
IPSJ Transactions on System LSI Design Methodology Vol.8 105–115 (Aug. 2015)

[DOI: 10.2197/ipsjtsldm.8.105]

Regular Paper

Courier: A Toolchain for Application Acceleration on
Heterogeneous Platforms

TakaakiMiyajima1,a) David Thomas2 Hideharu Amano1

Received: December 5, 2014, Revised: March 13, 2015,
Accepted: April 29, 2015, Released: August 1, 2015

Abstract: Computationally intensive applications using an open-source library such as OpenCV, BLAS or FFT are
widely available on various research or industry applications. Although the optimized code of such libraries has been
prepared for an accelerator, off-loading is difficult for non-expert users, especially when only binary of applications can
be accessed. This paper presents a new toolchain for application acceleration called Courier. It only requires a exe-
cutable binary of the target application and a corresponding function code for an accelerator. Besides, it doesn’t require
a source code of the application nor re-compilation of the binary. A work-flow of Courier is a simple and intended for
non-expert users. It extracts runtime information from running binary, generates task graph, and then replaces the orig-
inal function with a corresponding accelerator function. Many steps along with the application acceleration process are
automatically executed. The users can refer to the acceleration result and modify the task graph if needed. In our case
studies, Courier was used for acceleration of three applications; image processing, matrix multiplication and spectrum
analysis. Functions are off-loaded to a GPU without any modification to the original source code. Applications are
sped up 8.89, 8.16 and 1.23 times, respectively.

Keywords: algorithm implementation, heterogeneous platform, automation tool

1. Introduction

For expert programmers, performance of computationally in-
tensive applications can relatively easy to be improved by off-
loading time consuming parts to accelerators like GPUs or FP-
GAs. On the contrary, users of legacy or public applications do
not have enough knowledge on their executing processing flow,
and often they do not have the source code itself. For such
users, performance improvement with accelerators have been al-
most impossible. However, recently, a lot of applications use
widespread function libraries like OpenCV, BLAS or FFT, and
optimized off-the-shelf code of such functions are already avail-
able for popular accelerators [1]. If we understand the flow of
the running binary and find the parts which can be accelerated,
we can off-load the binary by replacing the parts with the corre-
sponding functions of the accelerator. Here, we propose a new
toolchain for application acceleration called Courier. Courier au-
tomatically analyses specific functions and data in a running bi-
nary and replaces functions with corresponding accelerator func-
tions if possible.

The contributions of the paper are as follows:
• Introducing a new application acceleration work-flow,

Courier, which does not require original source code, man-
ual tweaks, or re-compilation of the target binary, without
user intervention. The user just has to refer to the result and

1 Graduate School of Science and Technology, Keio University,
Yokohama, Kanagawa 223–8522, Japan

2 Department of Electrical and Electronic Engineering, Imperial College
London, London, United Kingdom

a) vision@am.ics.keio.ac.jp

modify off-load parts if needed.
• We propose an automatic processing flow graph generation

method of analyzable functions from a running binary. The
method includes tracing sub-programs to analyze functions
and a heuristic approach to detect causality.

• We propose an automatic off-loading method of functions in
the binary. If functions are analyzed by the above mentioned
method and corresponding functions are ready for the accel-
erator, functions are off-load automatically. The method also
reduces the number of data transfer along with off-loading,
and maintains an original processing flow before and after
off-loading.

• We show practical case studies: a HOG feature detection
with OpenCV, a matrix multiplication using BLAS and a
power spectrum density estimation using FFT. These were
sped up 8.89, 8.16 and 1.23 times by using the existing GPU
functions.

This paper is organized as follows. In Section 2, we present
Courier, including its features designed for detecting a process-
ing flow and function off-loading. Then, we describes technical
details of our function off-loading mechanism. Section 4 gives
three case studies, showing the capability of Courier. We discuss
our toolchain and related work in Section 5. Finally, we conclude
the paper.

2. Courier: A Toolchain for Application Ac-
celeration

2.1 Target Users and Applications
Most of researches on developing work-flow of off-loading fo-

c© 2015 Information Processing Society of Japan 105



IPSJ Transactions on System LSI Design Methodology Vol.8 105–115 (Aug. 2015)

Fig. 1 An overview and work step of the Courier: Frontend traces running binary (1, 2) and detects
causality (3) and then generates an Intermediate Representation (4) and a task graph (5). Users
modify off-load parts and changes IR if needed (6). Finally, Function Off-loader replaces function
and off-loads to accelerator (7).

cus on a programmer who knows of the source code and wants
to improve its performance. For developing the code of the ac-
celerator which works the same function of the target code with
much more performance, various types of tools have been pro-
posed. They help the analysis of the source code [2], accel-
erator management [3], [4], and accelerator kernel implementa-
tion [5], [6], [7], [8]. Unlike them, we do not intend to generate
the accelerator code itself. We assume that the target application
program uses a common library like OpenCV, BLAS or FFT, and
the corresponding library code of the accelerator is already avail-
able. Instead, our target users are not needed to have the source
code of acceleration target. Our toolchain extracts the call flow of
functions, and find the part which can be off-loaded to the accel-
erator during execution of the binary code. Current version of the
toolchain cannot do anything if the target binary does not include
corresponding accelerator functions. Even with this limitation,
the proposed tool can help many legacy code users who are out
of the target of the conventional work-flow.

2.2 Overview of Courier
Figure 1 shows the overview of Courier. It is consisting

of Frontend (Runtime Analyzer) and Backend (Function Off-

loader). Courier Intermediate Representation (IR) is a bridge be-
tween them.

Example of the processing step is illustrated in Fig. 1 and cap-
tion of the figure describes the detailed work step. Running soft-
ware binary contains a function called “accum,” which obtain
two input data (0x1 and 0x2) and produces an output data (0x3).
Courier traces the binary and detects “accum.” Then Courier
replaces the function with corresponding accelerator function
“acc accum.” We are go into more detail in the next sub sections.

