
IPSJ Transactions on System LSI Design Methodology Vol.9 13–20 (Feb. 2016)

[DOI: 10.2197/ipsjtsldm.9.13]

Regular Paper

Diagnosis Methods for Gate Delay Faults with Various
Amounts of Delays

Yoshinobu Higami1,a) SenlingWang1 Hiroshi Takahashi1 Shin-ya Kobayashi1

Kewal K. Saluja2

Received: June 2, 2015, Revised: September 3, 2015,
Accepted: October 21, 2015

Abstract: For the purpose of analyzing the cause of delay in modern digital circuits, efficient diagnosis methods for
delay faults need to be developed. This paper presents diagnosis methods for gate delay faults by using a fault dic-
tionary approach. Although a fault dictionary is created by fault simulation and for a specific amount of delay, the
proposed method using it can deduce candidate faults successfully even when the amount of delay in a circuit under
diagnosis is different from that of the delay assumed during the fault simulation. In this paper, we target diagnosing
the presence of single gate delay faults and double gate delay faults. Experimental results for benchmark circuits
demonstrate the effectiveness of the proposed methods.

Keywords: fault diagnosis, gate delay faults, fault dictionary

1. Introduction

In modern LSIs, physical defects or manufacturing variations
may cause timing failures. The faster the clock speed of LSIs is
getting, the more important becoming are delay fault testing and
diagnosis. Delay fault is a fault model that represents excessive
signal propagation delay, and it is divided into a number of sub-
models, such as transition fault, gate delay fault, path delay fault
and segment delay fault. Diagnosis of various delay fault models
has been studied actively so far. Path delay faults, which involve
accumulated delays along a target path, represent real faulty phe-
nomenon. However, it is less suitable for diagnosis, particularly
for aiming to find a defect site which causes the delay [1]. Even
if a diagnosis method deduces only one candidate path, it still
contains a number of gates and signal lines, which will be ana-
lyzed by physical analysis after the logic diagnosis. Gate delay
faults represent an excessive delay on the output of the target gate.
Therefore, if a physical defect within a gate causes an excessive
delay, such a defect is likely to be deduced by a diagnosis method
for gate delay faults.

Previously a number of research papers on diagnosis for delay
faults have been presented. In Ref. [3], critical path tracing and
six-valued simulation approach was used. In Ref. [2], diagnosis
is performed using adjacency tests, where only one input value
made a transition. In Ref. [12], a critical path tracing and a tim-
ing reasoning approach were used to diagnose delay faults. The
timing reasoning approach identifies invalid candidate faults for
fault exclusion using timing information. In Ref. [11], a delay di-

1 Graduate School of Science and Engineering, Ehime University,
Matsuyama, Ehime 790–8577, Japan

2 University of Wisconsin - Madison, Madison, WI 53706–1691, U.S.A.
a) higami@cs.ehime-u.ac.jp

agnosis method has been proposed based on timing simulation.
The timing simulation calculates propagation of delay window,
which represents the smallest and the largest possible delay size.
The delay diagnosis method [6] enhanced the resolution by us-
ing passing patterns and estimated delay-defect-size. In Ref. [7],
a multiple delay diagnosis method was proposed, where a single
delay fault simulation is performed and failure logs obtained at
slower-than-nominal clock frequencies are used.

In this paper, we propose diagnosis methods for single gate de-
lay faults and double gate delay faults. The methods use a fault
dictionary which contains output responses as well as the latest
transition times for each candidate fault. Since we do not know
exactly how large is the amount of delay in a circuit under diag-
nosis (CUD), the output responses are not always consistent be-
tween the CUD and the fault dictionary. Our methods introduce
set of rules that express the conditions to be satisfied by candi-
date faults or the contradictions of the output responses between
the CUD and non-candidate faults.

Main contributions of this paper are as follows.
(1) We propose diagnosis methods for delay faults using a

fault dictionary which contains the information of output
responses and the latest transition times for each candidate
fault.

(2) The methods target single gate delay faults and double gate
delay faults.

(3) The methods are applicable for arbitrary amounts of delays.
The method for single gate delay faults has been presented in

Ref. [4], but the method for double gate delay faults has not been
presented, and it is newly proposed in this paper. Although the
paper [4] has also considered the presence of clock delays, this
paper never considers it, and focuses on diagnosis for gate delay
faults in the absence of clock delays. The rest of the paper is

c© 2016 Information Processing Society of Japan 13

IPSJ Transactions on System LSI Design Methodology Vol.9 13–20 (Feb. 2016)

Table 1 An example of a fault dictionary.

Dictionary
f1 f2 f3 CUD

FF1 B 30 B 35 B 30 Fail
t1 FF2 B 35 B 35 B 35 Fail

PO1 - - B 20 Pass
FF1 - B 30 B 25 Fail

t2 FF2 - - - Pass
PO1 B 25 B 35 - Pass

Symbol ‘-’ means no erroneous value is propagated.

organized as follows. Section 2 describes fault simulation used
in our methods. Section 3 gives some definitions. Section 4 and
Section 5 explain the diagnosis method for single delay faults and
for double delay faults, respectively. Section 6 gives experimen-
tal results for ISCAS’89 benchmark circuits. Section 7 concludes
this paper.

2. Fault Simulation

The proposed methods use a fault dictionary which contains
not only logic values on primary outputs (POs) and flip-flops
(FFs) but also information on the latest transition times for ev-
ery pattern and every candidate fault. For the purpose of creating
the fault dictionary, delay fault simulation with 7 logic values pro-
posed in Ref. [8] is performed. In this simulation, 7 logic values
(0, 1, X, R, F, B, B) are used and the latest transition times are
also calculated. The values 0, 1, X, R and F denote stable 0,
stable 1, unknown value, a rising transition and a falling transi-
tion, respectively. (In the paper [8], symbols D and D were used
instead of R and F, respectively.) The values B and B denote a
rising transition and a falling transition that are propagated from
a fault site, respectively. We use the unit delay model, where one
unit time is added on signal delay whenever it passes through a
gate. (Note that it is straightforward to extend the simulation into
the general delay model.)

