Released: August 4, 2014

Abstract: As device feature size drops, interconnection delays often exceed gate delays. We have to incorporate
interconnection delays even in high-level synthesis. Using RDR architectures is one of the effective solutions to this
problem. At the same time, process and delay variation also becomes a serious problem which may result in sev-
eral timing errors. How to deal with this problem is another key issue in high-level synthesis. In this paper, we
propose a delay-variation-aware high-level synthesis algorithm for RDR architectures. We first obtain a non-delayed
scheduling/binding result and, based on it, we also obtain a delayed scheduling/binding result. By adding several
extra functional units to vacant RDR islands, we can have a delayed scheduling/binding result so that its latency is
not much increased compared with the non-delayed one. After that, we similarize the two scheduling/binding results
by repeatedly modifying their results. We can finally realize non-delayed and delayed scheduling/binding results si-
multaneously on RDR architecture with almost no area/performance overheads and we can select either one of them
depending on post-silicon delay variation. Experimental results show that our algorithm successfully reduces delayed
scheduling/binding latency by up to 42.9% compared with the conventional approach.

Keywords: process and delay variation, post-silicon tuning, high-level synthesis, distributed-register architecture

1. Introduction

High-level synthesis is one of the important and reliable tech-
niques from the viewpoints of cost and time reduction. High-level
synthesis starts with an abstract behavioral specification and finds
a register-transfer-level structure that realizes a given behavior.

In the deep submicron era, interconnection delays often exceed
gate delays and then we have to incorporate interconnection de-
lays even in high-level synthesis. In Ref. [2], regular-distributed-
register architecture (RDR architecture) is proposed, which gives
one of the very strong solutions to this problem. RDR architec-
tures divide a chip into uniform-sized islands and arrange func-
tional units, a register file, and a controller in each island. Fig-
ure 1 shows an example of an RDR architecture which has 3 × 2
islands. It is very easy to predict interconnection delays even in
high-level synthesis stage.

At the same time, process and delay variation is also getting a
serious problem which may result in several timing errors. Cur-
rently we usually assign some amount of timing margins to high-
level synthesis based on statistical static timing analysis [1]. A
post-silicon circuit tuning approach is proposed such as in Ref. [8]
but high-level synthesis taking into account both interconnection
delays and delay variation is not proposed.

In this paper, we propose a delay-variation-aware high-level

1 Department of Computer Science and Engineering, Waseda University,
Shinjuku, Tokyo 169–8555, Japan

2 Department of Electronic and Photonic Systems, Waseda University,
Shinjuku, Tokyo 169–8555, Japan

a) yuta.hagio@togawa.cs.waseda.ac.jp
b) togawa@togawa.cs.waseda.ac.jp

synthesis algorithm for RDR architectures *1. We first per-
form a non-delayed scheduling/binding and obtain its schedul-
ing/binding result as well as functional unit floorplanning. Based
on its result, we then perform delayed scheduling/binding. By
adding several extra functional units to vacant RDR islands, we
have a delayed scheduling/binding result so that its latency is not
much increased compared with the non-delayed one. After that,
we similarize the two scheduling/binding results by repeatedly
re-scheduling/re-binding. We can finally realize non-delayed and
delayed scheduling/binding results simultaneously on RDR ar-
chitecture with almost no area/performance overheads and we can
select either one of them depending on post-silicon delay varia-
tion. Experimental results show that our algorithm successfully
reduces delayed scheduling/binding latency by up to 42.9% com-
pared with the conventional approach.

Fig. 1 RDR architecture (3 × 2).

*1 Preliminary version of this paper appeared in Ref. [4].

c© 2014 Information Processing Society of Japan 81

IPSJ Transactions on System LSI Design Methodology Vol.7 81–90 (Aug. 2014)

This paper is organized as follows: Section 2 introduces an
RDR architecture and defines our delay-variation-aware high-
level synthesis problem; Section 3 proposes our delay-variation-
aware high-level synthesis algorithm for RDR architectures; Sec-
tion 4 demonstrates several experimental results; Section 5 gives
concluding remarks.

2. Problem Definition

In high-level synthesis, a behavioral description is given by a
data-flow graph (DFG) as input. A DFG G = (V, E) is represented
by a directed graph, where V is a set of operation nodes and E is
a set of edges which denote data dependencies. Hereafter, we use
a DFG as input for simplicity. Note that the discussion can also
be extended to a control-data flow graph.

In this section, we introduce an RDR architecture [2] and de-
fine our delay-variation-aware high-level synthesis problem.

2.1 RDR Architecture
The RDR architecture divides the entire chip into N × M array

of islands as shown in Fig. 2 (a). Let I(x, y) be the island on the
position (x, y) of the array, where 1 ≤ x ≤ N and 1 ≤ y ≤ M. Ev-
ery island is assumed to be in a square shape. A functional unit
(FU) f u is allocated to one of the islands and has a delay of d f u.
Each island I(x, y) has the local register R(I(x, y)). RDR island is
designed so that interconnection delays inside each island can be
ignored.