2.3 Frontend (Runtime Analyzer)
Frontend is consisting of three main steps so as to detect a

raw processing flow. We used dynamic program analysis and a
heuristic approach to detect the flow. Users simply start their ap-
plication as usual, and Courier performs a data sampling process
called a “profile run.” Each step to analyze running binary works
as follows during profile run.

Step 1. Frontend traces functions in the running binary by
using pre-defined tracing sub-programs,

Step 2. gathers runtime information, during execution,
Step 3. and looks for causal function call and input/output

data.
The purpose of extracting a function-level processing flow is

NOT to translate assembly automatically into accelerator kernel,
like the fine grained dataflow [8]. We intend to understand pro-
cessing flow and find parts that can be off-loaded on a current
heterogeneous platform.
2.3.1 Tracing a Running Binary

In Step 1 we perform dynamic program analysis by using trac-
ing sub-program for each function in order to obtain runtime in-
formation from a target binary. In Step 2 Frontend gathers these
information. The information includes absolute time of entry and
exit, thread id, call depth, function name, and raw argument value
(not just the memory address). At runtime, all dynamic point-
ers/aliases (e.g., int* in C++) are resolved, so the raw value is
available. Frontend covers a super-set of manual profiling and
can gather more information than the other research [8], [9], [10].
In this paper, we call the value that is actually processed at run-
time the “raw value.”

Tracing sub-programs is based on Intel Pin, a framework for
dynamic program analysis [11]. Pin is commonly used for kernel-
level profile of the target program, but we use it to detect a
function-level processing flow. Many libraries such as OpenCV,
Basic Linear Algebra Subprograms (BLAS), and Fast Fourier
Transform (FFT) can be simultaneously analyzed by preparing
specific tracing sub-programs. Note that Courier uses conven-

c© 2015 Information Processing Society of Japan 106



IPSJ Transactions on System LSI Design Methodology Vol.8 105–115 (Aug. 2015)

Fig. 2 Tracing sub-programs for specific functions in Frontend access des-
ignated arguments and obtain raw values at entry and return points
of the functions.

tional tools only in this step. To analyze a specific function, some
information of a target library must be known in advance. Specif-
ically, information of a structure of data type, functions name and
role of each argument are required. Tracing sub-program is a sep-
arated from Courier implementation so as to improve applicabil-
ity to support new libraries. By adding new tracing sub-program
for a specific library, Courier can trace the library.

Figure 2 shows a target function cv::add on the left and a trac-
ing sub-program for it on the right. Note that “Entry” and “Re-
turn” are points of function where control enters or exits each
function region. During the profile run, Frontend accesses a raw
address of 1st and 2nd arguments and obtains a raw value (input
data) at the entry point of cv::add. 4th and 5th arguments are also
accessed at that time. At a return point, Frontend accesses 3rd
argument and obtains a raw value (output data). Absolute times
are also recorded. Listing 1 is gathered runtime information of
cv::add. It’s just an enumeration of the information and hidden
from the users.
2.3.2 Looking for Causality

A heuristic approach is used to look for causal processing flow
between functions and input/output data dependencies in Step 3.
For example, assume that a function, named cv::divide which has
an argument that contains input data, is found after cv::add. If an
output data of cv::add and an input data of cv::divide are the same,
Frontend guesses the causality by which these two functions are
connected by the data and detects processing flow like “cv::add”
→ “cv::divide.” Raw value is typically non-identical, e.g. images
are less likely than chance to match. Even if some unrelated raw
values are the same or functions run in parallel, Frontend detects
causality by referring to time, thread id, or call depth.

2.4 Courier Intermediate Representation (IR)
Courier IR is an intermediate representation that bridges Fron-

tend and Backend. It can be used to modify or designate parts
to off-load if the users don’t satisfy Courier’s automatic off-load.
The three main steps of Courier IR are as follows.

Step 4. Courier generates an IR corresponding to the de-
tected processing flow,

Step 5. generates a task graph, and
Step 6. the users modify or designate off-load parts if needed.

All information gathered from Frontend such as Listing 1 is

[ENTRY]:

cv::add(cv::_InputArray const&,cv::_InputArray const&,
cv::_OutputArray const&, cv::_InputArray const&, int)
[TIME]:

33337

[ARGs]:

0x7fffd6b4cfd0 , 0x7fffd6b4cfb0 ,

0x7fffd6b4cf90 , 0x7fbdc9325540 , 0xffffffff

[IMG]:

0x42ff4005 , 1920, 1080, 0x26f4f30

0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, ...

[IMG]:

0x42ff4005 , 1920, 1080, 0x2613f00

0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, ...

[RETURN]:

cv::add(cv::_InputArray const&,cv::_InputArray const&,
cv::_OutputArray const&, cv::_InputArray const&, int)
[TIME]:

39939

[IMG]:

0x42ff4005 , 1920, 1080, 0x27d5f60

0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, ...

Listing 1 Gathered runtime information of cv::add.

img3 = cv::add(img1, img2);

Listing 2 Courier IR description of cv::add.

translated into a more user-friendly description as shown in List-
ing 2. Its structure is simple and device independent and shows
the inferred function-data causality. By just lining up functions
and data in the order of processing flow. IR is converted into
graph representation called Task Graph. Task graph is a kind
of weighted directed acyclic graph and includes order of func-
tion call, their input/output, and some raw values. At present,
Courier IR is manually translated from the detected processing
flow. Some special functions are provided to designate the off-
load functions and maintain original dataflow. cpu2acc function
designates off-load function and input/output data from CPU to
the accelerator, and acc2cpu function does the same in the op-
posite direction. volatileInput/Output functions are automatically
called to notify the users that they cannot change or delete certain
nodes, due to the need to protect the overall inputs and outputs
of the task graph. We show an example in Section 4.1 with an
example of HOG feature detection.