An example of a fault dictionary is shown in Table 1. Consider
a circuit with two FFs and one PO, and suppose that two test pat-
terns t1 and t2 are applied and faults f1, f2 and f3 are candidate
faults. When t1 is applied in the presence of fault f1, erroneous
transitions (B and B) are propagated to FF1 and FF2 with the
latest transition time 30 and 35, respectively. This means tran-
sitions are propagated to FF1 and FF2 at 30 and 35 units time.
If test cycle is less than 35, an erroneous value will be observed
at FF2, and if it is less than 30, an erroneous value will be also
observed at FF1 and FF2. It is noted that no erroneous transition
is propagated to PO1 for t1.

3. Definitions

In the following definitions, z denotes a PO or a FF, f denotes
a gate delay fault, and t denotes a test pattern.

Definition 1 Tr(t, z, f) is the latest transition time that is de-
noted with respect to test pattern t, output z and fault f in the fault
dictionary.

Definition 2 An output z is called a DP output when a pass

response (i.e. neither B nor B) is observed at z for f and t in the
fault dictionary.

Definition 3 An output z is called a DF output when a fail

response (i.e., either B or B) is observed at z for f and t in the

fault dictionary.
Definition 4 An output z is called a CP output when a pass

response (i.e., no erroneous value) is observed at z for t in the
responses of a CUD.

Definition 5 An output z is called a CF output when a fail

response (i.e., erroneous value) is observed at z for t in the re-
sponse of a CUD.

Definition 6 Variable Min Tr is defined as follows.

Min Tr(f) = min{Tr(t, zc f , f)} for ∀t and ∀zc f , (1)

where zc f is a CF output.
Definition 7 Num CFDP(t, f) is the number of outputs that

are a CF output as well as a DP output with respect to t and f .
Definition 8 A set of CF outputs and corresponding test pat-

terns is defined as follows. ZCF is a set of 2-tuples (t, z) such that
z is a CF output for test pattern t.

Definition 9 A set of DF outputs and corresponding test pat-
terns is defined as follows. ZDF(f) is a set of 2-tuples (t, z) such
that z is a DF output for test pattern t with respect to fault f .

4. Diagnosis for Single Delay Faults

In this section, we explain a diagnosis method for single gate
delay faults [4]. The method deduces candidate faults by compar-
ing the output responses and the latest transition times between a
CUD and a fault dictionary. Some rules are introduced to check
whether a fault can be a candidate fault or not. While Rule 1 is
based on a similar idea that is used in dictionary based diagno-
sis [5], [10], Rule 2 is based on our original idea.

Rule 1 If the following expression is satisfied for fault f , then
f is removed from the set of candidate faults. Here t is a test pat-
tern.
∑

t

Num CFDP(t, f) > 0 (2)

Rule 1 is explained using the example of Table 1. Now suppose
that a CUD produces the responses of (FF1, FF2, PO1) = (Fail,
Fail, Pass) for test pattern t1, and (Fail, Pass, Pass) for test pattern
t2. Consider whether fault f1 remains as a candidate fault or not.
The fault dictionary shows that no erroneous value from fault f1
is propagated to FF1 for t2. Since FF1 is a CF output as well as
a DP output with respect to f1 and t2, f1 is removed from the set
of candidate faults according to Rule 1. If f1 with larger amount
of delay exists in a CUD, then f1 may produce a fail response
at FF1 for t2. However, the preliminary experiments in Ref. [4]
have demonstrated that such a case rarely happens. Therefore, if
f1 had existed in the CUD, no erroneous value would be observed
at FF1 for t2 in most cases. The probability that f1 exists in the
CUD is very low, and f1 cannot be a candidate fault.

Rule 2 If the following expression is satisfied, then f is re-
moved from the set of candidate faults.

Min Tr(f) ≤ Tr(t, z, f) for a CP output z (3)

Rule 2 checks the latest transition times to deduce candidate
faults. Example of Table 1 is used again to explain Rule 2.

c© 2016 Information Processing Society of Japan 14

IPSJ Transactions on System LSI Design Methodology Vol.9 13–20 (Feb. 2016)

Diagnosis for single delay faults
/* Fcand: A set of candidate faults */
1 : for (every fail pattern t)
2 : for (every fault f in Fcand)
3 : for (every output z)
4 : if (z is a CF output and a DP output)
5 : Remove f from Fcand; /* Rule 1 */
6 : else if (z is a CF output)
7 : Update Min Tr(f);
8 : end for
9 : end for
10 : end for
11 : for (every pattern t)
12 : for (every fault f in Fcand)
13 : for (every output z)
14 : if (z is a CP output and a DF output, and

Min Tr(f) ≤ Tr(t, z, f))
15 : Remove f from Fcand; /* Rule 2 */
16 : end for
17 : end for
18 : end for

Fig. 1 Diagnosis flow for single gate delay faults.

Now consider the case of fault f2. FF1 is a CF output for t1
and t2, and Min Tr(f2) = 30. With respect to PO1 and t2,
Tr(t2, PO1, f2) = 35, and thus expression (3) is satisfied. Con-
sequently, f2 is removed from the set of candidate faults. This is
due to the following observation. The fault dictionary indicates
that erroneous value B is propagated to PO1 later than B is prop-
agated to FF1. If f2 had existed in the CUD, PO1 would produce
a fail response. Some readers may think that the above observa-
tion is true only when the amount of delay is same between the
fault dictionary and the CUD. However, preliminary experiments
in Ref. [4] show that expression (3) is satisfied in most cases even
when the amount of delay is different between the fault dictionary
and the CUD. With respect to fault f3, since expressions (2) and
(3) are not satisfied, it remains as a candidate fault. The overall
flow of the diagnosis method is shown in Fig. 1.