We use the interconnection delay model used in Ref. [5], [7]
and an interconnection delay Dc(i1, i2) between the two islands i1
and i2 is proportional to the square of their distance and given by

Dc(i1, i2) = Cd × (|x1 − x2| + |y1 − y2|)2 (1)

where Cd shows the constant interconnection delay coefficient.
Our algorithm can also use another interconnection delay

model, e.g., an interconnection delay model where wire delay is
proportional to the Manhattan distance, because the essential part
of our interconnection delay model is given by the data-transfer
table. Once just the data-transfer table is constructed, we may use

Fig. 2 Data-transfer table.

any interconnection delay model.
Let f u1 be one of the FUs allocated to the island i1. As-

sume that the output of f u1 is used by the island i2. Let Tclk

be the given clock period and we assume d f u1 < Tclk. If Tclk ≥
d f u1 +Dc(i1, i2), executing f u1 and storing its output into the reg-
ister R(i2) are done in a single control step. On the other hand, if
Tclk < d f u1 + Dc(i1, i2) holds, we only execute the f u1 operation
and store its output into the register R(i1) at the first control step.
After that, we transfer the output of f u1 from R(i1) to R(i2) using
⌈

Dc(ii, i2)
Tclk

⌉
(2)

control steps. Similarly we can also define data-transfer control
steps when d f u1 ≥ Tclk.

Every island has the capacity C and every FU f u has the ca-
pacity cost c f u. Let FU(i) be a set of FUs allocated to the island
i = I(x, y). Any island i satisfies:

C ≥
∑

f u∈Fu(i)

c f u. (3)

Equation (3) is called a capacity constraint.
In RDR architecture, we can predict interconnection delays be-

tween any two FUs very accurately even in high-level synthesis
since they can be calculated by the FU positions in RDR islands.

2.2 Data-transfer Table
When we obtain an FU floorplanning result for a given RDR

architecture, we can construct a data-transfer table which shows
how many control steps every data transfer requires between any
two FUs allocated to the RDR architecture. Consider the data
transfer between two FUs f u1 and f u2. Assume that f u1 is allo-
cated to the island i1 and f u2 is allocated to to the island i2. We
further assume d f u1 < Tclk. Based on the previous discussion, if
Tclk ≥ d f u1 + Dc(i1, i2), then the table value is zero, i.e, we do
not need control steps for data transfer. If Tclk < d f u1 + Dc(i1, i2),
the table value is given by Eq. (2), i.e., we need control steps only
for data transfer. Similarly we can also define a table value when
d f u1 ≥ Tclk.

Figure 2 (b) shows an example of a data-transfer table based
on the FU floorplanning shown in Fig. 2 (a). As shown here, a
data transfer from ADD2 in I(1, 2) to ADD1 in I(2, 1) requires
one control step. This means that, when we execute ADD2 and
ADD1 in this order, the execution of ADD2 operation and data
transfer from the ADD2 output to the ADD1 input cannot be done
in a single clock cycle. Data transfer from the ADD2 output to
the ADD1 input requires one clock cycle since I(1, 2) and I(2, 1)
are apart from each other.

2.3 Process/Delay Variations in RDR Architectures and
Problem Definition

Process and delay variation may occur in any wire and inter-
connection as well as logic gates but we must consume too much
area and power if we cope with all possible delay variations in
high-level synthesis, which we consider must be almost impossi-
ble. An approach dealing with delay variations in specific inter-
connections is one of the feasible solutions to this problem.

c© 2014 Information Processing Society of Japan 82

IPSJ Transactions on System LSI Design Methodology Vol.7 81–90 (Aug. 2014)

Logic delay variation is also very important. But, we only deal
with the simplest delay variation model in this paper and then we
do not deal with logic delay variation here. Extending our al-
gorithm so as to tackle logic delay variations is one of our very
important future works.

This research work is the first step of delay-variation-aware
high-level synthesis and thus we only deal with the simplest delay
variation model in this paper. Using RDR architectures, we can
estimate the interconnection length very easily in high-level syn-
thesis stage and thus focusing on interconnection between RDR
islands is one of the simplest targets. A long interconnection must
have a large number of contact holes or vias, which has relatively
high resistance and capacity [9]. This means that they can affect
largely delay variations.

Based on the above discussion, we focus only on the longest

interconnections and deal with their delay variations here. Delay
variation focused on in this paper is defined as follows:
Definition 1. Delay variation is assumed to occur in the longest

interconnections in the target RDR architecture. If the delay vari-

ation occurs there, we require one more control step than ex-

pected for data transfer when using these interconnections. �
There may be a situation where an extra cycle is necessary in

data transfer other than the longest interconnection with large de-
lay variation. However, as we motioned earlier, we only focus
here on the longest interconnection simply because this research
work is the first step of delay-variation-aware high-level synthe-
sis. How many extra cycles are required to accommodate de-
lay variation in the longest interconnections is another concern.
There may be several discussions but we simply assume that we
require one extra clock cycle when delay variation occurs in the
longest interconnection.