2.5 Backend (Function Off-loader)
Backend is designed for automatic off-load without user inter-

vention, and a main step is as follows.
Step 7. The Function Off-loader selects a path and replaces

functions with corresponding accelerated functions
within the designated parts.

Backend first searches for “safely off-loadable” parts, where
input and output data are both traced, data conversion is feasible,
and a corresponding accelerated function is available. For such
parts, Backend automatically off-loads them by using Function

Off-loader in default mode. Note that we do not attempt any sort
of automatic binary translation. We explain the details in Sec-
tion 3 with an example of OpenCV.

2.6 Applicability of Courier
When the users want to support a new library, they should in-

c© 2015 Information Processing Society of Japan 107



IPSJ Transactions on System LSI Design Methodology Vol.8 105–115 (Aug. 2015)

troduce a new “add-on” for Courier. Add-on is a supplementary
component that improves capability without changing the main
application. Add-on for Courier includes a tracing sub-program,
a data transfer function, a corresponding accelerator function and
a correspondence relationship of accelerator functions. By using
this add-on mechanism, Courier can easily support new library
without developing a new version of Courier.

When the corresponding functions are ready in the accelerator,
any types of function calls in the target binary can be off-loaded.
In the case of multiple function calls that appear continuously,
Courier off-loads all of them at a time and the performance can
be much improved by using Function Off-loader even if addi-
tional statements are existing before and after functions. On the
other hand, if there are additional statements between functions,
they are executed in the host processor and each function is off-
loaded independently. In this case, each function call requires the
data transfer between the host processor and the accelerator, and
the performance improvement might be degraded if the granular-
ity of the function is not large compared with the data transfer
time. In the current version of Courier, the users eventually select
whether the function is off-loaded or not by using the Off-load
Switcher. Additionally, Courier cannot off-load function calls of
non-supported library. They are executed on the host processor
as the same way as the additional statements.

3. Function Off-Loading System

Function Off-loader and Off-load Switcher in the Backend are
core features of application acceleration. It automatically gen-
erates a function wrapper to replace the original function desig-
nated by IR’s cpu2acc and acc2cpu. The wrapper contains code
of the pre-defined corresponding accelerator function, a pre/post-
processing and the data transfer. The Backend creates a shared
object from the code. Function off-loading system behaves as
follows. At start-up, Courier stops the running binary, and then
Function Off-loader intercepts (hooks) designated functions. It
then replaces original functions with the wrapper that executes
the accelerator functions while maintaining processing flow or
reducing the data transfer by using Function Switcher. Finally,
Courier re-starts the binary. This process does not require any
user intervention. The corresponding accelerator functions must
be available beforehand, so we use OpenCV’s GPU functions,
cuBLAS and cuFFT in Section 4.

3.1 Dynamic Linking and Its Problems
We used dynamic linking mechanism on Linux environment

for the Function Off-loader as a basis. This mechanism adjusts the
runtime linking process by forcibly loading and linking software
libraries. Source-code tweaks or re-compilations of target binary
are NOT required. Function Off-loader uses it to replace origi-
nal functions in the binary with wrappers. Wrappers needs to be
compiled before the deploy. Although this technique is known as
DLL hijacking or DLL injection, here, the purpose is off-loading
and some problems are occurred.

There are three main problems that occur if we just use DLL
injection for the function off-loading. The first is unconditional
off-loading (Fig. 3, UNCOND-OFF), the second is a restriction

Fig. 3 UNCOND-OFF: Typical dynamic linking replaces all the same name
functions in the target binary.

Fig. 4 SAME-INOUT: Corresponding function must have the same number
of input output.

of the number of inputs out of substitute function (Fig. 4, SAME-
INOUT), and the third is redundant data transfer when a series
of functions is off-loaded (Fig. 5, RDNT-TXRX). In the figures,
ellipse nodes and rectangle nodes represent data and functions,
respectively. The UNCOND-OFF problem is caused by DLL in-
jection, since DLL injection replaces all the same name functions
in a target binary unconditionally. This is not suitable for off-
loading, since processing time on heterogeneous platform usu-
ally depends on data transfer overhead. In the case of Fig. 3,
assume that there is two “CPU funcA” functions in binary and
both are replaced. The data size of “srcImg0” including commu-
nication overhead is large enough to off-load. On the other hand,
“srcImg2” is too small for off-loading, since the total processing
time (communication overhead + execution time on accelerator)
is longer than processing time on CPU. Thus, only intended func-
tions should be off-loaded. The SAME-INOUT problem forces
Courier to use a function that has the same number of inputs/out-
puts as that of the original function. Some opportunities for off-
loading are lost by this restriction. We are researching a solu-
tion to solve this problem, but this is future work. RDNT-TXRX
problem arises when series of functions are off-loaded, data trans-
fer happens along with each function, and performance degrades.
To deal with UNCOND-OFF and RDNT-TXRX, we introduced

c© 2015 Information Processing Society of Japan 108



IPSJ Transactions on System LSI Design Methodology Vol.8 105–115 (Aug. 2015)

Fig. 5 RDNT-TXRX: Redundant data transfer happens when a series of
functions are off-loaded.

Fig. 6 Function Off-loader and generated wrapper for OpenCV: One
of three paths is selected: “Non-off-load,” “off-load” and “Pass
Through.”

Function Off-loader and Off-load Switcher.

3.2 Mechanism of Function Off-loader
Function Off-loader generates a wrapping code around ac-

celerator functions code and solves the above mentioned two
problems. To generate an appropriate code, it has a table
which contains a correspondence relationship between software
functions and accelerated functions, code of a needed pre/post-
processing and the data transfer. Figure 6 shows an example
wrapper for the cv::Sobel function in OpenCV. In the figure,
the wrapper introduces a data transfer function, cv::gpu::Sobel

and cv::gpu::cvtColor. cv::gpu::Sobel is an corresponding ac-

Fig. 7 Function Off-loader reduces the # of data transfer and maintains the
original processing flow.

celerator function for cv::Sobel. cv::gpu::cvtColor is a pre/post-
process that adjusts image properties between cv::gpu::Sobel and
cv::Sobel. The additional overhead of the wrapper is transferring
image and property conversion. It depends on the image size.