5. Diagnosis for Double Delay Faults

In this section, a diagnosis method for double delay faults is
explained, which is newly proposed. The method uses a fault dic-
tionary which is created assuming every single delay fault, and
it deduces some single delay faults as candidates. Similarly in
the method for single delay faults, Rule 2 is applied to deduce
candidate faults. On the other hand, Rule 1 is modified to ap-
ply. In the proposed method, if the number of outputs which are
CF outputs as well as DP outputs is relatively large, then corre-
sponding faults are removed from the set of candidate faults. This
is because the probability that such faults exist in a CUD is low.
Although the fault existing in the CUD may be removed from the
set of candidate faults, the method aims to reduce the set of can-
didate faults as much as possible and to deduce at least one of the
faults existing in the CUD as a candidate. In the following rule,
NT H is introduced which is a threshold value and it is predeter-
mined.

Rule 3 If the following expression is satisfied for fault f , then
f is removed from the candidate faults. Here t is a test pattern.

Table 2 The second example of a fault dictionary.

Dictionary
f4 f5 CUD

FF1 B 20 B 25 Fail
t1 FF2 - - Fail

PO1 B 25 - Pass
FF1 B 25 - Fail

t2 FF2 B 30 - Fail
PO1 B 30 B 30 Pass

Symbol ‘-’ means no erroneous value is propagated.

Table 3 The third example of a fault dictionary.

dictionary
pattern output f6 f7 f8 CUD

FF1 B - - Fail
t1 FF2 B - - Fail

PO1 - B - Fail
FF1 B - - Fail

t2 FF2 - B B Fail
PO1 B - B Fail

Symbol ‘-’ means no erroneous value is propagated.

∑

t

Num CFDP(t, f) > NT H (4)

Rule 3 is explained using an example of Table 2. Suppose that
the responses of a CUD are (FF1, FF2, PO1) = (Fail, Fail, Pass)
for test pattern t1, and (Fail, Fail, Pass) for test pattern t2. We cal-
culate

∑
t∈{t1 ,t2} Num CFDP(t, f4) and

∑
t∈{t1 ,t2} Num CFDP(t, f5).

In this case, Num CFDP(t1, f4) = 1 and Num CFDP(t2, f4) = 0.
As a result,

∑
t∈{t1 ,t2} Num CFDP(t, f4) = 1. From the similar cal-

culation, we have
∑

t∈{t1 ,t2} Num CFDP(t, f5) = 3. If NT H is set to
2, then expression (4) for f5 is satisfied and f5 is removed from
the set of candidate faults. Fault f4 remains as a candidate. Some
readers may think that fault f5 should remain as candidate be-
cause the combination of f4 and f5 explains the output responses
of the CUD. Our method aims to make the number of final can-
didate faults as small as possible, and it is considered successful
that either one of the double faults existing in the CUD remains
as a final candidate fault. Therefore, Rule 3 removes the faults for
which

∑
t Num CFDP(t, f) is large.

In this paper, we do not propose a deterministic algorithm for
determining optimum NT H . NT H is investigated in the experi-
ments to determine an optimum or a near optimum value. In the
later section, we will investigate the number of fail outputs in fault
dictionaries and in CUDs, and discuss a method for determining
optimum NT H from these numbers.

After reducing candidate faults by Rule 2 and Rule 3, another
rule is applied to reduce candidate faults further. The rule checks
whether any combination of single candidate faults explains the
output responses in the CUD.

Rule 4 If the following expression is satisfied, then fault f

is removed from the candidate faults, where Fcand is a candidate
fault set, and f and g are single delay faults.

ZCF � ZDF(f) ∪ ZDF(g) for ∀g ∈ Fcand (f � g) (5)

Now suppose that a fault dictionary shown in Table 3 is given,
and that FF1, FF2 and PO1 produce fail responses for test pat-
terns t1 and t2. Consider the case of faults f6 and f7. In this case,

c© 2016 Information Processing Society of Japan 15

IPSJ Transactions on System LSI Design Methodology Vol.9 13–20 (Feb. 2016)

ZCF

= {(t1, FF1), (t1, FF2), (t1, PO1), (t2, FF1), (t2, FF2), (t2, PO1)}
ZDF(f6) = {(t1, FF1), (t1, FF2), (t2, FF1), (t2, PO1)}
ZDF(f7) = {(t1, PO1), (t2, FF2)}

are obtained. Therefore,

ZCF ⊆ ZDF(f6) ∪ ZDF(f7)

is satisfied, and fault f6 and f7 remain as candidates.
Next, consider the case of fault f8. In this case,

ZDF(f8) = {(t2, FF2), (t2, PO1)}

is obtained.

ZCF � ZDF(f8) ∪ ZDF(f6)

ZCF � ZDF(f8) ∪ ZDF(f7)

is satisfied, and thus f8 is removed from the candidate fault set.
Although the combination of f6 and f7 explains the output re-
sponses of the CUD, any combinations of f8 do not explain them
sufficiently. As a result, only f6 and f7 remain as candidates.

The flow of the diagnosis method for double delay faults is
shown in Fig. 2. Although Rule 4 works effectively in most cases,
in few cases all the candidate faults are removed by the rule.
Therefore, when the final candidate fault set becomes empty by
Rule 4, all the candidate faults removed by Rule 4 are recovered.