Let us consider FU floorplanning as shown in Fig. 2 (a). The
longest interconnections are the one between I(1, 1) and I(2, 2)
and the one between I(2, 1) and I(1, 2). If the delay variation
occurs there, a data-transfer table is modified from Fig. 2 (b) to
Fig. 2 (c). As shown in Fig. 2 (c), the data transfer from ADD2
in I(1, 2) to ADD1 in I(2, 1) requires two control steps, which is
increased by one as compared to Fig. 2 (b). Figure 2 (b) is called
a non-delayed data-transfer table and Fig. 2 (c) is called a delayed

data-transfer table.
Now we define a delay-variation-aware high-level synthesis

problem for RDR architectures as follows:
Definition 2. For a given DFG G = (V, E), an RDR architecture,

a capacity constraint C, FU library, and clock period constraint

Tclk, our delay-variation-aware high-level synthesis problem for

the RDR architecture is to arrange FUs to the RDR islands and

to assign each operation node to a control step and a functional

unit with and without considering delay variation. The objective

is to minimize the latency. �
In our high-level synthesis problem above, we map an input

DFG based on a non-delayed data-transfer table onto RDR is-
lands (e.g., Figs. 7 (a) and 13 (a)) and also we map the same input
DFG based on a delayed data-transfer table onto the same RDR
islands simultaneously (e.g., Figs. 7 (a) and 13 (b)). Then we se-
lect either one of the two mapping results depending on post-
silicon delay variation. Detailed discussions how to obtain these

results will be explained in the next section.

3. A Delay-variation-aware High-level Synthe-
sis Algorithm for RDR Architectures

One of the simplest ways to cope with the delay variation given
by Definition 1 is that, every data transfer using the longest inter-
connections always require one more control step in high-level
synthesis. However, this approach is too pessimistic and always
requires extra clock cycles even when delay variation does not oc-
cur. How to deal with non-delayed scheduling/binding as well as
delayed scheduling/binding simultaneously is the important key
and we must consider the following two points:
(1) We can have a minimized non-delayed scheduling/binding

latency using the conventional approach as in Ref. [2]. We
also have to minimize a delayed scheduling/binding latency.

(2) If we schedule/bind a given DFG using non-delayed data-
transfer table and delayed one independently, we will require
too many RDR resources, such as controllers and MUXs.
We have to modify the two scheduling/binding results so that
they can be similar to each other and share as many RDR re-
sources as possible (which is called similarization).

Since high-level synthesis for RDR architectures is composed
of scheduling, binding, FU floorplanning and FU assignment, we
consider each of these processes to give an efficient solution to
Points (1) and (2) as below:
• Scheduling/Binding

We first perform scheduling/binding using the conventional
RDR synthesis algorithm, MCAS [2]. This result is called a
non-delayed scheduling/binding result. MCAS can obtain a
good result in terms of latency. In this step, we also have its
associated FU floorplanning in RDR islands. Using this FU
floorplanning, we next perform scheduling/binding based on
a delayed data-transfer table. This result is called a delayed

scheduling/binding result. In this scheduling/binding, we
also use MCAS to obtain a latency-optimized result with-
out considering similarization of the two scheduling/binding
results.

After that, we similarize the two scheduling/binding re-
sults. This is done by repeating re-scheduling/re-binding
based on non-delayed and delayed data-transfer tables sev-
eral times.

• Floorplan/Allocation
We do not change the original FU floorplanning in RDR
islands obtained at non-delayed scheduling and binding,
since changing it may increase the non-delayed schedul-
ing/binding latency. However, RDR architectures have regu-
lar structure and often have vacant islands. Then we allocate
several extra functional units to vacant RDR islands so that
we can minimize the delayed scheduling/binding latency.

Based on the above strategy, we propose a delay-variation-
aware high-level synthesis algorithm for RDR architectures. Fig-
ure 3 shows our synthesis flow. The initial step (Step 0: non-
delayed scheduling/binding) can be performed by just using
MCAS. Then our algorithm is mainly composed of the two steps:
delayed scheduling/binding (Step 1) and similarization of non-
delayed and delayed scheduling/binding results (Step 2).

c© 2014 Information Processing Society of Japan 83

IPSJ Transactions on System LSI Design Methodology Vol.7 81–90 (Aug. 2014)

Fig. 4 Input DFG and its FU floorplanning.

Fig. 5 Data-transfer table.

Fig. 3 The synthesis flow.

3.1 Delayed Scheduling/Binding (Step 1)
Step 1 generates a delayed scheduling/binding result. Step 1 is

composed of:
Step (1.1): Generate a delayed data-transfer table
Step (1.2): Perform delayed scheduling/binding
Step (1.3): Allocate new FUs.

In Step (1.1), we generate a delayed data-transfer table based
on the non-delayed one. The non-delayed data-transfer table here
can be obtained by FU floorplanning given by Step 0. In the
delayed data-transfer table, every data transfer using the longest
interconnections requires one more control step than those in the
non-delayed one.

In Step (1.2), we perform scheduling/binding based on the de-
layed data-transfer table. In this step, we use initial FU floor-
planning and do not change it, since we try to similarize the two
scheduling/binding results in the later step.