To deal with the above described UNCOND-OFF and RDNT-
TXRX problems, we introduce Off-load switcher to the wrapper.
This switcher provides one of three possible paths for a function:
non-off-load, off-load and pass through. The path is selected by
Function Off-loader and determined from arguments of function
or function ID that is contained in Courier IR. This uses dlsym
and dlopen [12], which are APIs for dynamic loading in Linux. In
Fig. 6, Off-load switcher is shown at the top, and the three paths
work as follows.
• Non-off-load keeps the function the original, so the function

runs on CPU.
• off-load replaces the designated function with correspond-

ing accelerator function. Some pre/post-processing is also
added.

• Pass Through assigns the input data to the output data so as
to skip the function in binary.

The UNCOND-OFF is solved by executing original function
in a non-off-load path, and the RDNT-TXRX is solved by the
following method. Function Off-loader replaces “the head” of a
series of functions and runs all functions in it. Figure 5 and Fig. 7
illustrate before and after suppression, respectively. Moreover, to
maintain original processing flow, successive functions must be
skipped in the original binary running on CPU. Otherwise they
are applied twice in the off-loaded function and original binary.
Thus, our Function Off-loader replaces and skips them by using
Pass Through. The off-load switcher is controlled by gathered in-
formation from Frontend, such as function name, argument value,

c© 2015 Information Processing Society of Japan 109



IPSJ Transactions on System LSI Design Methodology Vol.8 105–115 (Aug. 2015)

1 #include "opencv2/imgproc/imgproc.hp>"
2 int hog (rtnMagnitude , rtnHistogram){
3 while(true){
4 // Step 1) Compute gradient and magnitude

5 // input and gray scale

6 cv::VideoCapture cap >> frame;

7 cv::cvtColor(frame, yuv, "CV_RGB2YCrCb");

8 cv::split(yuv, graySc);

9 // x/y-axis Sobel filter

10 cv::Sobel(graySc, xsobel, "X-axis");

11 // image duplication via memcopy

12 graySc.copyTo(copyTo_dst);

13 cv::Sobel(copyTo_dst , ysobel, "Y-axis");

14 // Calculate gradient and magnitude

15 cv::cartToPolar(xsobel,ysobel,gradient ,

magnitude);

16 // Step 2) Gradient adjustment

17 // Adjust the value within 0 to 180 degrees

18 cv::threshold(gradient , 180up, "<180");

19 cv::convertScaleAbs(180up, 180up_res);

20 cv::subtract(180up_res, 180matrix, sub_res);

21 cv::threshold(gradient , 180low, "180<");

22 // Step 3) Create histogram

23 cv::add(sub_res, 180low, add_res);

24 cv::divide(add_res , div_in, histogram); }}

Listing 3 Pseudo code of HOG feature detection in the target running
binary.

and data size. Note that we don’t use execution time to control it
currently.

4. Case Study

In this section, we illustrate our work-flow by using three case
studies: 1) a HOG feature detection algorithm using OpenCV,
2) a double precision general matrix multiplication using Basic
Linear Algebra Subprograms (BLAS), and 3) a power spectrum
density estimation using fast fourirer transform (FFT). Binaries
are accelerated in a CPU-GPU environment by using Courier. Ex-
perimental conditions are as follows: Host OS is Fedora 20 64 bit
(kernel 3.14.3), CPU is Intel Core i7-3770K 3.5 GHz, and the
accelerator is NVIDIA GeForce GTX670 with PCIe Gen.3. Bi-
naries are compiled with GCC ver.4.7.

4.1 Histogram of Oriented Gradients (HOG)
HOG is a widely used algorithm for feature detection, such as

face recognition [13]. HOG application includes three main fea-
tures that are commonly seen in computer vision applications:
OpenCV C++ API functions, diverging/converging flow, and im-
age duplication. The processing flow in running binary is consist-
ing of the following three main steps. Step 1) Compute gradient
and magnitude, Step 2) Gradient adjustment, and Step 3) Create
histogram.
4.1.1 Acceleration Work-flow of Courier
I. Analyzing running binary

After user designates the target binary, Frontend analyses run-
ning binary, then detects processing flow and IR. This step cor-
responds to Step 1–3 in Fig. 1. By tracing sub-programs the fol-
lowing information are extracted:
• OpenCV C++ API function name with arguments,
• function start/end absolute time (execution time),
• # of input/output of function,
• raw value of input/output image data, and
• image properties (size, bit depth and channels).

1 void hog.o_main(void){
2 // Original Input/Output, unchangeable

3 volatileInput(frame);

4 volatileInput(180matrix);

5 volatileInput(div_in);

6 volatileOutput(magnitude);

7 volatileOutput(histogram);

8
9 frame = cv::VideoCapture();

10 yuv = cv::cvtColor(frame);

11 graySc = cv::split(yuv);

12 xsobel = cv::Sobel(graySc, "X-axis");

13 copyTo_dst = cv::Mat::copyTo(graySc);

14 ysobel = cv::Sobel(copyTo_dst , "Y-axis");

15 {gradient , magnitude} // generates two results

16 = cv::cartToPolar(xsobel,ysobel);

17
18 180up = cv::threshold(gradient , "<180");

19 180up_res = cv::convertScaleAbs(180up);

20 sub_res = cv::subtract(180matrix, 180up_res);

21 180low = cv::threshold(gradient , "180<");

22
23 add_res = cv::add(sub_res, 180low);

24 histogram = cv::divide(add_res, div_in);}

Listing 4 Generated IR description of the target running binary.

