
Testing iOS Apps with
HadoopUnit
Rapid Distributed GUI Testing

iii

Synthesis Lectures on Software
Engineering

The Synthesis Lectures on Software Engineering publishes 75-150 page publications on all aspects
of software design, engineering, and process management.

Testing iOS Apps with HadoopUnit: Rapid Distributed GUI Testing
Scott Tilley and Krissada Dechokul
December 2014

Hard Problems in Software Testing: Solutions Using Testing as a Service (TaaS)
Scott Tilley and Brianna Floss
August 2014

Model-Driven Software Engineering in Practice
Marco Brambilla, Jordi Cabot, Manuel Wimmer
September 2012

© Springer Nature Switzerland AG 2022
Reprint of original edition © Morgan & Claypool 2015

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quota-
tions in printed reviews, without the prior permission of the publisher.

Testing iOS Apps with HadoopUnit: Rapid Distributed GUI Testing
Scott Tilley and Krissada Dechokul

ISBN: 978-3-031-01420-8 print
ISBN: 978-3-031-02548-8 ebook

DOI 10.1007/978-3-031-02548-8

A Publication in the Springer series
SYNTHESIS LECTURES ON SOFTWARE ENGINEERING #3

Series ISSN 2328-3319 Print 2328-3327 Electronic

Testing iOS Apps with
HadoopUnit
Rapid Distributed GUI Testing

Scott Tilley
Florida Institute of Technology

Krissada Dechokul
Suwat Dechokul Part., Ltd.

SYNTHESIS LECTURES SOFTWARE ENGINEERING #3

 CLAYPOOL PUBLISHERS

vi

ABSTRACT
Smartphone users have come to expect high-quality apps. This has increased the importance of
software testing in mobile software development. Unfortunately, testing apps—particularly the
GUI—can be very time-consuming. Exercising every user interface element and verifying tran-
sitions between different views of the app under test quickly becomes problematic. For example,
execution of iOS GUI test suites using Apple’s UI Automation framework can take an hour or
more if the app’s interface is complicated. The longer it takes to run a test, the less frequently the
test can be run, which in turn reduces software quality.

This book describes how to accelerate the testing process for iOS apps using HadoopUnit,
a distributed test execution environment that leverages the parallelism inherent in the Hadoop
platform. HadoopUnit was previously used to run unit and system tests in the cloud. It has been
modified to perform GUI testing of iOS apps on a small-scale cluster—a modest computing infra-
structure available to almost every developer.

Experimental results have shown that distributed test execution with HadoopUnit can sig-
nificantly outperform the test execution on a single machine, even if the size of the cluster used for
the execution is as small as two nodes. This means that the approach described in this book could
be adopted without a huge investment in IT resources. HadoopUnit is a cost-effective solution for
reducing lengthy test execution times of system-level GUI testing of iOS apps.

KEYWORDS
software testing, iOS, apps, Hadoop, HadoopUnit, cloud computing, cluster

vii

Contents
 Foreword . xv

 Preface . xvii

 Acknowledgments . xix

 Dedication . xxi

1 Introduction . . 1
1.1 GUI Testing of iOS Apps . 2
1.2 Rapid Testing with HadoopUnit . 3
1.3 Related Work . 4

1.3.1 GUI Testing Tools . 4
1.3.2 Distributed Testing Platforms . 6

2 Background . . 9
2.1 Software Testing . 9

2.1.1 Regression Testing . 11
2.1.2 GUI Testing . 12

2.2 UI Automation . 12
2.2.1 UI Automation Script . 13
2.2.2 Command-Line Workflow with UI Automation 15
2.2.3 Rake . 17
2.2.4 Virtualization . 19