In Step (1.3), we allocate new FUs so that we can minimize
the delayed scheduling/binding latency. In this step, we try all
the possible patterns of allocating a new FU into a vacant RDR
island, one by one, and perform scheduling/binding for each of
them. Then we accept the new FU giving the minimum delayed
scheduling/binding latency. We repeat this step until no further
vacant island exists nor further latency improvement can be seen.
Example 1. Let us consider a DFG as depicted in Fig. 4 (a). As-

sume that the RDR architecture has 2 × 2 islands. In Step 0,

FUs are placed as in Fig. 4 (b) and the non-delayed data-transfer

table as in Fig. 5 (a) can be obtained. Figure 6 (a) shows the

non-delayed scheduling/binding result. In this example, all the

operations can be executed in one control step.

We generate a delayed data-transfer table as shown in

Fig. 5 (b) based on the non-delayed one in Fig. 5 (a). Then we

perform scheduling/binding based on Fig. 5 (b). Here we also use

MCAS. Figure 6 (b) shows the delayed scheduling/binding result.

c© 2014 Information Processing Society of Japan 84

IPSJ Transactions on System LSI Design Methodology Vol.7 81–90 (Aug. 2014)

Fig. 6 Scheduling/binding result.

Fig. 7 After allocating a new FU.

After that, we allocate additional new FUs to vacant RDR is-

lands to minimize the delayed scheduling/binding latency, in a

one-by-one manner. Figure 7 (a) shows the FU floorplanning af-

ter allocating the new FU, ADD4, to I(2, 2). Figures 7 (c) and

7 (b) show its updated delayed data-transfer table and updated

delayed scheduling/binding result, respectively. �

3.2 Similarizing Two Scheduling/Binding Results (Step 2)
In Step 2, we similarize the two scheduling/binding results;

non-delayed one and delayed one. By similarizing their results,
control signals for registers and FUs can be shared and then the
controller size and the number of MUXs can be decreased.

Let v ∈ V be a node in the input DFG G = (V, E). Let S (v)
and B(v) be the non-delayed control step assigned to v and its FU
bound to v, respectively. Similarly, let S D(v) and BD(v) be the
delayed control step assigned to v and its FU bound to v, respec-
tively. Similarizing the two scheduling/binding results is to maxi-

mize the number of such nodes as S (v) = S D(v) and B(v) = BD(v).
Step 2 is composed of:

Step (2.1): Perform delayed re-scheduling and re-binding
Step (2.2): Perform non-delayed re-scheduling and re-binding
3.2.1 Step (2.1): Delayed Re-scheduling and Re-binding

In Step (2.1), we modify the delayed scheduling/binding re-
sult. In this step, we do not change S (v) and B(v) but we modify
S D(v) and BD(v) so that the non-delayed and delayed schedul-
ing/binding results can be similarized. We use the delayed data-
transfer table when we perform delayed re-scheduling/re-binding.

Our re-scheduling algorithm of Step (2.1) is as follows:
(RS1) For every node v ∈ V from the top to the bottom, if

S D(v) = S (v), we fix S D(v) to S (v) and unchange it here-
after.

(RS2) Repeat (RS3)–(RS5) below until no further delayed re-
scheduling can be performed.

(RS3) For every node v ∈ V from the top to the bottom, if

c© 2014 Information Processing Society of Japan 85

IPSJ Transactions on System LSI Design Methodology Vol.7 81–90 (Aug. 2014)

S D(v) � S (v) and S D(v) can be assigned to S (v), we re-assign
S D(v) to S (v) and unchange it hereafter. We repeat this step
several times from the top to the bottom until no further re-
assignment is done.

(RS4) For every node v ∈ V from the bottom to the top, if
S D(v) � S (v) and S D(v) can be assigned to S D(v)+1 without
modifying other nodes’ scheduling and without increasing
the latency, we re-assign S D(v) to S D(v) + 1. At that time,
if S D(v) becomes S (v), we fix S D(v) to S (v) and unchange it
hereafter. We repeat this step several times from the bottom
to the top until no further re-assignment is done.

(RS5) For every node v ∈ V from the top to the bottom, if
S D(v) � S (v) and S D(v) can be assigned to S D(v)−1 without
modifying other scheduling, we assign S D(v) to S D(v) − 1.
At that time, if S D(v) becomes S (v), we fix S D(v) to S (v) and
unchange it hereafter. We repeat this step several times from
the top to the bottom until no further re-assignment is done.

We iterate Steps (RS3)–(RS5) until no further improvement is
done. Stopping criteria is as follows: Let n f ixedS D (i) be the num-
ber of the nodes whose delayed scheduling is fixed at the iteration
i. If n f ixedS D (i − 1) < n f ixedS D (i), then we perform the (i + 1)-th
iteration. If not, we stop the iteration. Finally, we expect that we
can similarize the delayed scheduling result to the non-delayed
one.
Example 2. In Step (RS3), we try to re-assign S D(v) to S (v). Let

us consider the two scheduling/binding results as shown in Fig. 8.