II. IR Description

The Courier IR description as shown in List 4 is automatically
generated. Users modify this to change processing flow if needed
(Step 6 in the Fig. 1). At line 9, the cv::VideoCapture function
is used to provide input images for the processing flow. Images
are taken as an argument of volatileInput at line 3 to 7, and so
it is protected from modification since this is the very first data.
Two cv::Sobel with different arguments are at lines 12 and 14.
Such differences can be detected by a dynamic program profile
on Frontend.
III. Generating a task graph

After the profile runs, a task graph of the binary is automati-
cally generated, which is shown on the left of Fig. 8. User can re-
fer the graph and decide off-load and non-off-load parts if needed
(Step 6 in Fig. 1). The graph is identical to the previously de-
scribed processing flow. Rectangle nodes and ellipse nodes repre-
sent functions and original input/output data, respectively. Edges
represent intermediate data. The thickness of the edge also re-
flects the size of data. Processing times are displayed in the sec-
ond row of the rectangle node. Nodes are aligned in chronolog-
ical order. According to the graph, each image is processed in
77,923 [μs] in total.

Rectangle nodes of various sizes allow the user to easily rec-
ognize that large nodes (e.g., cv::convertScaleAbs or cv::divide)
occupy a large fraction of total processing time. Two kinds of
thickness of edges can be seen in the figure since cv::Sobel and
cv::convertScaleAbs functions change the number of bit-depth
of their inputs. The data size of thicker edges is 7.91 Mbit
(1,920 × 1,080 × 32 bit × 1-channel) and 1.98 Mbit (the same
property, but 8 bit), respectively. Dynamic program analysis on
Frontend correctly extracts the runtime information.

The graph also illustrates that this binary includes typical
branching and converging, for example both cv::Sobel operators
use the same image as an input, and these output images be-
come inputs of cv::cartToPolar. Furthermore, the vertical rel-
ative offsets (separated by dash lines) illustrate sequential execu-

c© 2015 Information Processing Society of Japan 110



IPSJ Transactions on System LSI Design Methodology Vol.8 105–115 (Aug. 2015)

Fig. 8 Generated task graph from running binary of HOG (left) and off-loaded functions (right) with no-
tations. Function Off-loader generates the wrapper for the functions within cpu2acc and acc2cpu.
It also selects the path of “Off-load” and maintains the processing flow by using “Pass Through.”

tion, which is an opportunity to exploit function level parallelism.
Additionally, cv::Sobel y creates a copy of input images which
seems to be unnecessary. After modifying the processing flow
with IR, such redundant can be deleted.
IV. Acceleration by Courier

In this step (Step 7 in the Fig. 1), Courier searches for “safely
off-loadable” parts, and founds that all of the functions are can-
didate. Courier automatically off-loads it by using Function Off-
loader and existing corresponding library. Finally, Courier up-
dates the IR and introduces the following new lines at the last of

25 // Off-load from cv::cvtColor to cv::divide

26 cpu2acc(cv::cvtColor , MOVE, gpu0);

27 acc2cpu(cv::divide, MOVE, gpu0);

Listing 5 Additional statements to off-load functions.

List 4:
Courier also selects the “Pass Through” pass in Function Off-

loader to reduce the number of data transfer and maintain origi-
nal processing flow. (deal with a RDNT-RXTX problem which
is shown in Fig. 7.) For the first purpose, Function Off-loader in-

c© 2015 Information Processing Society of Japan 111



IPSJ Transactions on System LSI Design Methodology Vol.8 105–115 (Aug. 2015)

Table 1 Processing time comparison of HOG ([μs]).

Original Off-loaded Courier’s Manual
on CPU functions result imple.

Processing Step1

cpu2acc — 1,123 — 1,109
cvtColor 5,296 418 8,690 418

split 5,240 457 15 442
Sobel x 12,617 899 8.9 956
copyTo 469 — 7.8 —
Sobel y 12,769 827 8.8 873

Processing Step2

cartToPolar 9,385 654 7.8 735
threshold 1,529 198 7.4 195

convert ScaleAbs 10,900 506 7.8 607
subtract 5,299 438 7.2 495

threshold 1,456 194 6.6 204

Processing Step3

add 2,569 402 7.7 408
divide 15,690 277 7.3 284

acc2cpu — 2,297 — 724

Total 77,923 8,690 8,766 7,450

Speed-up x1.00 x8.96 x8.89 x10.46

tercepts cv::cvtColor as “the head” of a series of functions and
“off-loads,” and then all functions are run on GPU. For the rest
of functions, Courier intercepts and “Passes Through” even if a
function doesn’t off-loaded.

If we use ordinary DLL injection, nine data transfers hap-
pen. Nine data transfers (two round trips for small images,
and seven for large ones: 447 × 2 + 3, 176 × 7 = 23, 106 [μs])
were reduced to one (send small image and send back large one:
1, 109 + 724 = 1, 833 [μs]). Data transfer time is reduced to less
than 10%, and RDNT-RXTX problem is solved.

Additional tweaks can be performed by the user. According
to Fig. 8, cv::Mat::copyTo seems a redundancy. Therefore, this
copying function can be deleted as below by the user, and Func-
tion Off-loader replaces this function with “Pass Through.” Be-
cause this deletion may affect the processing flow, Courier does
not automatically performs it. For such “unsafe” dataflow mod-
ification, Courier makes it the responsibility of the user to check
whether the final result is the same as the original one or not.

13 // copyTo_dst = cv::Mat::copyTo(graySc);

14 ysobel = cv::Sobel(graySc, "Y-axis");

Listing 6 Delete redundant copyTo.

V. Results

The right side of Fig. 8 shows the off-loaded result. Courier re-
places designated functions and maintains the original processing
flow by selecting “Pass Through.” On the GPU side, off-loaded
version is the same as the original one and predefined acceler-
ated functions with wrapper are used. “copyTo” does not run on
GPU anymore, and is “Passed Through” in the binary. That is,
“copyTo” is deleted.

