
Model-Driven
Software Engineering in Practice
Second Edition

Synthesis Lectures on Software
Engineering

Editor
Luciano Baresi, Politecnico di Milano

e Synthesis Lectures on Software Engineering series publishes short books (75-125 pages) on
conceiving, specifying, architecting, designing, implementing, managing, measuring, analyzing,
validating, and verifying complex software systems. e goal is to provide both focused monographs
on the different phases of the software process and detailed presentations of frontier topics. Premier
software engineering conferences, such as ICSE, ESEC/FSE, and ASE will help shape the purview
of the series and make it evolve.

Model-Driven Software Engineering in Practice: Second Edition
Marco Brambilla, Jordi Cabot, and Manuel Wimmer
2017

Testing iOS Apps with HadoopUnit: Rapid Distributed GUI Testing
Scott Tilley and Krissada Dechokul
2014

Hard Problems in Software Testing: Solutions Using Testing as a Service (TaaS)
Scott Tilley and Brianna Floss
2014

Model-Driven Software Engineering in Practice
Marco Brambilla, Jordi Cabot, and Manuel Wimmer
2012

© Springer Nature Switzerland AG 2022
Reprint of original edition © Morgan & Claypool 2017

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations
in printed reviews, without the prior permission of the publisher.

Model-Driven Software Engineering in Practice: Second Edition

Marco Brambilla, Jordi Cabot, and Manuel Wimmer

ISBN: 978-3-031-01421-5 paperback
ISBN: 978-3-031-02549-5 ebook
ISBN: 978-3-031-03677-4 epub

DOI 10.1007/978-3-031-02549-5

A Publication in the Springer series
SYNTHESIS LECTURES ON SOFTWARE ENGINEERING

Lecture #4
Series Editor: Luciano Baresi, Politecnico di Milano
Series ISSN
Print 2328-3319 Electronic 2328-3327

Model-Driven
Software Engineering in Practice
Second Edition

Marco Brambilla
Politecnico di Milano, Italy

Jordi Cabot
ICREA and Open University of Catalonia (UOC), Spain

Manuel Wimmer
TU Wien, Austria

SYNTHESIS LECTURES ON SOFTWARE ENGINEERING #4

ABSTRACT
is book discusses how model-based approaches can improve the daily practice of software pro-
fessionals. is is known as Model-Driven Software Engineering (MDSE) or, simply, Model-
Driven Engineering (MDE).

MDSE practices have proved to increase efficiency and effectiveness in software devel-
opment, as demonstrated by various quantitative and qualitative studies. MDSE adoption in the
software industry is foreseen to grow exponentially in the near future, e.g., due to the convergence
of software development and business analysis.

e aim of this book is to provide you with an agile and flexible tool to introduce you to the
MDSE world, thus allowing you to quickly understand its basic principles and techniques and to
choose the right set of MDSE instruments for your needs so that you can start to benefit from
MDSE right away.

e book is organized into two main parts.

• e first part discusses the foundations of MDSE in terms of basic concepts (i.e., models
and transformations), driving principles, application scenarios, and current standards, like
the well-known MDA initiative proposed by OMG (Object Management Group) as well
as the practices on how to integrate MDSE in existing development processes.

• e second part deals with the technical aspects of MDSE, spanning from the basics on when
and how to build a domain-specific modeling language, to the description of Model-to-
Text and Model-to-Model transformations, and the tools that support the management of
MDSE projects.

e second edition of the book features:

• a set of completely new topics, including: full example of the creation of a new modeling
language (IFML), discussion of modeling issues and approaches in specific domains, like
business process modeling, user interaction modeling, and enterprise architecture

• complete revision of examples, figures, and text, for improving readability, understandabil-
ity, and coherence

• better formulation of definitions, dependencies between concepts and ideas

• addition of a complete index of book content

KEYWORDS
modeling, software engineering, UML, domain-specific language, model-driven
engineering, code generation, reverse engineering, model transformation, MDD,
MDA, MDE, MDSE, OMG, DSL, EMF, Eclipse

vii

Contents
Foreword . xi

Acknowledgments . xv

1 Introduction . 1
1.1 Purpose and Use of Models . 1
1.2 Modeling for Software Development . 2
1.3 How to Read this Book . 3

2 MDSE Principles . 7
2.1 MDSE Basics . 7
2.2 Lost in Acronyms: e MD* Jungle . 9
2.3 Overview of the MDSE Methodology . 10

2.3.1 Overall Vision . 10
2.3.2 Domains, Platforms, and Technical Spaces . 11
2.3.3 Modeling Languages . 12
2.3.4 Metamodeling . 15
2.3.5 Transformations . 17

2.4 Tool Support . 19
2.4.1 Drawing Tools vs. Modeling Tools . 19
2.4.2 Model-based vs. Programming-based MDSE Tools 20
2.4.3 Eclipse and EMF . 21

