Transactional Memory

2nd edition

© Springer Nature Switzerland AG 2022
Reprint of original edition © Morgan & Claypool 2010

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in

printed reviews, without the prior permission of the publisher.

Transactional Memory, 2nd edition

Tim Harris, James Larus, and Ravi Rajwar

ISBN: 978-3-031-00600-5 paperback
ISBN: 978-3-031-01728-5 ebook

DOI 10.1007/978-3-031-01728-5

A Publication in the Springer series
SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE

Lecture #11

Series Editor: Mark D. Hill, University of Wisconsin
Series ISSN

Synthesis Lectures on Computer Architecture
Print 1935-3235 Electronic 1935-3243

Synthesis Lectures on Computer
Architecture

Editor
Mark D. Hill, University of Wisconsin

Synthesis Lectures on Computer Architecture publishes 50- to 100-page publications on topics
pertaining to the science and art of designing, analyzing, selecting and interconnecting
hardwarecomponents to create computers that meet functional, performance and cost goals. The scope
will largely follow the purview of premier computer architecture conferences, such as ISCA, HPCA,

MICRO, and ASPLOS.

Transactional Memory, 2nd edition
Tim Harris, James Larus, and Ravi Rajwar

2010

Computer Architecture Performance Evaluation Models
Lieven Eeckhout
2010

Introduction to Reconfigured Supercomputing
Marco Lanzagorta, Stephen Bique, and Robert Rosenberg
2009

On-Chip Networks
Natalie Enright Jerger and Li-Shiuan Peh
2009

The Memory System: You Can’t Avoid It, You Can’t Ignore It, You Can’t Fake It
Bruce Jacob

2009

Fault Tolerant Computer Architecture
Daniel J. Sorin
2009

The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines
Luiz André Barroso and Urs Hoélzle
2009

iv

Computer Architecture Techniques for Power-Efficiency
Stefanos Kaxiras and Margaret Martonosi
2008

Chip Multiprocessor Architecture: Techniques to Improve Throughput and Latency
Kunle Olukotun, Lance Hammond, and James Laudon
2007

Transactional Memory
James R. Larus and Ravi Rajwar
2006

Quantum Computing for Computer Architects
Tzvetan S. Metodi and Frederic T. Chong
2006

Transactional Memory

2nd edition

Tim Harris

Microsoft Research

James Larus
Microsoft Research

Ravi Rajwar

Intel Corporation

SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE #11

ABSTRACT

The advent of multicore processors has renewed interest in the idea of incorporating transactions
into the programming model used to write parallel programs. This approach, known as transactional
memory, offers an alternative, and hopefully better, way to coordinate concurrent threads. The ACI
(atomicity, consistency, isolation) properties of transactions provide a foundation to ensure that con-
current reads and writes of shared data do not produce inconsistent or incorrect results. At a higher
level, a computation wrapped in a transaction executes atomically - either it completes successfully
and commits its result in its entirety or it aborts. In addition, isolation ensures the transaction pro-
duces the same result as if no other transactions were executing concurrently. Although transactions
are not a parallel programming panacea, they shift much of the burden of synchronizing and co-
ordinating parallel computations from a programmer to a compiler, to a language runtime system,
or to hardware. The challenge for the system implementers is to build an efficient transactional
memory infrastructure. This book presents an overview of the state of the art in the design and
implementation of transactional memory systems, as of early spring 2010.

KEYWORDS

transactional memory, parallel programming, concurrent programming, compilers, pro-
gramming languages, computer architecture, computer hardware, nonblocking algo-
rithms, lock-free data structures, cache coherence, synchronization

Contents

Preface. xiii
Acknowledgments XV
1 Introduction 1
I A 1o X e o U PR 1
1.1.1 Difficulty of Parallel Programmingcooiiiiiii .. 1