Similar ideas to Rule 3 and Rule 4 have been introduced in the

Diagnosis flow of double delay faults
/* Fcand: A set of candidate faults */
1 : for (every fail pattern t)
2 : for (every fault f in Fcand)
3 : for (every output z)
4 : if (z is a CF output and a DP output)
5 : Increment Num CFDP(t, f);
6 : if (Num CFDP(t, f) > NT H)
7 : Remove f from Fcand; /* Rule 3 */
8 : else if (z is a CF output)
9 : Update Min Tr(f);
10 : end for
11 : end for
12 : end for
13 : for (every pattern t)
14 : for (every fault f in Fcand)
15 : for (every output z)
16 : if (z is a CP output and a DF output, and

Min Tr(f) ≤ Tr(t, z, f))
17 : Remove f from Fcand; /* Rule 2 */
18 : end for
19 : end for
20 : end for
21 : Ftmp = Fcand;
22 : for (every delay fault fi in Fcand)
23 : for (every delay fault f j (fi � f j) in Fcand)
24 : if (Expression (5) is unsatisfied)
25 : Go to Line 22;
26 : end for
27 : Remove fi from Fcand; /* Rule 4 */
28 : end for
29 : if (Fcand = φ)
30 : Fcand = Ftmp;

Fig. 2 Diagnosis flow for double delay faults.

diagnosis method presented in Ref. [9], where incomplete inter-
section between CUD responses and simulation results has been
considered and a covering problem has been considered for fail
responses by multiple faults. The diagnosis method for multiple
gate delay faults that considers latest transition times on signal
values by Rule 2 has not been proposed so far.

6. Experimental Results

6.1 Diagnosis for Single Delay Faults
We carried out experiments for ISCAS’89 benchmark circuits

in order to confirm the effectiveness of the proposed method. As
test patterns, we used transition fault test patterns, which were
generated by our in-house tool. Table 4 shows fault coverage by
the test patterns, where column “patterns” and “faults” show the
number of test patterns, the number of target faults, respectively.
Columns under “fault coverage” show fault coverage when the
amounts of delay are 30%, 50%, 80% and 100% for the test cy-
cle. The test cycle is one unit time plus unit time equivalent to the
number of gates along the longest sensitized path.

Table 5 shows results for s9234 and s13207 circuits with var-
ious delay amounts. We generated 100 CUDs for each bench-
mark circuit by inserting one fault randomly selected among the
single delay faults which have two or more fail patterns. The ta-
ble shows, from left to right, circuit name, the number of CUDs
which have two or more fail patterns, the average number of fail
patterns, the average number of final candidate faults, the maxi-
mum number of final candidate faults, the number of CUDs for
which the number of final candidate faults was one, the number
of CUDs for which the final candidate faults set did not include a
fault existing in the CUD, the amount of delay of injected faults

Table 4 Fault coverage by the transition faults test sets.

fault coverage (%)
Circuit patterns faults 30 50 80 100
s9234 194 4,054 7.3 16.5 78.0 80.5
s13207 127 5,146 12.9 16.4 54.3 80.4
s15850 144 6,896 3.1 12.6 60.3 73.1
s35932 54 24,408 58.7 59.3 66.5 86.6
s38417 139 17,418 27.8 56.2 97.0 97.2
s38584 258 22,896 2.2 2.8 34.4 86.3

Table 5 Experimental results for single delay faults with various delay
amounts.

delay
Circuit CUD pat cand max sgl not CUD dict
s9234 100 5.9 5.4 18 14 0 30 30
s9234 100 5.9 5.4 18 14 0 30 50
s9234 100 5.9 5.4 18 14 0 30 80
s9234 100 7.5 2.2 9 33 11 50 30
s9234 100 7.5 2.4 9 37 0 50 50
s9234 100 7.5 2.4 9 37 0 50 80
s9234 100 12.6 2.2 18 54 3 80 30
s9234 100 12.6 2.3 18 55 1 80 50
s9234 100 12.6 2.3 18 54 0 80 80
s13207 100 7.0 5.4 31 35 0 30 30
s13207 100 7.0 5.4 31 35 0 30 50
s13207 100 7.0 5.4 31 35 0 30 80
s13207 100 9.6 1.6 6 61 0 50 30
s13207 100 9.6 1.6 6 61 0 50 50
s13207 100 9.6 1.6 6 61 0 50 80
s13207 100 11.5 2.4 8 46 0 80 30
s13207 100 11.5 2.4 8 45 0 80 50
s13207 100 11.5 2.4 8 45 0 80 80

c© 2016 Information Processing Society of Japan 16

IPSJ Transactions on System LSI Design Methodology Vol.9 13–20 (Feb. 2016)

and the amount of delay in the fault simulation for creating a fault
dictionary, respectively. The amount of delay is represented in
percentage for the test cycle. It is found that similar or same di-
agnosis results were obtained even when the amount of delay is
different in creating a fault dictionary.

Table 6 shows experimental results for other benchmark cir-
cuits by the diagnosis method for single delay faults. In these
experiments, 50% delay was used to create fault dictionaries. In
the table, each column has the same meaning except for column
“[11]”, which denotes the number of candidate faults reported in
Ref. [11]. In the experiments reported in Ref. [11], random size
of delays were injected. It is noted that for s15850 only 74 faults
which have 30% delay amount were detected by two or more
transition test patterns. The results show that the average num-
bers of candidate faults were less than 7 for every circuit, and that
they are smaller than those in Ref. [11]. We have not found any
other papers that have the same purpose as this paper and that pro-
vide experimental results on ISCAS’89 benchmark circuits. The
paper [11] presented the best results for diagnosing single delay
faults and double delay faults. This is the reason we compare our
results with those by the paper [11].

Next we selected single delay faults that are detected by only
one test pattern, and carried out the experiments. Table 7 shows

Table 6 Experimental results for single delay faults.