2.5 Adoption and Criticisms of MDSE . 21

3 MDSE Use Cases . 25
3.1 Automating Software Development . 26

3.1.1 Code Generation . 28
3.1.2 Model Interpretation . 31
3.1.3 Combining Code Generation and Model Interpretation 32

3.2 System Interoperability . 33
3.3 Reverse Engineering . 36
3.4 Modeling the Organization . 39

viii

3.4.1 Business Process Modeling . 39
3.4.2 Enterprise Architecture . 40

4 Model-driven Architecture (MDA) . 43
4.1 MDA Definitions and Assumptions . 44
4.2 e Modeling Levels: CIM, PIM, PSM. 44
4.3 Mappings . 46
4.4 General-purpose and Domain-specific Languages in MDA 49
4.5 Architecture-driven Modernization (ADM) . 50

5 Integration of MDSE in your Development Process . 53
5.1 Introducing MDSE in your Software Development Process 53

5.1.1 Pains and Gains of Software Modeling . 54
5.1.2 Socio-technical Congruence of the Development Process 54

5.2 Traditional Development Processes and MDSE . 55
5.3 Agile and MDSE . 55
5.4 Domain-driven Design and MDSE . 57
5.5 Test-driven Development and MDSE . 58

5.5.1 Model-driven Testing . 59
5.5.2 Test-driven Modeling . 59

5.6 Software Product Lines and MDSE . 59

6 Modeling Languages at a Glance . 63
6.1 Anatomy of Modeling Languages . 63
6.2 Multi-view Modeling and Language Extensibility . 64
6.3 General-purpose vs. Domain-specific Modeling Languages 65
6.4 General-purpose Modeling: e Case of UML . 66

6.4.1 Design Practices . 68
6.4.2 Structure Diagrams (or Static Diagrams) . 68
6.4.3 Behavior Diagrams (or Dynamic Diagrams) . 70
6.4.4 UML Tools . 74
6.4.5 Criticisms and Evolution of UML . 74

6.5 UML Extensibility: e Middle Way Between GPL and DSL 74
6.5.1 Stereotypes . 75
6.5.2 Predicates . 75
6.5.3 Tagged Values . 75
6.5.4 UML Profiling . 76

ix

6.6 Overview on DSLs . 77
6.6.1 Principles of DSLs . 77
6.6.2 Some Examples of DSLs . 79

6.7 Defining Modeling Constraints (OCL) . 79

7 Developing your Own Modeling Language . 85
7.1 Metamodel-centric Language Design . 85
7.2 Example DSML: sWML . 87
7.3 Abstract Syntax Development . 89

7.3.1 Metamodel Development Process . 91
7.3.2 Metamodeling in Eclipse . 100

7.4 Concrete Syntax Development . 102
7.4.1 Graphical Concrete Syntax (GCS) . 103
7.4.2 Textual Concrete Syntax (TCS) . 108

7.5 A Real-world Example: IFML . 114
7.5.1 Requirements . 115
7.5.2 Fulfilling the Requirements in IFML . 115
7.5.3 Metamodeling Principles . 116
7.5.4 IFML Metamodel . 118
7.5.5 IFML Concrete Syntax . 121

8 Model-to-Model Transformations . 123
8.1 Model Transformations and their Classification . 123
8.2 Exogenous, Out-place Transformations . 125
8.3 Endogenous, In-place Transformations . 132
8.4 Mastering Model Transformations . 137

8.4.1 Divide and Conquer: Model Transformation Chains 137
8.4.2 HOT: Everything is a Model, Even Transformations! 138
8.4.3 Beyond Batch: Incremental and Lazy Transformations 138
8.4.4 Bi-directional Model Transformations . 139

9 Model-to-Text Transformations . 141
9.1 Basics of Model-driven Code Generation . 141
9.2 Code Generation rough Programming Languages . 143
9.3 Code Generation rough M2T Transformation Languages 147

9.3.1 Benefits of M2T Transformation Languages . 147
9.3.2 Template-based Transformation Languages: An Overview 149

x

9.3.3 Acceleo: An Implementation of the M2T Transformation Standard . . 150
9.4 Mastering Code Generation . 152
9.5 Excursus: Code Generation through M2M Transformations and TCS 154

10 Managing Models . 157
10.1 Model Interchange . 157
10.2 Model Persistence . 160
10.3 Model Comparison . 161
10.4 Model Versioning . 163
10.5 Model Co-evolution . 165
10.6 Global Model Management . 167
10.7 Model Quality . 169