In this figure, Node “+1” and “+2” are executed by the FU “A1,”

and Node “+3” is executed by the FU “A2.” Figure 9 show the

two data-transfer tables corresponding to Fig. 8. Data transfer

between “A1” and “A2” needs one control step when delay vari-

ations occur. In this case, Node “+2” of the delayed scheduling

result is re-assigned to CS2 and fixed to it. Node “+3” of the de-

layed scheduling result cannot be re-assigned to CS2 and remains

at CS3 since we require one control step from “A1” to “A2” in

the delayed scheduling. �
Example 3. Let us consider the two scheduling/binding results,

delayed and non-delayed, as shown in Figs. 10 (a) and 10 (b). We

now assume that Node “+3” in Fig. 10 (b) cannot be assigned to

CS5, because the FU “A1” is used by another operation and can-

not be used. In Step (RS4), we re-assign S D(v) to S D(v) + 1, one

by one, repeatedly. In this case, Node “+3” is firstly re-assigned

to CS4. After that, Node “+2” is re-assigned to CS3, where we

have S D(“+2”) = S (“+2”). Finally, we have the delayed schedul-

Fig. 8 An example of Step (RS3).

Fig. 9 Data-transfer tables of Fig. 8.

ing result as in Fig. 10 (c). �
Our re-binding algorithm of Step (2.1) is as follows:

(RB1) For every node v ∈ V from the top to the bottom, if
BD(v) = B(v), we fix BD(v) to B(v) and unchange it hereafter.

(RB2) Repeat (RB3)–(RB4) until no further re-binding can be
performed.

(RB3) For every node v ∈ V from the top to the bottom, if
BD(v) � B(v) and BD(v) can be bound to B(v) without mod-
ifying other nodes’ binding, we bind BD(v) to B(v) and un-
change it hereafter. We repeat this step several times from
the top to the bottom until no further re-binding is done.

(RB4) For every node v ∈ V from the top to the bottom, if
BD(v) � B(v) and there exists another node w ∈ V such that
BD(w) = B(v) and BD(v) can be swapped for BD(w), we swap
BD(v) for BD(w). At that time, we fix BD(v) to B(v) and un-
change it hereafter. We repeat this step several times from
the top to the bottom until no further swap is done.

We iterate Steps (RB3)–(RB4) until no further improvement is
done. Stopping criteria is as follows: Let n f ixedBD (i) be the num-
ber of the nodes whose delayed binding is fixed at the iteration
i. If n f ixedBD (i − 1) < n f ixedBD (i), then we perform the (i + 1)-th
iteration. If not, we stop the iteration. Finally, we expect that we
can similarize the delayed binding result to the non-delayed one.
Example 4. In Step (RB3), we try to bind BD(v) to B(v). Let us

consider the two scheduling/binding results as shown in Fig. 11.

In Fig. 11 (a), Nodes “+1” and “+3” are bound to the FU “A1”

and Node “+2” is bound to the FU “A2.” In Fig. 11 (b), Nodes

“+1”, “+2” and “+3” are bound to the FU “A1.” In this case,

Node “+2” in Fig. 11 (b) can be assigned to the FU “A2” if it is

not used there. Then, in this case, we re-bind Node “+2” to the

FU “A2” in Step (RB3). �
Example 5. Let us consider the two scheduling/binding results as

shown in Fig. 12. In this case, we cannot directly re-bind Node

“+1” in Fig. 12 (b) to the FU “A2” since it is used by Node “+2.”

In Step (RB4), we try to swap BD(v) for BD(w) and, in this case,

Fig. 10 An example of Step (RS4).

Fig. 11 An example of Step (RB3).

c© 2014 Information Processing Society of Japan 86

IPSJ Transactions on System LSI Design Methodology Vol.7 81–90 (Aug. 2014)

Fig. 13 Re-scheduling/re-binding results.

Fig. 12 An example of Step (RB4).

we swap BD(“+1”) for BD(“+2”). We can have the same binding

result for non-delayed one and delayed one. �
We repeatedly perform these re-scheduling and re-binding sev-

eral times until no further re-scheduling and re-binding can be
done for delayed scheduling/binding results.
3.2.2 Step (2.2): Non-delayed Re-scheduling and Re-binding

In Step (2.2), we modify the non-delayed re-scheduling/re-
binding result. In this step, we do not change S D(v) and BD(v)
but we modify S (v) and B(v) so that the non-delayed and de-
layed scheduling/binding results can be similarized. We use the
same algorithm described in the previous section. We use the
non-delayed data-transfer table when we perform non-delayed re-
scheduling/re-binding.
Example 6. After our re-scheduling/re-binding steps are applied

to the two scheduling/binding results shown as in Figs. 6 (a) and

7 (b), we have Figs. 13 (a) and 13 (b). As can be seen in these

figures, they are similar to each other. �
Finally, we generate controllers. Then we can select either one

of the two scheduling/binding results depending on post-silicon
delay variation.

4. Experimental Results

We have implemented our algorithm in C++. We applied
our algorithm to DCT (48 nodes), EWF3 (102 nodes), FIR (75
nodes), and PARKER (22 nodes, including conditional branches).
All the FUs are assumed to have 16-bit width under the 90 nm
technology node. We set the clock period to be Tclk = 3.0 ns and
the capacity to be C = 2. According to Ref. [7], we set adder
cost to be 1, subtracter cost to be 1, multiplier cost to be 2, and
comparator cost to be 1. We also set the interconnection delay co-
efficient to be Cd = 1.0 ns. We used Synopsys Design Compiler
for controller synthesis.