Circuit CUD pat cand max sgl not delay [11]
s9234 100 5.9 5.4 18 14 0 30
s9234 100 7.5 2.4 9 37 0 50 7.2
s9234 100 12.6 2.3 18 55 1 80

s13207 100 7.0 5.4 31 35 0 30
s13207 100 9.6 1.6 6 61 0 50 7.8
s13207 100 11.5 2.4 8 45 0 80
s15850 74 2.9 6.8 13 5 0 30
s15850 100 6.5 2.6 9 39 0 50 NA
s15850 100 11.4 2.3 10 44 0 80
s35932 100 6.4 2.6 10 24 0 30
s35932 100 6.2 3.4 17 26 0 50 8.8
s35932 100 7.5 2.4 12 30 0 80
s38417 100 7.4 3.1 15 36 0 30
s38417 100 12.3 1.8 14 54 0 50 9.2
s38417 100 14.5 1.3 6 78 3 80
s38584 100 11.1 2.3 10 50 0 30
s38584 100 15.7 1.9 11 58 0 50 7.2
s38584 100 10.9 2.9 6 33 0 80

Table 7 Experimental results for single delay faults with only one fail pat-
terns.

Circuit CUD pat cand max sgl not delay
s9234 100 1.0 12.2 29 8 0 30
s9234 100 1.0 4.8 29 26 0 50
s9234 100 1.0 3.4 11 30 0 80
s13207 100 1.0 16.3 56 3 0 30
s13207 100 1.0 4.2 23 23 0 50
s13207 100 1.0 4.0 17 20 0 80
s15850 100 1.0 27.4 81 3 0 30
s15850 100 1.0 7.2 81 10 0 50
s15850 100 1.0 4.4 19 26 0 80
s35932 100 1.0 6.3 17 17 0 30
s35932 100 1.0 7.0 17 15 0 50
s35932 100 1.0 6.8 17 30 0 80
s38417 100 1.0 10.6 58 9 0 30
s38417 100 1.0 3.9 23 30 0 50
s38417 100 1.0 3.5 23 35 0 80
s38584 90 1.0 5.5 18 17 0 30
s38584 100 1.0 2.2 8 31 0 50
s38584 100 1.0 3.8 14 16 0 80

the results for single delay faults with only one fail pattern. Each
column of the table has the same meaning as Table 6. It is found
that the numbers of final candidate faults in Table 7 were larger
than those in Table 6. In particular, the numbers of final candi-
date faults for 30% delay were large. This is because faulty ef-
fects were propagated to limited outputs when 30% delays were
injected.

In order to improve the diagnosis results for single delay faults
with one fail pattern, we carried out additional experiments where
fail test patterns were found among 10,000 random patterns and
they are added as diagnosis patterns. It is noted that at most 20
fail patterns were added even when more fail patterns were found.
Table 8 shows the results. Each column in the table has same
meaning as in Table 6 except for column “cand1” which denotes
the number of candidate faults obtained by using only one fail
pattern. It is found that the numbers of final candidate faults were
increased. We, therefore, conclude that the proposed method is
effective for faults which have more than one or several fail pat-
terns.

Table 9 shows the number of candidate faults in order to see
how each rule is contributed. In Table 9, column “Rule 1” and
“Rule 1 & 2” denote the numbers of candidate faults after Rule 1
is applied and after Rule 1 and Rule 2 are applied, respectively.
Column “delay” denotes the percentage of the amount of delay
which is injected. From the results it is found that candidate faults
were mainly reduced by Rule 1.

Table 10 shows the size of the fault dictionary and the com-
puting time. Column “size”, “dictionary” and “diagnosis” denote
the size of the fault dictionaries, the computing time for creating
a fault dictionary and the average computing time for diagnosing
one CUD with a single delay fault. The program was run on Intel
Xeon 3.5 GHz processor with 32 GB memory.

Table 8 Experimental results for single delay faults with only one fail pat-
terns by adding test patterns.

Circuit CUD pat cand1 cand max sgl not delay
s9234 28 7.8 7.9 2.7 6 6 0 30
s9234 30 15.9 1.9 1.5 4 20 0 50
s9234 73 10.3 3.6 2.7 9 29 0 80

s13207 74 6.5 17.3 10.4 56 13 0 30
s13207 76 6.1 3.4 2.5 6 29 0 50
s13207 83 11.1 4.0 3.1 9 21 0 80
s15850 9 2.4 35.9 5.4 11 0 0 30
s15850 62 10.7 8.3 3.4 11 10 0 50
s15850 78 12.6 4.1 2.4 8 34 0 80
s35932 100 21.0 6.3 2.6 11 37 0 30
s35932 100 21.0 7.0 2.6 5 39 0 50
s35932 100 21.0 6.8 2.6 5 45 0 80
s38417 71 18.0 9.9 4.0 14 33 0 30
s38417 58 16.8 3.8 2.0 12 36 0 50
s38417 56 17.6 2.3 1.4 6 41 0 80
s38584 33 2.9 5.2 2.1 7 18 0 30
s38584 50 7.0 2.4 2.2 7 24 0 50
s38584 63 14.0 3.7 3.1 6 15 0 80

Table 9 Candidate faults by Rule1 and Rule 2.

Circuit Rule 1 Rule 1 & 2 delay
s9234 9.8 2.4 50

s13207 4.5 1.6 50
s15850 7.6 2.6 50
s35932 5.5 3.4 50
s38417 4.6 1.8 50
s38584 3.6 1.9 50

c© 2016 Information Processing Society of Japan 17

IPSJ Transactions on System LSI Design Methodology Vol.9 13–20 (Feb. 2016)

Table 10 Results on computing time and dictionary size.

time(s)
Circuit size (Mbyte) dictionary diagnosis
s9234 1.50 2.55 0.09

s13207 2.10 3.62 0.11
s15850 2.80 6.33 0.16
s35932 6.98 27.56 0.61
s38417 12.01 52.31 0.56
s38584 16.15 127.64 0.61

Table 11 Experimental results for double delay faults for s9234 and s13207.

