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ABSTRACT
Reinforcement learning is a learning paradigm concerned with learning to control a system so as
to maximize a numerical performance measure that expresses a long-term objective. What distin-
guishes reinforcement learning from supervised learning is that only partial feedback is given to the
learner about the learner’s predictions. Further, the predictions may have long term effects through
influencing the future state of the controlled system. Thus, time plays a special role. The goal in
reinforcement learning is to develop efficient learning algorithms, as well as to understand the al-
gorithms’ merits and limitations. Reinforcement learning is of great interest because of the large
number of practical applications that it can be used to address, ranging from problems in artificial
intelligence to operations research or control engineering. In this book, we focus on those algorithms
of reinforcement learning that build on the powerful theory of dynamic programming. We give a
fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of
state of the art algorithms, followed by the discussion of their theoretical properties and limitations.
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Preface
Reinforcement learning (RL) refers to both a learning problem and a subfield of machine

learning. As a learning problem, it refers to learning to control a system so as to maximize some
numerical value which represents a long-term objective. A typical setting where reinforcement
learning operates is shown in Figure 1: A controller receives the controlled system’s state and a
reward associated with the last state transition. It then calculates an action which is sent back to
the system. In response, the system makes a transition to a new state and the cycle is repeated. The
problem is to learn a way of controlling the system so as to maximize the total reward. The learning
problems differ in the details of how the data is collected and how performance is measured.

In this book, we assume that the system that we wish to control is stochastic. Further, we
assume that the measurements available on the system’s state are detailed enough so that the con-
troller can avoid reasoning about how to collect information about the state. Problems with these
characteristics are best described in the framework of Markovian Decision Processes (MDPs). The
standard approach to ‘solve’ MDPs is to use dynamic programming, which transforms the problem
of finding a good controller into the problem of finding a good value function. However, apart from
the simplest cases when the MDP has very few states and actions, dynamic programming is infea-
sible. The RL algorithms that we discuss here can be thought of as a way of turning the infeasible
dynamic programming methods into practical algorithms so that they can be applied to large-scale
problems.

There are two key ideas that allow RL algorithms to achieve this goal. The first idea is to
use samples to compactly represent the dynamics of the control problem. This is important for

Figure 1: The basic reinforcement learning scenario
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two reasons: First, it allows one to deal with learning scenarios when the dynamics is unknown.
Second, even if the dynamics is available, exact reasoning that uses it might be intractable on its
own.The second key idea behind RL algorithms is to use powerful function approximation methods
to compactly represent value functions. The significance of this is that it allows dealing with large,
high-dimensional state- and action-spaces. What is more, the two ideas fit nicely together: Samples
may be focused on a small subset of the spaces they belong to, which clever function approximation
techniques might exploit. It is the understanding of the interplay between dynamic programming,
samples and function approximation that is at the heart of designing, analyzing and applying RL
algorithms.

The purpose of this book is to allow the reader to have a chance to peek into this beau-
tiful field. However, certainly we are not the first to set out to accomplish this goal. In 1996,
Kaelbling et al. have written a nice, compact survey about the approaches and algorithms avail-
able at the time (Kaelbling et al., 1996). This was followed by the publication of the book
by Bertsekas and Tsitsiklis (1996), which detailed the theoretical foundations. A few years later
Sutton and Barto, the ‘fathers’ of RL, published their book, where they presented their ideas on RL
in a very clear and accessible manner (Sutton and Barto, 1998). A more recent and comprehensive
overview of the tools and techniques of dynamic programming/optimal control criteria, as well as
various classes of controlled systems is given in the two-volume book by Bertsekas (2007a,b) which
devotes one chapter to RL methods.1 At times, when a field is rapidly developing, books can get out
of date pretty quickly. In fact, to keep up with the growing body of new results, Bertsekas maintains
an online version of his Chapter 6 of Volume II of his book, which, at the time of writing this
survey counted as much as 160 pages (Bertsekas, 2010). Other recent books on the subject include
the book of Gosavi (2003) who devotes 60 pages to reinforcement learning algorithms in Chapter
9, concentrating on average cost problems, or that of Cao (2007) who focuses on policy gradient
methods. Powell (2007) presents the algorithms and ideas from an operations research perspective
and emphasizes methods that are capable of handling large control spaces, Chang et al. (2008) fo-
cuses on adaptive sampling (i.e., simulation-based performance optimization), while the center of
the recent book by Busoniu et al. (2010) is function approximation.