We have compared our algorithm with the following four algo-

rithms:
Original MCAS: We have run the original MCAS [2]. It only

deals with a non-delayed data-transfer table and then does
not cope with the delay variation.

Modified MCAS (1): One of the simplest ways to cope with
the delay variation given by Definition 1 is that, every data
transfer using the longest interconnections always requires
one more control step in MCAS, i.e., we always consider a
delayed data-transfer table. In this case, we always have a
delayed scheduling/binding result but it can satisfy the delay
variation given by Definition 1. Note that, in this case we
allocate a new FU which is the same as our proposed algo-
rithm to the same island position to compare it fairly with
our proposed algorithm.

Modified MCAS (2): Another simple way to cope with the de-
lay variation given by Definition 1 is that, we assume to use
error-detecting flipflops such as Refs. [3], [6] as RDR local
registers and wait for correct data to arrive its destination
for one clock cycle if delay variation occurs. In this case,
we can always use a non-delayed scheduling/binding result
generated by the original MCAS and, if delay variation oc-
curs, we wait for the data to arrive at its destination and stall
all the working operations for one clock cycle. How to im-
plement error-detecting flipflops is another concern and then
we just hand-calculate how many clock cycles are required
when delay variation occurs in the longest interconnections.
We performed our experiment “Modified MCAS (2)” chang-
ing delay variation probability (25%, 50%, 75%, and 100%).
For example, if delay variation probability is 25%, we re-
quire an extra clock cycle in the longest interconnection at
the probability of 25%. We performed 100 trials in this ex-
periment and obtained average control step counts.

Our algorithm without Step 2 (Ours w/o Step 2): In order to
evaluate the effectiveness of our similarization step, we have
run our algorithm without Step 2.

Table 1 shows the experimental results. In this table, non-
delay control steps refer to the number of required control steps
to schedule/bind a non-delayed control-data flow graph. Simi-
larly, delayed control steps refer to the number of required control
steps to schedule/bind a delayed control-data flow graph. Since
every RDR island has the same size and it is determined by the

c© 2014 Information Processing Society of Japan 87

IPSJ Transactions on System LSI Design Methodology Vol.7 81–90 (Aug. 2014)

Table 1 Experimental results.

App. Islands FUs Algorithm
Non-delayed Delayed Allocated Area CPU time
control steps control steps new FUs [µm2] [sec]

DCT 2×2

ADD×4 MCAS [2] 11 – NA 7,194 99.3
MUL×2 Modified MCAS (1) 12 12 – 6,901 99.8

Modified MCAS (2) [3], [6] (Prob=25%) 11 15.46 NA – –
Modified MCAS (2) [3], [6] (Prob=50%) 11 18.06 NA – –
Modified MCAS (2) [3], [6] (Prob=75%) 11 19.82 NA – –
Modified MCAS (2) [3], [6] (Prob=100%) 11 21 NA – –

Ours w/o Step2 11 12 – 7,239 100.1
Ours 11 12 – 6,930 100.5

EWF3 2×2

ADD×3 MCAS [2] 52 – NA 9,897 106.3
MUL×2 Modified MCAS (1) 54 54 – 9,908 106.1

Modified MCAS (2) [3], [6] (Prob=25%) 52 55.82 NA – –
Modified MCAS (2) [3], [6] (Prob=50%) 52 59.02 NA – –
Modified MCAS (2) [3], [6] (Prob=75%) 52 61.76 NA – –
Modified MCAS (2) [3], [6] (Prob=100%) 52 64 NA – –

Ours w/o Step2 52 54 – 10,087 108.3
Ours 52 54 – 9,315 109.0

FIR 3×2

ADD×3 MCAS [2] 19 – NA 6,427 123.9
MUL×3 Modified MCAS (1) 19 19 – 6,427 125.2

Modified MCAS (2) [3], [6] (Prob=100%) 19 19 NA – –
Ours w/o Step2 19 19 – 6,427 124.2

Ours 19 19 – 6,427 124.4

PARKER 2×2

ADD×2 MCAS [2] 10 – NA 3,479 55.3
SUB×2 Modified MCAS (1) 10 10 ADD×1 3,467 55.0

COMP×1 Modified MCAS (2) [3], [6] (Prob=25%) 10 10.26 NA – –
Modified MCAS (2) [3], [6] (Prob=50%) 10 10.55 NA – –
Modified MCAS (2) [3], [6] (Prob=75%) 10 10.68 NA – –
Modified MCAS (2) [3], [6] (Prob=100%) 10 11 NA – –

Ours w/o Step2 10 10 ADD×1 3,467 57.5
Ours 10 10 ADD×1 3,467 57.9

Table 2 The configuration in each RDR island (DCT).