10.7.1 Verifying Models . 170
10.7.2 Testing and Validating Models . 171
10.7.3 Reviewing Models . 171

10.8 Collaborative Modeling . 172

11 Summary . 175

Bibliography . 177

Authors’ Biographies . 185

Index . 187

xi

Foreword
Technology takes forever to transition from academia to industry. At least it seems like forever. I
had the honor to work with some of the original Multics operating system development team in
the 1970s (some of them had been at it since the early 1960s). It seems almost comical to point out
that Honeywell only ever sold a few dozen Multics mainframes, but they were advanced, really
advanced—many of Multics’ innovations (segmented memory, hardware security and privacy,
multi-level security, etc.) took literally decades to find their way into other commercial products.
I have a very distinct memory of looking at the original Intel 386 chip, impressed that the engi-
neers had finally put Multics-style ring security right in the hardware, and less impressed when I
discovered that they had done it exactly backward, with highly secure users unable to access low-
security areas, but low-security users able to access the kernel. Technology transfer is a difficult
and delicate task!

When I had the opportunity to help introduce a new technology and manage hype around
that technology, I took it. At loose ends in 1989, I agreed to join the founding team of the Object
Management Group (OMG), to help define commercial uptake for Object Technology (called
object-oriented systems in the academic world, at least since Simula in 1967), and equally to help
control the hype around the Object Technology marketplace. Having participated in the Artificial
Intelligence (AI, or expert systems) world in the 1980s, I really didn’t want to see another market
meltdown as we’d experienced in AI: from the cover of Time magazine to a dead market in only
five years!

at worked. OMG named, and helped define, the middleware marketplace that flour-
ished in the 1990s, and continues today. Middleware ranges from: TCP socket-based, hand-
defined protocols (generally an awful idea); to object-based, request-broker style stacks with
automatically defined protocols from interface specifications (like OMG’s own CORBA); to
similarly automatically-defined, but publish-and-subscribe based protocols (like OMG’s own
DDS); to semantic integrate middleware with high-end built-in inference engines; to commercial
everything-but-the-kitchen-sink “enterprise service bus” collections of request brokers, publish-
and-subscribe, expert-system based, automatic-routing, voice-and-audio streaming lollapaloozas.
Middleware abounds, and although there’s still innovation, it’s a very mature marketplace.

By the late 1990s, it was clear that the rapid rise of standardization focused on vertical
markets (like healthcare IT, telecommunications, manufacturing, and financial services, OMG’s
initial range of so-called “domain” standards) would need something stronger than interface def-
inition languages; to be more useful, standards in vertical markets (and arguably, all standards)
should be defined using high-level, precise but abstract “modeling” languages. is class of lan-
guages should be much closer to user requirements, more readable by non-technical people, more

xii FOREWORD

focused on capturing process and semantics; in general, they should be more expressive. e
natural choice for OMG and its members was of course OMG’s own Unified Modeling Lan-
guage (UML), standardized in 1997 as an experimental use of OMG’s standards process that had
heretofore focused on middleware. Even better, the UML standardization effort had produced
a little-known but critical modeling language called the Meta-Object Facility (MOF) for defin-
ing modeling languages. is core of MOF plus extensible, profileable UML would easily be the
foundation for a revolution in software development—and beyond.

As the millennium approached, OMG’s senior staff met to consider how we could nudge
the OMG membership in this valuable new direction. We came up with a name (Model-Driven
Architecture, orMDA); a picture (which hasn’t been universally adopted, but still helpedmake the
transition); and a well-received white paper that explained why MDA would be the next logical
step in the evolution of software engineering (and by extension, how it matches modeling in other
engineering disciplines, though generally with other names, like “blueprints.”) OMG’s senior staff
then spent a few months pitching this idea to our leading members, to a very mixed review. Some
had been thinking this way for years and welcomed the approach; while some thought that it
would be seen as an abandonment of our traditional middleware space (which by the way, we
have never abandoned; the latest OMG middleware standards are weeks old at this writing and
many more are to come). e CEO of one of our key member companies found the concept
laughable, and in a memorable phrase, asked “Where’s the sparkle?”

I truly believe, however, that organizations which resist change are the least stable. OMG
therefore carried on and in 2001 introduced Model-Driven Architecture to a waiting world with
a series of one-day events around the world. David Frankel’s eponymous book, written and edited
as he and I flew around the world to introduce the MDA concept, came out shortly thereafter;
key influencers joined us in the campaign to add major new OMG standardization efforts in
the modeling space. We would continue to create, extend, and support existing standards and
new standards in the middleware and vertical-market spaces, but we would add significant new
activities. It occurred to me that we actually had already been in the modeling space from the
beginning; one can think of the Interface Definition Language of CORBA and DDS as simply
a poor-man’s modeling language, with limited expression of semantics.