1.1.2 Parallel Programming Abstractions.c...ooiiuiiiiiininninen... 3

1.2 Database Systems and Transactions...............cooiiiiiiiiiiiiiiinaan.. 4
1.2.1 What Is a Transaction?.ooitiene e 5

1.3 Transactional Memoryouiiinini e 6
1.3.1 Basic Transactional Memory.. ...t 7

1.3.2 Building on Basic Transactions ... 8

1.3.3 Software Transactional Memory, 9

1.3.4 Hardware Transactional Memoryooiiiiiiiiiininiinnan.. 11

1.3.5 What is Transactional Memory Good For? 11

1.3.6 Differences Between Database Transactionsand TM 12

1.3.7 Current Transactional Memory Systems and Simulators................. 13

2 Basic Transactionsouuiuiinut ittt e 17
2.1 TM Design ChoICes . .« . evvee ettt et e 19
2.1.1 Concurrency Control 20

2.1.2 Version Managementouiiiiiiiiiiiiiiiiiiiiiiiaan.n. 21

2.1.3 Conflict Detectionouiiuiii i 22

2.2 Semantics of Transactionsoutu ettt 23
2.2.1 Correctness Criteria for Database Transactions......................... 24

2.2.2 Consistency During Transactions, 28

2.2.3 Problems with Mixed-Mode Accessesoooiiiiiiiniiiinnnaa.. 30
2.2.4 Handling Mixed-Mode Accesses: Lock-Based Models.................. 35
2.2.5 Handling Mixed-Mode Accesses: TSC. ..., 38
226 NESTNE « oottt ettt e e 41
2.3 Performance, Progress and Pathologies 44
2.3.1 Progress GUAranteesouueuiuiuiininainianiinianaeen... 45
2.3.2 Conflict Detection and Performance ..., 48
2.3.3 Contention Management and Scheduling.............. 51
2.3.4 Reducing Conflicts Between Transactions 54
2.3.5 Higher-Level Conflict Detection ..., 57
24 SUINITIALY . oottt ettt ettt e e e e e e e e e 59
Building on Basic Transactions.o, 61
3.1 Basic Atomic Blocks 61
3.1.1 Semantics of Basic Atomic Blocks............. ... 64
3.1.2 Building Basic Atomic Blocks Over TM.t 68
3.1.3 Providing Strong Guarantees Over Weak TM Systems.................. 69
3.2 Extending Basic Atomic Blocks............... o i 72
3.2.1 Condition Synchronization.oueuiuiiiiiiininininenennn.. 72
3.2.2 Exceptions and Failure Atomicity. ..o ... 78
3.2.3 Integrating Non-TIM Resourcescoviiiiiiiiiiiiiiian.. 80
3.2.4 Binary Libraries........ooouiuin i 81
3.2.5 Storage Allocationand GC i i 82
3.2.6 Existing Synchronization Primitives............... ...l 84
3.2.7 System Calls, IO, and External Transactionscoooveen... 87
3.3 Programming with TIM ... 89
3.3.1 Debugging and Profiling 89
3.3.2 TM Workloadsooneie e 90
3.3.3 User Studies « ..o v et 93
3.4 Alternative Modelsot 94

3.4.1 Transactions Everywhere........ i 94

3.4.2 Lock-Based Models over TIM 96

3.4.3 Speculationover TIM i 98
3.5 SUMMAIY ...t 99
Software Transactional Memory, 101
4.1 Managing STM Logs and Metadata ian.. 103
4.1.1 Maintaining Metadata.......... i 103
4.1.2 Undo-Logs and Redo-Logs ..., 106
4.1.3 Read-Sets and Write-Sets ..., 108
4.2 Lock-Based STM Systems with Local Version Numbers..................... 108
4.2.1 Two-Phase Locking with Versioned Lockso ... 109
4.2.2 Optimizing STM Usageovniuiin it 113
4.2.3 Providing Opacity.ot 114
424 DISCUSSION . ¢ o\ttt ettt et et e e e e 116
4.3 Lock-Based STM Systems with a Global Clock......................cooa... 116
4.3.1 Providing Opacity Using a Global Clock, 117
4.3.2 Timebase EXtensionoouiiiiii i 121
4.3.3 Clock Contention vs False Conflict Tradeoffs 121
4.3.4 Alternative Global Clock Algorithmso.ciiiiia... 123
4.4 Lock-Based STM Systems with Global Metadata 123
4.4.1 Bloom Filter Conflict Detectioncooveiiiii ... 124
4.4.2 Value-Based Validationo 126
4.5 Nonblocking STIM Systemsoiuiuiiiiiiii i 128
4.5.1 Per-object Indirection i i 128
4.5.2 Nonblocking Object-Based STM Design Space....................... 131
4.5.3 Nonblocking STM Systems Without Indirection...................... 132
4.6 Additional Implementation Techniques..............o, 136
4.6.1 Supporting Privatization Safety and Publication Safety 136
4.6.2 Condition Synchronizationcoooiiiiii i nan .. 140
4.6.3 Irrevocabilityo 141
4.7 Distributed STIM Systemsouiuiiniiiii i 142