Circuit CUD pat cand both sgl not delay NT H

s9234 100 18.9 8.9 91 8 1 50 10
s9234 100 18.9 7.2 94 5 1 50 20
s9234 100 18.9 7.2 94 5 1 50 30
s9234 100 18.9 7.2 94 5 1 50 40
s9234 100 18.9 7.2 94 5 1 50 50
s13207 100 19.2 6.7 88 3 9 50 10
s13207 100 19.2 6.4 89 4 7 50 20
s13207 100 19.2 6.3 91 2 7 50 30
s13207 100 19.2 6.3 91 2 7 50 40
s13207 100 19.2 6.3 91 2 7 50 50

Table 12 Experimental results for double delay faults for s15850, s35932,
s38417 and s38584.

Circuit CUD pat cand both sgl not delay NT H

s15850 100 13.4 42.8 86 10 4 50 10
s15850 100 13.4 44.1 86 10 4 50 30
s15850 100 13.4 44.1 86 10 4 50 50
s35932 100 11.7 4.4 55 36 9 50 10
s35932 100 11.7 4.4 55 36 9 50 30
s35932 100 11.7 4.4 55 36 9 50 50
s38417 100 21.1 5.2 92 8 0 50 10
s38417 100 21.1 4.2 97 3 0 50 30
s38417 100 21.1 4.2 97 3 0 50 50
s38584 100 26.6 6.7 84 11 5 50 50
s38584 100 26.6 6.2 87 8 5 50 80
s38584 100 26.6 6.2 87 8 5 50 100

6.2 Diagnosis for Double Delay Faults
In this subsection, we show experimental results for double de-

lay faults. Two delay faults were randomly selected among the
detected single delay faults to form double delay faults which
were injected in CUDs. One hundred CUDs for each benchmark
circuit were created for diagnosis experiments. First, we carried
out experiments for s9234 and s13207 benchmark circuits to find
optimal value of NT H , which is used in Rule 3. Table 11 shows
the results with several values of NT H . In the table, from left
to right, circuit name, the number of CUDs, the average num-
ber of fail patterns, the average number of final candidate faults,
the number of CUDs for which the final candidate faults included
both faults existing in the CUD, the number of CUDs for which
the final candidate faults set included either one fault existing in
the CUD, the number of CUDs for which the final candidate faults
set included neither faults existing in the CUD, the amount of de-
lay and value of NT H are shown. When NT H = 10, the number
of CUDs for which the final candidate faults set included neither
faults existing in the CUD was a little large. With NT H = 30
and more, no difference in the results was found. Table 12 shows
the results for s15850, s35932 and s38417 when NT H = 10, 30
and 50, and the results for s38584 when NT H = 50, 80 and 100.
Each column has the same meanings as in Table 11. For s15850,
s38584 and the other circuits, the smallest number of candidate
faults were obtained when NT H = 10, 80 and 30, respectively.
Therefore, we set NT H = 10, 80 and 30 for s15850, s38584 and

Table 13 Experimental results for double delay faults.

Circuit CUD pat s-cand cand both sgl not delay
s9234 100 6.0 4.9 20.9 38 52 10 30
s9234 100 18.9 0.1 7.2 94 5 1 50
s9234 100 31.2 0.1 5.4 99 1 0 80

s13207 99 15.0 0.9 38.2 58 32 9 30
s13207 100 19.2 0.1 6.3 91 2 7 50
s13207 100 24.3 0 5.2 96 1 3 80
s15850 100 3.0 15.5 42.2 6 68 26 30
s15850 100 13.4 0.1 42.8 86 10 4 50
s15850 100 16.4 0.1 44.2 90 7 3 80
s35932 100 10.2 0.1 5.0 53 38 9 30
s35932 100 11.7 0 4.4 55 36 9 50
s35932 100 13.8 0 4.5 56 35 9 80
s38417 100 11.5 1.4 17.4 51 48 1 30
s38417 100 21.1 0 4.2 97 3 0 50
s38417 100 34.9 0 4.1 95 5 0 80
s38584 100 23.1 0.3 15.7 63 26 11 30
s38584 100 26.6 0 6.2 87 8 5 50
s38584 100 29.3 0 5.9 90 5 5 80

Table 14 Comparison of the results.

Our method [11]
Circuit cand DA delay cand DA
s9234 20.9 0.64 30
s9234 7.2 0.97 50 27.0 0.90
s9234 5.4 1.00 80
s13207 38.2 0.75 30
s13207 6.3 0.92 50 39.0 0.92
s13207 5.2 0.97 80
s15850 42.2 0.40 30
s15850 42.8 0.91 50 NA NA
s15850 44.2 0.94 80
s35932 5.0 0.72 30
s35932 4.4 0.73 50 30.0 0.92
s35932 4.5 0.74 80
s38417 17.4 0.75 30
s38417 4.2 0.99 50 25.0 0.91
s38417 4.1 0.98 80
s38584 15.7 0.76 30
s38584 6.2 0.91 50 23.0 0.92
s38584 5.9 0.93 80

the other circuits, respectively, in the following experiments.
Table 13 shows the results by the diagnosis method for double

delay faults. Each column has the same meaning as in Table 11
except for column “s-cand”, which denotes the average number
of candidate faults which were obtained by the diagnosis method
for single delay faults. It is found that the diagnosis method for
single delay faults deduced zero candidate faults for most of the
CUDs. This fact implies the diagnosis method for single delay
faults is ineffective when double delay faults occur in a CUD. The
average number of candidate faults were small when the amount
of delay was 50% and 80% of the clock cycle except for s15850.
It is noted that for s13207, 100 CUDs were created, but no fail
patterns existed in one CUD.

