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ABSTRACT

The advent of multicore processors has renewed interest in the idea of incorporating transactions
into the programming model used to write parallel programs. This approach, known as transactional
memory, offers an alternative, and hopefully better, way to coordinate concurrent threads. The ACI
(atomicity, consistency, isolation) properties of transactions provide a foundation to ensure that con-
current reads and writes of shared data do not produce inconsistent or incorrect results. At a higher
level, a computation wrapped in a transaction executes atomically - either it completes successfully
and commits its result in its entirety or it aborts. In addition, isolation ensures the transaction pro-
duces the same result as if no other transactions were executing concurrently. Although transactions
are not a parallel programming panacea, they shift much of the burden of synchronizing and co-
ordinating parallel computations from a programmer to a compiler, to a language runtime system,
or to hardware. The challenge for the system implementers is to build an efficient transactional
memory infrastructure. This book presents an overview of the state of the art in the design and
implementation of transactional memory systems, as of early spring 2010.
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Preface

This book presents an overview of the state of the art in transactional memory, as of early 2010.
Substantial sections of this book have been revised since the first edition. There has been a vast
amount of research on TM in the last three years (quantitatively, 210 of the 351 papers referred to
in this book were written in 2007 or later). This work has expanded the range of implementation
techniques that have been explored, the maturity of many of the implementations, the experience
that researchers have writing programs using TM, and the insights from formal analysis of TM
algorithms and the programming abstractions built over them.

At a high level, readers familiar with the first edition will notice two broad changes:

First, we have expanded the discussion of programming with TM to form two chapters. This
reflects a separation between the lower level properties of transactions (Chapter 2) versus higher-level
language constructs (Chapter 3). In early work, these notions were often combined with research
papers introducing both a new TM algorithm and a new way of exposing it to the programmer.
There is now a clearer separation, with common TM algorithms being exposed to programmers
through many different interfaces, and with individual language features being implemented over
different TMs.

The second main difference is that we have re-structured the discussions of STM (Chapter 4)
and HTM (Chapter 5) so that they group work thematically rather than considering work chrono-
logically on a paper-by-paper basis. In each case, we focus on detailed case studies that we feel are
representative of major classes of algorithms or of the state-of-the-art. We try to be complete, so
please let us know if there is work that we have omitted.

This book does not contain the answers to many questions. At this point in the evolution
of the field, we do not have enough experience building and using transactional memory systems
to prefer one approach definitively over another. Instead, our goal in writing this book is to raise
the questions and provide an overview of the answers that others have proposed. We hope that this
background will help consolidate and advance research in this area and accelerate the search for
answers.

In addition, this book is written from a practical viewpoint, with an emphasis on the design
and implementation of TM systems, and their integration into programming languages. Some of
the techniques that we describe come from research that was originally presented in a more formal
style; we provide references to the original papers, but we do not attempt a formal presentation in
this book. A forthcoming book examines TM from a theoretical viewpoint [117].

There is a large body of research on techniques like thread-level speculation (TLS) and a
history of cross-fertilization between these areas. For instance, Ding ez al’s work on value-based
validation inspired techniques used in STM systems [88], whereas STM techniques using eager
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version management inspired Oancea e al’s work on in-place speculation [234]. Inevitably, it is
difficult to delineate exactly what work should be considered “T'M” and what should not. Broadly
speaking, we focus on work providing shared-memory synchronization between multiple explicit
threads; we try, briefly, to identify links with other relevant work where possible.

The bibliography that we use is available online at http://www.cs.wisc.edu/
trans-memory/biblio/index.html; we thank Jayaram Bobba and Mark Hill for their help
in maintaining it, and we welcome additions and corrections.

Tim Harris, James Larus, and Ravi Rajwar
June 2010
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