Table 1 shows processing times. Courier shortened the pro-
cessing time to 8,766 [μs] and sped up x8.89 compared with the
original binary. In Table 1, “Original on CPU” shows the tar-
get binary runs on CPU, “Off-loaded functions” is the processing
time of each function in off-loaded parts. “Courier’s result” is

Fig. 9 Generated task graph from dgemm binary.

the final result including the overhead of “Pass Through.” Note
that the processing time of cvtColor is equal to “Off-loaded func-
tions.” It shows that cvtColor is replaced by Courier and all
functions are executed in here. Additionally, processing time of
acc2cpu in “Off-loaded functions” is longer than that of “Manual
imple.” because current acc2cpu for OpenCV includes additional
data copy. The data copy is required in order to assign the result
data forcibly from GPU to the binary. “Manual imple.” is a man-
ually implemented GPU version of the original application. The
difference between “Courier’s result” and “Manual imple.” arises
from cpu2acc and acc2cpu. Both commands include data type
conversion along with data transfer from GPU to CPU. Addition-
ally, the number of data transfer of “Courier’s result” is the same
as that of “Manual imple.” since Function Off-loader reduces the
redundant data transfer.

We also measured overhead of Function Off-loader for
OpenCV. We subtract the processing time of “Not-off-load” from
ordinary run to measure an overhead of wrapper function and dy-
namic linking. It is around 150 [μs] for each and is attributed
to OpenCV data type conversion and function pointer replacing.
The former one is less than 20 [μs] and the latter one is around
130 [μs]. For the “Pass Through,” the overhead is around 7 [μs]
for each.

4.2 General Matrix Multiplication (GEMM)
General matrix multiplication (gemm) performs the following

equation C = αAB + βC, and very widely used in computa-
tional science. dgemm is a double precision version of gemm.
We prepared binary that only had dgemm function of BLAS, a
widely used for common linear algebra operations. Binary in-
cludes cblas dgemm in ATLAS 3.8.4 [14] for CPU, and Courier
uses cublasDgemm in cuBLAS [15] in CUDA 6.0 for GPU.
I. Analyzing running binary

We prepared a tracing sub-program for BLAS and it extracts
the following information:
• BLAS API function name with arguments,
• function start/end absolute time,
• # of input/output of function, and
• raw value and size of input/output matrix

II. IR Description

The following IR description shows that all the data are pro-
tected from modification via volatileInput/Output.
III. Generating a task graph

After the profile run, a task graph is generated which is on the
left of Fig. 9. According to the graph, cblas dgemm is a ternary
function, which obtains three data (“src0,” “src1” and “src2”) and

c© 2015 Information Processing Society of Japan 112



IPSJ Transactions on System LSI Design Methodology Vol.8 105–115 (Aug. 2015)

1 void dgemm_cblas.o_main(void){
2 volatileInput(src0); volatileInput(src1);

3 volatileInput(src2); volatileOutput(dst);

4 dst = cblas_dgemm(src0, src1, src2); }

Listing 7 dgemm processing flow in Courier IR.

Table 2 Processing time comparision of gemm ([ms]).

Original Off-loaded Courier’s Manual
on CPU functions result imple.

cpu2acc — 10.5 — 10.4
dgemm 1,379.2 151.3 168.7 150.6
acc2cpu — 6.0 — 5.9

Total 1,379.2 167.8 168.7 166.9

Speed-up x1.00 x8.16 x8.16 x8.26

produces result data “dst.” The matrices are all 2,048×2,048, and
consequently all the ellipse nodes are the same size. CPU takes
1,379 [ms] to process each matrices.
IV. Acceleration with Courier

Courier founds cblas dgemm is “safely off-loadable” because
all the input/output data are extracted, and an corresponding ac-
celerator function cublasDgemm is available. Then cblas dgemm

is automatically off-loaded. Function Off-loader generates a
wrapper which reserves memory and transfers matrices to one
GPU memory with the use of cudaMalloc and cublasSet/GetMa-

trix, respectively. Here no property change is required. For the
IR description, Courier automatically introduces the cpu2acc and
acc2cpu around the cblas dgemm. In this case, all the accelera-
tion processes are done by Courier, and there is no need to do by
the user.
V. Results

The right of Fig. 9 shows the off-loaded flow. Processing time
is shortened to 151.3 [ms] by cublasDgemm on GPU. Including
the data transfer and conversion time, total processing was sped
up x8.16. Table 2 shows a final result. Courier achieved almost
the same speed up ratio as manual GPU implementation. This is
because Function Off-loader just performs the same thing, mem-
ory reservation and data transfer, with manual acceleration.

The overhead of Function Off-loader for BLAS is 0.08 [μs].
BLAS has much smaller overhead than that of OpenCV since it
does not require data type conversion in this case. Consequently,
overhead of Function Off-loader depends on the target function.

4.3 Power Spectral Density Estimation (PSD)
GNU Octave [16] is an open-source software for numerical

computations and mostly compatible with MATLAB. Octave ac-
cepts user script file for execution. We downloaded a script file
that performs power spectral density (PSD) estimation from the
website [17]. It includes fast fourier transform (FFT) and other
processing. FFT is a widely used routine for numerical analy-
sis. Octave performs FFT by using fftw library [18] on CPU in
default. Courier replaced fftw with cuFFT and off-loaded FFT
to GPU. GNU Octave 3.6.4 (with fftw 3.4.4) and cuFFT [19] in
CUDA 6.0 were used.
I. Analyzing running binary

We prepared a tracing sub-program for FFT in Octave and it
extracts the same type of information as for BLAS.

1 void octave.o_main(void){
2 volatileInput(src0); volatileInput(src1);

3 volatileOutput(dst);

4 dst = fftw_execute_dft_r2d(src0, src1); }

Listing 8 Detected processing flow in Courier IR.

Table 3 Processing time comparision of PSD ([ms]).