Table 14 compares the results by our method with those re-
ported in Ref. [11]. Column “DA” denotes diagnosability, which
is defined as a ratio of the number of faults correctly deduced over
the total number of injected faults. It is found that the numbers of
candidate faults by our method were smaller than those presented
in Ref. [11] for most of the circuits. In terms of the diagnosabil-
ity, our method achieved higher diagnosability for many circuits
than the paper [11].

Table 15 shows the number of candidate faults in order to
see how each rule is contributed. In Table 15, column “Rule3”,

c© 2016 Information Processing Society of Japan 18

IPSJ Transactions on System LSI Design Methodology Vol.9 13–20 (Feb. 2016)

Table 15 Candidate faults by Rule 2, Rule3 and Rule 4.

Circuit Rule3 Rule2 & 3 Rule2 & 3 & 4 delay
s9234 1359.1 39.1 7.2 50

s13207 2411.7 50.4 6.3 50
s15850 2506.6 54.8 42.8 50
s35932 17904.5 23.2 4.4 50
s38417 11459.8 38.9 4.2 50
s38584 12227.1 19.8 6.2 50

Table 16 Computing time for diagnosis for double delay faults.

Circuit time (s)
s9234 0.11

s13207 0.17
s15850 0.22
s35932 1.06
s38417 0.79
s38584 1.17

Table 17 Results on the number of fail outputs in the fault dictionaries.

Circuit total bits ave min max std
s9234 48500 16.7 1 322 28.5

s13207 100330 17.6 1 474 25.7
s15850 98496 20.9 1 1687 49.2
s35932 110592 9.0 1 36 5.4
s38417 242138 28.2 1 1421 43.4
s38584 446340 24.3 1 639 31.3

Table 18 Results on the number of fail outputs in CUDs.

Circuit total bits ave min max std
s9234 48500 34.6 4 136 77.4
s13207 100330 45.1 6 173 79.9
s15850 98496 23.5 4 64 13.5
s35932 110592 13.4 6 37 0.4
s38417 242138 62.8 6 397 50.8
s38584 446340 71.6 11 233 97.4

“Rule2 & 3” and “Rule2 & 3 & 4” show the the numbers of can-
didate faults after Rule 3 is applied, after Rule 2 and Rule 3 are
applied and after Rule2, Rule3 and Rule 4 are applied, respec-
tively. From the results, it is found that the number of candidate
faults were mainly reduced by Rule 2. Table 16 shows the aver-
age computing time for diagnosing one CUD with a double delay
fault.

Additional experimental results are shown in order to see
whether the number of fail outputs in the fault dictionaries or in
the CUD responses is useful for finding optimum NT H . Table 17
shows results on the number of fail outputs in the fault dictionar-
ies. Column “total bits” denotes the product of the number of test
patterns and the number of outputs, which is sum of the number
of primary outputs and the number of FFs. Column “ave”, “min”
and “max” denote the average number, the maximum number and
the minimum number of fail outputs for one candidate fault in the
fault dictionaries, respectively. Column “std” denotes the stan-
dard deviation of the number of fail outputs for one candidate
faults in the fault dictionaries. Table 18 shows results on the
number of fail outputs in the CUDs. Column “total bits” denotes
the same number as in Table 17. Column “ave”, “min” and “max”
denote the average number, the maximum number and the mini-
mum number of fail outputs for one CUD, respectively. Column
“std” denotes the standard deviation of the number of fail outputs
for one CUD. In most of the circuits, there is a wide range of
the number of fail outputs for each candidate fault and for each
CUD. We investigated the relations between the number of fail

outputs, NT H , and the number of final candidate faults, but we
did not find any meaningful relations between them. Therefore
we do not think that it is easy to obtain optimum NT H by investi-
gating the number of fail outputs in the fault dictionaries or in the
CUD responses.

7. Conclusions

In this paper, we proposed diagnosis methods for single delay
faults and double delay faults. The methods use a fault dictionary
that is created using seven logic value fault simulation where out-
put responses and the latest transition times are calculated. In or-
der to deduce candidate faults, certain rules are introduced which
describe conditions for inclusion and exclusion of faults in the
candidate faults. The experimental results for benchmark circuits
demonstrated the effectiveness of the proposed methods. In our
future work, we will develop a diagnostic test generation method
with the objective to reduce candidate faults further. Also we will
develop efficient method(s) for determining optimal NT H . More-
over, the extension of the proposed methods to diagnosis for faults
with more multiplicity remains as a future work. The proposed
methods have not applied any circuit structure analysis like cone
intersection pruning [10]. We will investigate how effective intro-
ducing such technique to the proposed methods is.

References

[1] Chen, Y., Kuo, M. and Liou, J.: Diagnosis Framework for Locating
Failed Segments of Path Delay Faults, Proc. Int. Test Conf., pp.1–8
(2005).

[2] Dastidar, J.G. and Touba, N.A.: Adaptive Techniques for Improving
Delay Fault Diagnosis, Proc. VLSI Test Symp., pp.168–172 (1999).

[3] Girard, P., Landrault, C. and Pravossoudovitch, S.: A Novel Approach
to Delay-Fault Diagnosis, Proc. Design Automation Conf., pp.357–
360 (1992).

[4] Higami, Y., Takahashi, H., Kobayashi, S. and Saluja, K.K.: Diagno-
sis of Gate Delay Faults in the Presence of Clock Delay Faults, IEEE
Computer Society Annual Symp. on VLSI, pp.320–325 (2014).