471 STM £0r CIUSLErS « . v v v v ettt et e e e e 142

4.7.2 STM-Based Middlewarecooiiiiiiiiii., 143
4.7.3 STM for PGAS Languagesovuuiiiiiiininiiiiaiannn.. 144
4.8 STM Testing and Correctnessovueueutin e etne e, 144
4.9 SUIMMAIY . .ottt ettt et 145
Hardware-Supported Transactional Memorycooooiiiinia... 147
5.1 Basic Mechanisms for Conventional HTMst 148
5.1.1 Identifying Transactional Locations..................ooiiiiiiiiia. 148
5.1.2 Tracking Read-Sets and Managing Write-Sets........................ 149
5.1.3 Detecting Data Conflicts 151
5.1.4 Resolving Data Conflictsooiiiiiii it 152
5.1.5 Managing Architectural Register State, 152
5.1.6 Committing and Aborting HTM Transactions........................ 153
5.2 Conventional HTM Proposals..... ...t 154
5.2.1 Explicitly Transactional HTMs....... ..., 154
5.2.2 Implicitly Transactional HTM Systemsooo... 159
5.2.3 Hybrid TMs: Integrating HTMs and STMs..................... ... 164
5.2.4 Software and Design Considerations............c.coviiiinininenena... 168
5.3 Alternative Mechanisms for HTMs..................ooo oo 170
5.3.1 Software-Resident Logs for Version Management..................... 170
5.3.2 Signatures for Access Tracking 174
5.3.3 Conflict Detection via Update Broadcasts 179
5.3.4 Deferring Conflict Detection. ..., 182
54 Unbounded HTMS.ooiiii e 184
5.4.1 Combining Signatures and Software-Resident Logs 185
5.4.2 Using Persistent Meta-Data ..., 187
5.4.3 Using Page Table Extensionst 194
5.5 Exposing Hardware Mechanisms to STMs ...t 197
5.5.1 Accelerating Short Transactions and Filtering Redundant Reads........ 197

5.5.2 Software Controlled Cache Coherence ..., 198

CONTENTS xi

5.5.3 Exposed Signatures to STMs........coouiiiiiiiiiiiiiiiiiiiaen. 199
5.5.4 Exposing Metadatato STMs. ..., 200
5.6 Extending HTM: Nesting, 1O, and Synchronization......................... 201
5.7 SUIITIAIY . oottt ettt et e e e e e e e ettt e 203
ConclUSIONSttt 205
Bibliography 209

Authors’ Biographies

Preface

This book presents an overview of the state of the art in transactional memory, as of early 2010.
Substantial sections of this book have been revised since the first edition. There has been a vast
amount of research on TM in the last three years (quantitatively, 210 of the 351 papers referred to
in this book were written in 2007 or later). This work has expanded the range of implementation
techniques that have been explored, the maturity of many of the implementations, the experience
that researchers have writing programs using TM, and the insights from formal analysis of TM
algorithms and the programming abstractions built over them.