Original Off-loaded Courier’s Manual
on CPU functions result imple.

cpu2acc — 0 - -

fftw execute dft r2c 449.0 99.2 99.2 99.2
acc2cpu — 0 - -

Other funcs 821.2 - 868.8 868.8

Total 1,270.2 - 99.2 99.2

Speed-up x1.00 - x1.23 x1.23

II. IR Description

IR description is almost the same as BLAS case study. Oc-
tave includes many other processes, but Courier cannot analyze
them since the current tracing sub-program doesn’t support them.
By adding information of other functions, an applicability will be
improved.
III. Generating a task graph

After the profile run, a task graph was generated. The graph
is almost the same as that of BLAS case study and shows that
fftw execute dft r2d performs actual FFT in fftw library. It per-
forms 16,777,216 points FFT and takes 449.0 [ms] on CPU. En-
tire processing time of the PSD script is 1,270 [ms].
IV. Acceleration with Courier

Courier founds fftw execute dft r2c is “safely ff-loadable” and
a corresponding accelerator function (fftw-compatible cuFFT) is
available. Function Off-loader generates a wrapper just includes
the real-number input DFT function of cuFFT. IR description
was also changed just like BLAS case.
V. Results

Processing time of FFT was shortened to 99.2 [ms]. Includ-
ing the data transfer and conversion time, entire processing time
became 968 [ms]. Table 3 shows a final result. Note that “To-
tal” is entire processing time of the PSD script which includes
FFT and other processes. Speed up ratio was the same as man-
ual GPU implementation since cuFFT’s FFT function includes
pre/post-process. The overhead along with off-load is included
in the result and cpu2acc/acc2cpu is zero. In this case, wrapper
doesn’t do any additional processing.

5. Related Work

5.1 Toolchains for Supporting Off-loading
There is a significant amount of existing researches on auto-

matic off-loading systems [3], [4], [6], [7], [8], [9], [10], [20],
[21].

For a mixed CPU-GPU platform, Chi-Keung et al. proposed a
new programming model called Qilin, and automatic load distri-
bution system that considered the size of a data-set called adap-

tive mapping [3]. For automatic distribution, it first requires a
training run to build a database of relationships between the size
of a dataset and processing time. Users prepare CPU code, ac-
celerator code, and special data arrays, which are described in

c© 2015 Information Processing Society of Japan 113



IPSJ Transactions on System LSI Design Methodology Vol.8 105–115 (Aug. 2015)

Qilin API. Then their system automatically balances distribution
of computation between them while taking data size into account.
Such features are similar to our “profile run” in Section 2.3. This
did not include a system to determine the off-load parts as well as
Ref. [4] or extract processing flow.

For a mixed CPU-FPGA platform, DARES [5] by Andrew Mi-
lakovich et al., Hthread [6] by Andrews et al., and FUSE [7] by
Aws et al. are typical examples. DARES is one of a state-of-
the-art software and hardware codesign framework on a reconfig-
urable system. Their target platform is a mixed FPGA-CPU plat-
form called DARE, which is different from ours. In this frame-
work, users first divide a target application into tasks and describe
a communication between tasks in sequential manner. Then
DARES compiles the tasks and the communication hardware. If
suitable hardware modules for tasks are available, DARES uses
them. This framework is similar to our “Backend,” but DARES
users have to re-compile a target application source code and pro-
file it. The other two frameworks also hide arbitration and data
communication, since users do not need to care about hardware
modules on FPGA. They just write software source codes in a
coventional manner, and then implemented parts are automati-
cally replaced with pre-defined hardware modules. They do not
focus on automatic choice of the parts or data transfer time either.

Most of them targets the expert user who can write code from
scratch. However, as far as we know, there is no other similar
work that can accelerate running binaries without accessing to
the original source code. Most of common off-loading systems
did not touch importance to function call graph with data and its
data transfer time.

5.2 Related Techniques Used in Courier
In terms of the processing flow extraction, Feng et al. pro-

posed a sophisticated method to extract fine grained dataflow
from low-level program representation, and an algorithm to con-
vert dataflow into threads-level parallelism [2]. They instrument
a new static profiling path to GCC middle-end. Although their
algorithm supports multi-thread, the target is a program code not
a running binary.

DLL-injection or DLL hijacking are used in software research
field [22], [23]. Purpose of them are fully replaces an original
function. Moreover, data transfer and processing flow are not a
matter. We use DLL hijacking as a basis for realizing dynamic
off-loading, but we didn’t directly use it. One of the important
problems of today’s application acceleration is data transfer time.
Once we fully replaces an original function, data transfer time
easily degrades performance. Furthermore, Courier has to main-
tain original processing flow after off-loading. Thus, we proposed
Off-load Switcher to address these problems. In addition, DLL
hijacking technique can be widely used in Linux. This means
that Courier potentially support many platform. Heterogeneous
platform which has CPU that runs Linux and accelerator emerged
even in embedded area.

6. Conclusion

This paper presents Courier: a new toolchain for application
acceleration. Courier is designed for detecting a processing flow

of a target running binary and function off-loading without need-
ing access to and re-compile the original source code of the bi-
nary. It is consisting of main three part: Frontend, Courier IR, and
Backend. Frontend analyzes and detects processing flow within
the running binary. Backend provides Function Off-loader which
automatically replaces functions in the binary with corresponding
accelerator functions, reduces the number of data transfer time,
and maintains original processing flow. Courier IR generates a
task graph and bridges Frontend and Backend. Finally, applica-
tion binaries of HOG, dgemm and PSD are accelerated by using
Courier on CPU-GPU environment.

Acknowledgments The present study is supported in part by
the JST/CREST program entitled “Research and Development on
Unified Environment of Accelerated Computing and Interconnec-
tion for Post-Petascale Era” in the research area of “Development
of System Software Technologies for post-Peta Scale High Per-
formance Computing.”

References

[1] GPU-Accelerated Libraries: available from
〈https://developer.nvidia.com/-gpu-accelerated-libraries〉.