[5] Jha, N. and Gupta, S.: Testing of Digital Systems, Cambridge Univer-
sity Press (2003).

[6] Mehta, V., Marek-Sadowska, M., Tsai, K.-H. and Rajski, J.: Im-
proving the Resolution of Single-Delay-Fault Diagnosis, IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, Vol.27,
pp.932–945 (2008).

[7] Mehta, V., Marek-Sadowska, M., Tsai, K.-H. and Rajski, J.: Timing-
Aware Multiple-Delay-Fault Diagnosis, IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems, Vol.28, pp.245–258
(2009).

[8] Takahashi, H., Watanabe, T. and Takamatsu, Y.: Generation of Tena-
cious Tests for Small Gate Delay Faults in Combinational Circuits,
Proc. Asian Test Symp., pp.332–338 (1995).

[9] Venkataraman, S. and Drummonds, S.: POIROT: A Logic Fault Di-
agnosis Tool and Its Applications, Proc. Int. Test Conf., pp.253–262
(2000).

[10] Wang, L.-T., Wu, C.-W. and Wen ed., X.: VLSI Test Principles and
Architectures, Morgan Kaufmann Publishers (2006).

[11] Wang, Z., Marek-Sadowska, M.M., Tsai, K.-H. and Rajski, J.: Delay-
Fault Diagnosis Using Timing Information, IEEE Trans. Computer-
Aided Design of Integrated Circuits and Systems, Vol.24, pp.1315–
1325 (2005).

[12] Yang, K. and Cheng, K.-T.: Timing-Reasoning-Based Delay Fault Di-
agnosis, Proc. Design Automation and Test in Europe, pp.1–6 (2006).

c© 2016 Information Processing Society of Japan 19

IPSJ Transactions on System LSI Design Methodology Vol.9 13–20 (Feb. 2016)

Yoshinobu Higami received his B.E.,
M.E., and D.E. degrees from Osaka
University in 1991, 1993 and 1996, re-
spectively. Currently he is an associate
professor at Graduate School of Science
and Engineering, Ehime University. In
1998 and 2006, he was also an honorary
fellow at University of Wisconsin-

Madison, U.S.A. He received the IEICE Best Paper Award in
2005 and 2012. His research interests include test generation,
design for testability and fault diagnosis of logic circuits. He is a
senior member of the IEEE and a member of IEICE.

Senling Wang received his B.E. degree
in the college of Electrical and infor-
mation Engineering from Beihua Univer-
sity, China, in 2008, and the M.E. and
the Ph.D. degree from the Department
of Computer Science and Electronics of
Kyushu Institute of Technology, Japan, in
2011 and 2014, respectively. Currently, he

serves as an Assistant Professor in Ehime University, Japan. His
research interest includes Field testing, Low power testing, De-
lay testing, Fault Diagnosis for Digital Systems, and Design for
Testability. He is a member of the IEEE.

Hiroshi Takahashi received his Dr. de-
gree from Ehime University, Japan in
1996. Since 2010, he has been a Full Pro-
fessor at Ehime University. From May
2000 to March 2001, he was a research
fellow at the University of Wisconsin-
Madison, USA. He received the IEICE
Best Paper Award in 2012. His research

interests are test generation and fault diagnosis for digital sys-
tems. Dr. Takahashi is a senior member of the IEEE and IEICE.
He served as the Program Chair of the 2012 IEEE Asian Test
Symposium. He also served as the General Co-Chair of the 2016
IEEE Asian Test Symposium.

Shin-ya Kobayashi received his B.E. de-
gree, M.E. degree, and Dr.E. degree in
Communication Engineering from Osaka
University in 1985, 1988, and 1991 re-
spectively. He is a Professor at Gradu-
ate School of Science and Engineering,
Ehime University. His research interests
include distributed processing, and paral-

lel processing. He is a senior member of the Information Process-
ing Society of Japan, and a member of the Institute of Electrical
Engineers of Japan, IEEE, and ACM.

Kewal K. Saluja obtained his Bachelor
of Engineering (B.E.) degree in Electrical
Engineering from the University of Roor-
kee (now IIT-Roorkee), India in 1967,
M.S. and Ph.D. degrees in Electrical and
Computer Engineering from the Univer-
sity of Iowa, Iowa City in 1972 and 1973
respectively. He is at present an Emeritus

Professor with the Department of Electrical and Computer En-
gineering at the University of Wisconsin-Madison. Prior to be-
ing Emeritus, as a Professor at University of Wisconsin-Madison
from 1986 to 2015, he taught courses in logic design, com-
puter architecture, microprocessor based systems, VLSI design
and testing, and fault-tolerant computing. Before that he was
at the University of Newcastle, Australia. Professor Saluja has
held visiting and consulting positions at various national and in-
ternational institutions including University of Southern Califor-
nia, Hiroshima University, Nara Institute of Science and Tech-
nology, the University of Roorkee, and Ehime University. He
has also served as a consultant to the United Nations Develop-
ment Program. He was the general chair of the 29th FTCS and
he served as an Editor of the IEEE Transactions on Computers
(1997–2001). He is currently the Associate Editor for the letters
section of the Journal of Electronic Testing: Theory and Applica-
tions (JETTA). His research focus is in the areas of Digital Sys-
tems Testing, Fault-Tolerant Computing, and Sensor Networks.
Professor Saluja has authored and co-authored over 300 technical
papers that have appeared in conference proceedings and jour-
nals. Professor Saluja is a member of Eta Kappa Nu, Tau Beta Pi,
a fellow of the JSPS and a Fellow of the IEEE.

(Recommended by Associate Editor: Takeshi Matsumoto)

c© 2016 Information Processing Society of Japan 20