Thus, by no means do RL researchers lack a good body of literature. However, what seems to
be missing is a self-contained and yet relatively short summary that can help newcomers to the field
to develop a good sense of the state of the art, as well as existing researchers to broaden their overview
of the field, an article, similar to that of Kaelbling et al. (1996), but with an updated contents. To fill
this gap is the very purpose of this short book.

Having the goal of keeping the text short, we had to make a few, hopefully, not too troubling
compromises. The first compromise we made was to present results only for the total expected
discounted reward criterion. This choice is motivated by that this is the criterion that is both widely
used and the easiest to deal with mathematically. The next compromise is that the background

1In this book, RL is called neuro-dynamic programming or approximate dynamic programming. The term neuro-dynamic pro-
gramming stems from the fact that, in many cases, RL algorithms are used with artificial neural networks.
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on MDPs and dynamic programming is kept ultra-compact (although an appendix is added that
explains these basic results. Apart from these, the book aims to cover a bit of all aspects of RL, up to
the level that the reader should be able to understand the whats and hows, as well as to implement
the algorithms presented. Naturally, we still had to be selective in what we present. Here, the decision
was to focus on the basic algorithms, ideas, as well as the available theory. Special attention was paid
to describing the choices of the user, as well as the trade offs that come with these. We tried to be
impartial as much as possible, but some personal bias, as usual, surely remained. The pseudocode
of almost twenty algorithms was included, hoping that this will make it easier for the practically
inclined reader to implement the algorithms described.

The target audience is advanced undergraduate and graduate students, as well as researchers
and practitioners who want to get a good overview of the state of the art in RL quickly. Researchers
who are already working on RL might also enjoy reading about parts of the RL literature that they
are not so familiar with, thus broadening their perspective on RL. The reader is assumed to be
familiar with the basics of linear algebra, calculus, and probability theory. In particular, we assume
that the reader is familiar with the concepts of random variables, conditional expectations, and
Markov chains. It is helpful, but not necessary, for the reader to be familiar with statistical learning
theory, as the essential concepts will be explained as needed. In some parts of the book, knowledge
of regression techniques of machine learning will be useful.

This book has three parts. In the first part, in Section 1, we provide the necessary background.
It is here where the notation is introduced, followed by a short overview of the theory of Markov De-
cision Processes and the description of the basic dynamic programming algorithms. Readers familiar
with MDPs and dynamic programming should skim through this part to familiarize themselves with
the notation used. Readers, who are less familiar with MDPs, must spend enough time here before
moving on because the rest of the book builds heavily on the results and ideas presented here.

The remaining two parts are devoted to the two basic RL problems (cf. Figure 2), one part
devoted to each. In Section 2) the problem of learning to predict values associated with states is
studied. We start by explaining the basic ideas for the so-called tabular case when the MDP is
small enough so that one can store one value per state in an array allocated in a computer’s main
memory. The first algorithm explained is TD(λ), which can be viewed as the learning analogue to
value iteration from dynamic programming. After this, we consider the more challenging situation
when there are more states than what fits into a computer’s memory. Clearly, in this case, one must
compress the table representing the values. Abstractly, this can be done by relying on an appropriate
function approximation method. First, we describe how TD(λ) can be used in this situation. This
is followed by the description of some new gradient based methods (GTD2 and TDC), which can
be viewed as improved versions of TD(λ) in that they avoid some of the convergence difficulties
that TD(λ) faces. We then discuss least-squares methods (in particular, LSTD(λ) and λ-LSPE) and
compare them to the incremental methods described earlier. Finally, we describe choices available
for implementing function approximation and the trade offs that these choices come with.
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Figure 2: Types of reinforcement problems and approaches.

The second part (Section 3) is devoted to algorithms that are developed for control learning.
First, we describe methods whose goal is optimizing online performance. In particular, we describe
the “optimism in the face of uncertainty” principle and methods that explore their environment based
on this principle. State of the art algorithms are given both for bandit problems and MDPs. The
message here is that clever exploration methods make a large difference, but more work is needed to
scale up the available methods to large problems. The rest of this section is devoted to methods that
aim at developing methods that can be used in large-scale applications. As learning in large-scale
MDPs is significantly more difficult than learning when the MDP is small, the goal of learning is
relaxed to learning a good enough policy in the limit. First, direct methods are discussed which aim at
estimating the optimal action-values directly. These can be viewed as the learning analogue of value
iteration of dynamic programming.This is followed by the description of actor-critic methods, which
can be thought of as the counterpart of the policy iteration algorithm of dynamic programming.
Both methods based on direct policy improvement and policy gradient (i.e., which use parametric
policy classes) are presented.

The book is concluded in Section 4, which lists some topics for further exploration.

Csaba Szepesvári
June 2010
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