[2] Li, F., Pop, A. and Cohen, A.: Automatic Extraction of Coarse-
Grained Data-Flow Threads from Imperative Programs, Micro, IEEE,
Vol.32, No.4, pp.19–31 (2012).

[3] Luk, C.-K., Hong, S. and Kim, H.: Qilin: Exploiting parallelism
on heterogeneous multiprocessors with adaptive mapping, Proc. 42nd
Annual IEEE/ACM International Symposium on Microarchitecture,
Vol.MICRO 42, pp.44–55 (2009).

[4] Becchi, M., Cadambi, S. and Chakradhar, S.: Enabling Legacy Appli-
cations on Heterogeneous Platforms, The 2nd USENIX Workshop on
Hot Topics in Parallelism, pp.1–6 (2010).

[5] Milakovich, A., Gopinath, V.S., Lysecky, R. and Sprinkle, J.: Au-
tomated Software Generation and Hardware Coprocessor Synthesis
for Data-Adaptable Reconfigurable Systems, 2012 IEEE 19th Interna-
tional Conference and Workshops on Engineering of Computer Based
Systems (ECBS), pp.15–23 (2012).

[6] Andrews, D. and Peck, W. et al.: The Case for High Level Pro-
gramming Models for Reconfigurable Computers, International Con-
ference on Engineering of Reconfigurable Systems and Algorithms,
pp.21–32 (2006).

[7] Aws, I. and Shannon, L.: FUSE: Front-end user framework for O/S ab-
straction of hardware accelerators, International Symposium on Field-
Programmable Custom Computing Machines, pp.170–177 (2011).

[8] Lyseckya, R., Vahida, F. and Tan, S.: A Study of the Scalability of
On-Chip Routing for Just-in-Time FPGA Compilation, IEEE Sympo-
sium on Field-Programmable Custom Computing Machines, pp.57–62
(2005).

[9] Vahid, F., Stitt, G. and Lysecky, R.: Warp Processing: Dynamic Trans-
lation, Computer, Vol.41, No.7, pp.40–46 (2008).

[10] Clark, N., Kudlur, M., Park, H., Mahlke, S. and Flautner, K.:
Application-Specific Processing on a General-Purpose Core via Trans-
parent Instruction Set Customization, International Symposium on Mi-
croarchitecture, pp.30–40 (2004).

[11] Intel Developer Zone: Pin - A Dynamic Binary Instrumentation Tool,
available from 〈https://software.intel.com/en-us/articles/
pin-a-dynamic-binary-instrumentation-tool 〉.

[12] dlfcn.h - dynamic linking, available from 〈pubs.opengroup.org/
onlinepubs/007904-975/basedefs/dlfcn.h.html〉.

[13] Dalal, N. and Triggs, B.: Histograms of Oriented Gradients for Hu-
man Detection, International Conference on Computer Vision & Pat-
tern Recognition, Vol.1, pp.886–893 (2005).

[14] Automatically Tuned Linear Algebra Software (ATLAS), available
from 〈http://math-atlas.sourceforge.net/〉.

[15] CUBLAS, available from 〈https://developer.nvidia.com/cuBLAS〉.
[16] GNU Octave, available from 〈https://www.gnu.org/software/octave/〉.
[17] Power Spectral Density Estimates Using FFT - MATLAB & Simulink

- MathWorks, available from 〈http://jp.mathworks.com/help/sig-nal/
ug/psd-estimate-using-fft.html?lang=en〉.

[18] FFTW Home Page, available from 〈http://www.fftw.org/〉.
[19] cuFFT, available from 〈https://developer.nvidia.com/cuFFT〉.
[20] Bispo, J., Paulino, N., Cardoso, J.M.P. and Ferreira, J.C.: From In-

struction Traces to Specialized Reconfigurable Arrays, Proc. 2011

c© 2015 Information Processing Society of Japan 114



IPSJ Transactions on System LSI Design Methodology Vol.8 105–115 (Aug. 2015)

International Conference on Reconfigurable Computing and FPGAs,
RECONFIG, pp.386–391 (2011).

[21] Beck, A.C.S., Rutzig, M.B., Gaydadjiev, G. and Carro, L.: Trans-
parent reconfigurable acceleration for heterogeneous embedded appli-
cations, Proc. conference on Design, automation and test in Europe,
pp.1208–1213 (2008).

[22] Berdajs, J. and Bosnić, Z.: Extending Applications Using an Ad-
vanced Approach to DLL Injection and API Hooking, Softw. Pract.
Exper., Vol.40, No.7, pp.567–584 (online), DOI: 10.1002/spe.v40:7
(2010).

[23] Willems, C., Holz, T. and Freiling, F.: Toward Automated Dynamic
Malware Analysis Using CWSandbox, IEEE Security and Privacy,
Vol.5, No.2, pp.32–39 (online), DOI: 10.1109/MSP.2007.45 (2007).

Takaaki Miyajima recieved his B.E. de-
grees from Meiji University, Japan, in
2009. He is currently a Ph.D. candidate
at Keio University. His research interests
include the areas of design methodology
for heterogeneous platform and algorithm
implementation.

David Thomas (M06) received his
M.Eng. and Ph.D. degrees in computer
science from Imperial College London, in
2001 and 2006, respectively, Since 2010,
he has been a Lecturer with the Electrical
and Electronic Engineering Department,
Imperial College London. His research
interests include hardware-accelerated

cluster computing, FPGA-based Monte Carlo simulation, al-
gorithms and architectures for random number generation, and
financial computing.

Hideharu Amano received his Ph.D. de-
gree from Keio University, Japan in 1986.
He is now a Professor in the Depart-
ment of Information and Computer Sci-
ence, Keio University. His research inter-
ests include the areas of parallel architec-
tures and reconfigurable computing.

(Recommended by Associate Editor: Hiroaki Yoshida)

c© 2015 Information Processing Society of Japan 115