Algorithm Island FUs
Controller

MUXs Registers Area [µm2]
area [µm2]

MCAS

(1, 1) MUL 309 7 5 7,194
(2, 1) MUL 301 5 4 6,674
(1, 2) ADD×2 630 24 6 5,610
(2, 2) ADD×2 583 25 7 5,963

Modified MCAS (1)

(1, 1) MUL 304 7 4 6,901
(2, 1) MUL 288 7 4 6,773
(1, 2) ADD×2 704 29 6 6,244
(2, 2) ADD×2 536 21 7 5,468

Ours w/o Step 2

(1, 1) MUL 354 7 5 7,239
(2, 1) MUL 346 5 4 6,719
(1, 2) ADD×2 659 24 6 5,639
(2, 2) ADD×2 613 24 7 5,881

Ours

(1, 1) MUL 333 7 4 6,930
(2, 1) MUL 328 6 4 6,701
(1, 2) ADD×2 674 24 6 5,654
(2, 2) ADD×2 575 20 7 5,395

maximum-sized RDR island, we also show maximum-sized RDR
island area at the column of “Area.” CPU time shows the run time
to perform each algorithm.

Our proposed algorithm successfully reduced delayed schedul-
ing/binding latency by up to 42.9% (from 21 steps to 12 steps in
DCT) compared with Modified MCAS (2). In most of the cases,
our algorithm can decrease the control step count with almost no
area and CPU time overhead. Further, our algorithm increases the
control step count in none of the cases. Our proposed algorithm
reduced the maximum RDR island area by up to 7.7% compared
with ours w/o Step 2. Similarization step is important for our
algorithm to optimize the area. Consequently, our proposed algo-
rithm gives one of the most effective and feasible solutions to the
delay variation in high-level synthesis.

In order to show how our algorithm affects maximum island

size, we also show the configuration in each RDR island for
our application programs used in this experiment in Tables 2,
3, 4, and 5, where every row written in bold face shows the
maximum-sized island. As in these tables, maximum-sized is-
land area obtained by our proposed algorithm is almost equal to
the ones obtained by MCAS and Modified MCAS (1) while it
is reduced by up to 7.7% compared with ours w/o Step 2 (from
10,087 µm2 to 9,315 µm2 in EWF3). Note that the number of reg-
isters used in our proposed algorithm is slightly decreased com-
pared with MCAS and Modified MCAS (1) in DCT and EWF3.
The maximum-sized island is changed from I(2, 1) to I(1, 1) in
PARKER. This is just because our proposed algorithm re-binds
FUs and thus register assignment is changed.

Since our algorithm allocates new FUs into a vacant island,
i.e., non-maximum-sized island, adding a new FU into an island

c© 2014 Information Processing Society of Japan 88

IPSJ Transactions on System LSI Design Methodology Vol.7 81–90 (Aug. 2014)

Table 3 The configuration in each RDR island (EWF3).

Algorithm Island FUs
Controller

MUXs Registers Area [µm2]
area [µm2]

MCAS

(1, 1) ADD 527 8 3 2,569
(2, 1) MUL 454 3 1 5,627
(1, 2) MUL 503 3 2 6,076
(2, 2) ADD×2 1,477 47 9 9,897

Modified MCAS (1)

(1, 1) ADD 433 7 2 2,075
(2, 1) MUL 340 1 1 5,289
(1, 2) MUL 372 3 2 5,833
(2, 2) ADD×2 1,488 47 9 9,908

Ours w/o Step 2

(1, 1) ADD 604 7 3 2,534
(2, 1) MUL 449 3 1 5,622
(1, 2) MUL 489 2 2 5,950
(2, 2) ADD×2 1,555 48 9 10,087

Ours

(1, 1) ADD 567 8 3 2,609
(2, 1) MUL 452 4 1 5,737
(1, 2) MUL 522 3 2 6,095
(2, 2) ADD×2 1,519 44 8 9,315

Table 4 The configuration in each RDR island (FIR).

Algorithm Island FUs
Controller

MUXs Registers Area [µm2]
area [µm2]

MCAS

(1, 1) MUL 342 6 3 6,427
(2, 1) ADD 589 19 7 4,792
(3, 1) MUL 348 5 3 6,321
(1, 2) MUL 325 4 3 6,186
(2, 2) ADD×2 690 28 5 5,830
(3, 2) – 0 0 0 0

Modified MCAS (1)

(1, 1) MUL 342 6 3 6,427
(2, 1) ADD 589 19 7 4,792
(3, 1) MUL 348 5 3 6,321
(1, 2) MUL 325 4 3 6,186
(2, 2) ADD×2 690 28 5 5,830
(3, 2) – 0 0 0 0

Ours w/o Step 2

(1, 1) MUL 342 6 3 6,427
(2, 1) ADD 589 19 7 4,792
(3, 1) MUL 348 5 3 6,321
(1, 2) MUL 325 4 3 6,186
(2, 2) ADD×2 690 28 5 5,830
(3, 2) – 0 0 0 0

Ours

(1, 1) MUL 342 6 3 6,427
(2, 1) ADD 589 19 7 4,792
(3, 1) MUL 348 5 3 6,321
(1, 2) MUL 325 4 3 6,186
(2, 2) ADD×2 690 28 5 5,830
(3, 2) – 0 0 0 0

Table 5 The configuration in each RDR island (PARKER).