At a high level, readers familiar with the first edition will notice two broad changes:

First, we have expanded the discussion of programming with TM to form two chapters. This
reflects a separation between the lower level properties of transactions (Chapter 2) versus higher-level
language constructs (Chapter 3). In early work, these notions were often combined with research
papers introducing both a new TM algorithm and a new way of exposing it to the programmer.
There is now a clearer separation, with common TM algorithms being exposed to programmers
through many different interfaces, and with individual language features being implemented over
different TMs.

The second main difference is that we have re-structured the discussions of STM (Chapter 4)
and HTM (Chapter 5) so that they group work thematically rather than considering work chrono-
logically on a paper-by-paper basis. In each case, we focus on detailed case studies that we feel are
representative of major classes of algorithms or of the state-of-the-art. We try to be complete, so
please let us know if there is work that we have omitted.

This book does not contain the answers to many questions. At this point in the evolution
of the field, we do not have enough experience building and using transactional memory systems
to prefer one approach definitively over another. Instead, our goal in writing this book is to raise
the questions and provide an overview of the answers that others have proposed. We hope that this
background will help consolidate and advance research in this area and accelerate the search for
answers.

In addition, this book is written from a practical viewpoint, with an emphasis on the design
and implementation of TM systems, and their integration into programming languages. Some of
the techniques that we describe come from research that was originally presented in a more formal
style; we provide references to the original papers, but we do not attempt a formal presentation in
this book. A forthcoming book examines TM from a theoretical viewpoint [117].

There is a large body of research on techniques like thread-level speculation (TLS) and a
history of cross-fertilization between these areas. For instance, Ding ez al’s work on value-based
validation inspired techniques used in STM systems [88], whereas STM techniques using eager

xiv. PREFACE

version management inspired Oancea e al’s work on in-place speculation [234]. Inevitably, it is
difficult to delineate exactly what work should be considered “T'M” and what should not. Broadly
speaking, we focus on work providing shared-memory synchronization between multiple explicit
threads; we try, briefly, to identify links with other relevant work where possible.

The bibliography that we use is available online at http://www.cs.wisc.edu/
trans-memory/biblio/index.html; we thank Jayaram Bobba and Mark Hill for their help
in maintaining it, and we welcome additions and corrections.

Tim Harris, James Larus, and Ravi Rajwar
June 2010

Acknowledgments

This book has benefited greatly from the assistance of a large number of people who discussed
transactional memory in its many forms with the authors and influenced this book—both the first
edition and this revised edition. Some people were even brave enough to read drafts and point out
shortcomings (of course, the remaining mistakes are the authors’ responsibility).

Many thanks to: Adam Welc, Al Aho, Ala Alameldeen, Amitabha Roy, Andy Glew, An-
nette Bieniusa, Arch Robison, Bryant Bigbee, Burton Smith, Chris Rossbach, Christos Kotse-
lidis, Christos Kozyrakis, Craig Zilles, Dan Grossman, Daniel Nussbaum, David Callahan, David
Christie, David Detlefs, David Wood, Ferad Zyulkyarov, Gil Neiger, Goetz Graefe, Haitham Akkary,
James Cownie, Jan Gray, Jesse Barnes, Jim Rose, Jodo Cachopo, Jodo Lourenco, Joe Dufty, Justin
Gottschlich, Kevin Moore, Konrad Lai, Kourosh Gharachorloo, Krste Asanovic, Mark Hill, Mark
Moir, Mark Tuttle, Martin Abadi, Maurice Herlihy, Michael Scott, Michael Spear, Milind Girkar,
Milo Martin, Nathan Bronson, Nir Shavit, Pascal Felber, Paul Petersen, Phil Bernstein, Richard
Greco, Rob Ennals, Robert Geva, Sanjeev Kumar, Satnam Singh, Scott Ananian, Shaz Qadeer,
Simon Peyton Jones, Steven Hand, Suresh Jagannathan, Suresh Srinivas, Tony Hosking, Torvald
Riegel, Vijay Menon, Vinod Grover, and Virendra Marathe.

Tim Harris, James Larus, and Ravi Rajwar
June 2010

	Copyright Page
	Title Page
	Contents
	Preface
	Acknowledgments