For a while, the “sparkle” our members looked for was in academia primarily. As an avid
participant in several academic conferences a year, I can tell you that uptake of MDA concepts
(and terminology, like “platform-specificmodel” and “platform-independent model”) took off like
a rocket in universities. It took time, but the next step was a technology “pull” from engineering
organizations that needed to perform better than the past (many of whom had already been using
MDA techniques, and now had a name to point to); the creation of the Eclipse Foundation,
starting in 2002, and its early embrace of modeling technology, also helped greatly. By 2010,
modeling was firmly embedded in the world’s software engineering psyche, and Gartner and
Forrester were reporting that more than 71 UML tools were available on the market and adopted
at some level. at’s some serious “sparkle,” and OMG members reveled in the success.

FOREWORD xiii

An interesting parallel world began to appear around MOF and UML, recognizing that
modeling languages didn’t have to be limited to modeling software systems (or “software intensive
systems,” as many called them); that, in fact, most complex software systems have to interact with
other complex engineered systems, from building architecture to complex devices like mobile
phones and aircraft carriers. We decided to roll out an entire fleet of MOF-defined languages to
address the needs of many different modelers and marketplaces:

- UML System on a Chip: for microchip hardware/firmware/software definition;

- SoaML: for service-oriented architectures;

- BPMN: for business process modelers;

- BMM: for modeling the motivations and structure of a business;

- SysML: for modeling large, complex systems of software, hardware, facilities, people, and
processes;

- UPDM: for modeling enterprise architectures;

- CWM: for data warehouses.

Each of these have been successful in a well-defined marketplace, often replacing a mix of
many other languages and techniques that have fragmented a market and market opportunity.
Along the way, our terminology morphed, changed, and extended, with arguments about the dif-
ference between “model-driven” and “model-based;” one of my favorite memories is of a keynote
speech I gave just a couple of years ago in Oslo, after which an attendee came up to argue with me
about my definition of the phrase “model-driven architecture.” He wasn’t particularly impressed
that I had made up the term; it reminded me of a classic (and possibly apocryphal) story about
the brilliant pianist Glenn Gould, who when accosted by a composer for his interpretation of the
composer’s work, yelled, “You don’t understand your own composition!”

Over the past decade many new phrases have appeared around MDA, and one of the ones I
consider most apt is Model-Driven Software Engineering (MDSE). is history lesson brings us
to the work of this book, to help the neophyte understand and succeed with the technologies that
make up MDSE. What are these mystical “modeling languages,” how do we transform (com-
pile) from one to another, and most importantly, how does this approach bring down the cost
of development, maintenance, and integration of these systems? ese aren’t mysteries at all, and
this book does a great job enlightening us on the techniques to get the most from a model-driven
approach.

I’d like to leave you, dear reader, with one more thought. Recently, I had the opportunity
to create, with dear friends Ivar Jacobson and Bertrand Meyer, an international community dedi-
cated to better formalizing the software development process, and moving software development

xiv FOREWORD

out of the fragmented “stone age” of insufficient theory chasing overwhelming need, to the or-
dered, structured engineering world on which other engineering disciplines depend. e Software
Engineering Method and eory (Semat) project brings together like-minded people worldwide
to help bring software development into the 21st century, much as building architecture was
driven into modernism by growing size and failures a millennium ago, and the shipbuilding in-
dustry had to formalize into ship blueprints some four centuries ago. My dream is that software
engineering becomes engineering, and the huge stack of should-be-integrated engineering disci-
plines (civil, materials, software, hardware, etc.) be integrated into Model-Driven Engineering.

In your hands is part of the first step.

Richard Mark Soley, Ph.D.
Chairman and Chief Executive Officer
Object Management Group, Inc.
June 2012

10,000 meters over the central United States

xv

Acknowledgments
is book wouldn’t be the same without all the enriching discussions we have had with many
other MDSE fans (and detractors!) during the last years—in person or within online forums. It
would be almost impossible to list all of them here and therefore we wish to thank them all and
to acknowledge their direct or indirect contribution to this book and to the MDE field at large,
especially our current and previous colleagues.

An explicit mention must go to the ones who concretely helped us in the writing of this
book. First of all, thanks to Diane Cerra, our Managing Editor at Morgan & Claypool, who
believed in our project since the beginning and followed us with infinite patience throughout the
whole book production process.

Secondly, thanks to Richard Soley, Chairman and CEO of OMG, who graciously agreed
to introduce our work with his authoritative foreword.

And finally, last but not least, thanks to all the people that helped review the book: Ed
Seidewitz (Model Driven Solutions), Davide di Ruscio (L’Aquila University), JuanCarlosMolina
(Integranova), Vicente Pelechano (Polytechnic University of Valencia), and a bunch of our own
colleagues and friends who carefully read and commented on what we were writing.

Marco Brambilla, Jordi Cabot, and Manuel Wimmer
January 2017

	Copyright Page
	Title Page
	Contents
	Foreword
	Acknowledgments