Algorithm Island FUs
Controller

MUXs Registers area [µm2]
Area [µm2]

MCAS

(1, 1) SUB, COMP 168 12 5 3,355
(2, 1) ADD×2 243 11 5 3,479
(1, 2) SUB 170 2 2 1,286
(2, 2) – 0 0 0 0

Modified MCAS (1)

(1, 1) SUB, COMP 168 12 5 3,355
(2, 1) ADD×2 270 12 5 3,618
(1, 2) SUB, ADD 172 2 3 1,576
(2, 2) – 0 0 0 0

Ours w/o Step 2

(1, 1) SUB, COMP 174 13 5 3,467
(2, 1) ADD×2 228 7 5 3,016
(1, 2) SUB, ADD 234 5 4 2,544
(2, 2) – 0 0 0 0

Ours

(1, 1) SUB, COMP 174 13 5 3,467
(2, 1) ADD×2 228 7 5 3,016
(1, 2) SUB, ADD 234 5 4 2,544
(2, 2) – 0 0 0 0

c© 2014 Information Processing Society of Japan 89

IPSJ Transactions on System LSI Design Methodology Vol.7 81–90 (Aug. 2014)

does not directly lead to increasing the RDR island size. In fact,
we added a new FU (ADD) to the Island I(1, 2) in PARKER (Ta-
ble 5) but it does not become a maximum-sized island.

5. Conclusion

In this paper, we proposed a delay-variation-aware high-level
synthesis algorithm for RDR architectures. Our proposed algo-
rithm reduced delayed scheduling/binding latency by up to 42.9%
compared with the conventional algorithm. Our proposed algo-
rithm gives one of the most effective and feasible solutions to the
delay variation in high-level synthesis.

In the future, we will consider extensive delay variations and
develop an improved version of our proposed algorithm.

Acknowledgments This research is partially supported by
NEDO.

References

[1] Amin, C.S., Menezes, N., Killpack, K., Dartu, F., Choudhury, U.,
Hakim, N. and Ismail, Y.I.: Statistical static timing analysis: How sim-
ple can we get?, Proc. 42nd Design Automation Conference, pp.652–
657 (2005).

[2] Cong, J., Fan, Y., Han, G., Yang, X. and Zhang, Z.: Architecture
and synthesis for on-chip multicycle communication, IEEE Trans.
Computer-Aided Design, Vol.23, No.4, pp.550–564 (2004).

[3] Ernst, D., Kim, N.S., Das, S., Pant, S., Rao, R., Pham, T., Ziesler,
C., Blaauw, D., Austin, T., Flautner, K. and Mudge, T.: Razor: A
low-power pipeline based on circuit-level timing speculation, Proc.
36th IEEE/ACM International Symposium on Microarchitecture, pp.7–
18 (2003).

[4] Hagio, Y., Yanagisawa, M. and Togawa, N.: High-level synthesis with
post-silicon delay tuning for RDR architectures, Proc. International
SoC Design Conference (ISOCC), pp.194–197 (2013).

[5] Kawamura, K., Yanagisawa, M. and Togawa, N.: A thermal-aware
high-level synthesis algorithm for RDR architectures through binding
and allocation, IEICE Trans. Fundamentals of Electronics, Communi-
cations and Computer Sciences, Vol.E96-A, No.1, pp.312–321 (2013).

[6] Shi, Y., Igarashi, H., Togawa, N. and Yanagisawa, M.: Suspicious tim-
ing error prediction with in-cycle clock gating, Proc. 14th International
Symposium on Quality Electronic Design, pp.335–340 (2013).

[7] Tanaka, S., Yanagisawa, M., Ohtsuki, T. and Togawa, N.: A fault-secure
high-level synthesis algorithm for RDR architectures, IPSJ Trans. Sys-
tem LSI Design Methodology, Vol.4, pp.150–165 (2011).

[8] Yoshida, H. and Fujita, M.: An energy-efficient patchable accelerator
for post-silicon engineering changes, Proc. 9th International Confer-
ence on Hardware/Software Codesign and System Synthesis, pp.13–20
(2011).

[9] Weste, N.H.E. and Harris, D.M.: CMOS VLSI Design: A Circuits and
Systems Perspective, Addison-Wesley Publishing Company (2010).

Yuta Hagio received his B.E. degree
from Waseda University in 2013 in com-
puter science and engineering. Currently
he is working toward M.E. degree there.
His research interest includes variation-
aware high-level synthesis of LSIs.

Masao Yanagisawa received his B.E.,
M.E., and Dr.E. degrees from Waseda
University in 1981, 1983, and 1986, re-
spectively, all in electrical engineering.
He was with University of California,
Berkeley from 1986 through 1987. In
1987, he joined Takushoku University. In
1991, he left Takushoku University and

joined Waseda University, where he is presently a Professor in
the Department of Electronic and Photonic Systems. His research
interests are combinatorics and graph theory, computational ge-
ometry, LSI design and verification, and network analysis and de-
sign. He is a fellow of IEICE and a member of IEEE and ACM.

Nozomu Togawa received his B.E.,
M.E., and Dr.E. degrees from Waseda
University in 1992, 1994, and 1997, re-
spectively, all in electrical engineering.
He is presently a Professor in the Depart-
ment of Computer Science and Engineer-
ing, Waseda University. His research in-
terests are LSI design, graph theory, and

computational geometry. He is a member of IEEE and IEICE.

(Recommended by Associate Editor: Atsushi Takahashi)

c© 2014 Information Processing Society of Japan 90

