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ABSTRACT

Providing an intuitive modeling system, which would enable us to communicate about any
free-form shape we have in mind at least as quickly as with real-world tools, is one of the
main challenges of digital shape design. The user should ideally be able to create, deform,
and progressively add details to a shape, without being aware of the underlying mathematical
representation nor being tied by any constraint on the geometrical or topological nature of the
model.

This book presents the field of interactive shape design from this perspective. Since
interactively creating a shape builds on the humans ability of modeling by gesture, we note that
the recent advances in interactive shape design can be classified as those that rely on sculpting
as opposed to sketching metaphors. Our synthetic presentation of these strategies enables us
to compare the different families of solutions, discuss open issues, and identify directions for
tuture research.
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Shape design in the real world: these examples of clay modeling, wood carving,
and sketching show the importance of the artist’s hand gestures in the design
process.

Constructive solid geometry (CSG) expresses shapes from a construction tree,
which shows how they are progressively built out of solid primitives.

Tensor product, parametric surfaces built from a grid of control points, are not
convenient for representing branching structures, for which either 7-sided
patches or smooth junctions between an arbitrary number of square patches
need to be modeled.

Constructive implicit surfaces are defined as isosurfaces of a scalar field
function. The last is typically a decreasing function of the distance to the
skeleton (left and middle). The most standard ones are distance surfaces (top
right), for which the contribution of skeletal elements are computed using
closest points and then summed, generating bulges at junctions. Convolution
surfaces (bottom right) avoid the problem by integrating the field contribution
along the skeleton curves or surfaces.

Subdivision surfaces are procedurally defined through an iterative subdivision
scheme to be applied to their control mesh.

Point-based, or meshless representations, rendered using oriented splats, have
proved to be a good alternative to standard mesh representations for visualizing
huge unstructured data sets.

Differential mesh representations enable us to change global shape attributes
while preserving surface details.

Space deformations warp space, deforming all the embedded objects.

Distance fields (left) require global edits and are discontinuous in concave
areas, while density fields (middle) are local. They can be stored in
multiresolution grids that are refined according to the tool’s shape, leading to
the easy sculpting and storage of large to fine structures (right).

Data structures for the virtual unbounded grid, stored in three hash tables:
nonempty cells, cells crossing the surface, and surface triangles. These three
structures are locally updated after each user edit, so rendering is real-time.
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Sculpting tools are either analytic implicit primitives (e.g. spheres and
ellipsoids) or discrete implicit shapes sculpted within the application.

Using haptic feedback accelerates volumetric sculpting, since it eases the
positioning of the tools. The figure on the left (from [88]) was sculpted in 3
hours using a simple mouse, while the one on the right (from [90]) was
sculpted in 1 hour using haptic feedback.

A geometric solution for mimicking the local deformation produced by a rigid
tool: matter is suppressed inside the tool and added in an outside ring, forming
a bulge.

Global deformations such as bending and twisting are of a different nature
from local ones, since they can propagate outside of any predefined boundary of
the tool’s influence.

Viscous fluids have been modeled using particles surrounded by an implicit
surface (picture from [92]).

A layered model for virtual clay. Large-scale deformations produced by the first
layer modeling plasticity (left). Local deformations generated by the second
layer insure constant volume (middle). The third layer generates an internal
rigidity which prevents clay from spreading over space (right).

Comparison between real clay and Dewaele’s virtual clay. Local and global
deformations at constant volume are adequately modeled. They can be
controlled by an arbitrary number of tools.

Three possible interfaces for interacting with virtual clay: using a single tool,
moved in 3D using a force feedback device (left); capturing the deformations
the user applies on a real object serving as an avatar (middle); and controlling
the gestures of a virtual hand interacting with the clay (right).

Sweepers use the user’s translation gestures to wrap space in a foldover. Small
steps used to make the deformation foldover free (left). The user positions a
tool in intersection with a shape, the tool’s region of influence being depicted in
yellow (right): when applied and moved, the tool sweeps a part of the shape
with it while keeping it smooth.

Constant volume switls (left) are placed along rings to move matter along a
translation vector defined by the user’s gesture (center). In practice, the use of
swirls is transparent to the user. He or she simply sweeps constant volume clay
by gesture (right).

Examples of shapes modeled from a ball of clay in a few minutes, using swirling
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