2.3 Hadoop and HadoopUnit . 20
2.3.1 Hadoop . 20
2.3.2 HadoopUnit . 23

3 Using UI Automation with HadoopUnit . 27
3.1 UI Automation Test Suites . 27

3.1.1 Test Case Design . 28
3.1.2 Test Case Analysis . 28

3.2 HadoopUnit Customization . 29
3.2.1 Operational Environment . 29
3.2.2 Test Results . 30

viii

3.2.3 Revised Architecture . 31
3.3 Using HadoopUnit . 32

3.3.1 Test Case List . 33
3.3.2 Rake . 34
3.3.3 Test Execution . 35

4 Rapid GUI Testing of iOS Apps . 39
4.1 Experiments . 39

4.1.1 Experiment I . 42
4.1.2 Experiment II . 44
4.1.3 Experiment III . 46

4.2 Discussion of Results . 48
4.3 Threats to Validity . 53

4.3.1 Test Suites . 53
4.3.2 Hadoop Optimization . 53
4.3.3 Network Issues . 54

5 Summary . 55
5.1 Summary of Results . 55

5.1.1 Research Objectives . 56
5.1.2 Research Contributions . 56

5.2 Future Work . 57
5.3 Concluding Remarks . 57

 Appendix A
Setting up a HadoopUnit Cluster on Mac OS X . 59

 Appendix B
HadoopUnit Source Code for iOS GUI Testing . 69

 References . 77

 About the Authors . 83

ix

Figures
Figure 1.1: App store downloads. 1
Figure 1.2: Overall architecture of third-party testing tools. . 5
Figure 2.2: Levels of Testing. . 10
Figure 2.3: Iterative development model. 11
Figure 2.4: Sample UI automation test case. . 14
Figure 2.5: Sample Xcodebuild command. 15
Figure 2.6: Sample of an instruments command. 16
Figure 2.7: Sample of a Rake task for executing an instruments test. 18
Figure 2.8: Sample of a command to invoke a defined Rake task. 18
Figure 2.9: Sample of a command to invoke a Rake task with-–rakefile. 18
Figure 2.10: HDFS architecture. . 21
Figure 2.11: Overview of how MapReduce works. . 22
Figure 2.12: Overall architecture of HadoopUnit. . 24
Figure 3.1: Architecture of HadoopUnit for GUI testing of iOS applications. 32
Figure 3.2: Sample of a test case list. . 33
Figure 3.3: Sample of command to transfer a file to the HDFS. 35
Figure 3.4: The Hadoop command to initiate test execution with HadoopUnit. 36
Figure 3.5: The Hadoop command to download files from the HDFS. 37
Figure 4.1: A sample screenshot of the system under test. 40
Figure 4.2: Sample of a test case. . 41
Figure 4.3: Code for executing test cases sequentially with a Rake task. 42
Figure 4.4: Sequential execution time on a single machine. 43
Figure 4.5: Concurrent execution time on a 2-nodes cluster. 45
Figure 4.6: Concurrent execution time on a 4-node cluster. . 47
Figure 4.7: Execution time comparison of the three experiments. 49
Figure 4.8: Total test execution time approximation equation. . 50
Figure 4.9: Ideal case for test execution time approximation equation. 50

xi

Tables
Table 4.1: Sequential execution time on a single machine (in seconds) 43
Table 4.2: Concurrent execution time on a 2-node cluster (in seconds) 44
Table 4.3: Concurrent execution time on a 4-node cluster (in seconds) 46
Table 4.4: Performance comparisons of the three experiments (in seconds) 48
Table 4.5: Performance factors over sequential execution . 49

xiii

Foreword
Software quality has never been as important as it is today. A tidal wave of new software devel-
opment is seen in mobile applications, which are quickly becoming ubiquitous. They are used for
many purposes, from enjoyable entertainment to safety critical applications used by first responders.

At the same time, the bar to entering the mobile application marketplace is very low. Anyone
with the desire to create a mobile application can do so with freely available tools in a rather short
amount of time. A quick browse through the Apple App Store reveals that many applications fall
short of user expectations: there are many apps in the store with three stars or fewer.

Creating a mobile application is one thing. Testing it to ensure that it works correctly, is
secure, and achieves high usability factors is another thing altogether.

First, there is the plethora of mobile device platforms and appliances—each of which has its
own configuration and behavior differences.

Second, the time required to test a moderately featured application just one time on one plat-
form is substantial. Manual testing can be tedious and automated testing simulating user actions
can relieve some of the tedium, but it still requires time to design and perform functional tests.

Third, mobile applications undergo constant change. The constant march of change fixes bugs
and introduces new features—and new defects. Therefore, testing should include not only testing
bug fixes and new features, but also regression testing of the unchanged features. However, this all
takes precious time.

Finally, consider that many mobile application developers consist of small teams, perhaps just
an individual, with limited funds and resources for testing. So, the customers get to be the “testers,”
except they use the applications for important real-world tasks like arranging travel, managing
finances, tracking severe weather, and navigating roads. The customers don’t consider themselves
as testers. They are customers and even though they might not have paid any money for an app,
they don’t like to waste their time on defective ones. Also, when mobile applications fail during
important tasks, defects are more than a mere inconvenience—they impact lives in a negative way.

While developers may perform bug fixes, customers often abandon apps quickly due to a
bad experience. It is very easy to delete an app from an iOS device, so developers who wish to
have a successful app in the App Store need to understand the detrimental impact of defects on
their success.

That’s why this book is important for mobile application developers and testers. HadoopUnit
offers a solution for testing mobile apps on the iOS platform that is not only free, but reduces test

xiv

time dramatically. There will still be a need for usability and compatibility testing, but the more
troubling defects are those that impact mobile application reliability.

Scott Tilley and Krissada Dechokul have done an excellent job with this book in describing
in detail how to design and implement tests in HadoopUnit. My hope is that everyone involved in
developing iOS applications will read this book and create more reliable and robust applications
that get five-star reviews.

Randall W. Rice
CSTE, CSQA, CTAL

Founder, Principal Consultant, and Vice-President of Research and Development
Rice Consulting Services, Inc.

xv

Preface
The app ecosystem is enormous. We have grown dependent on smartphone apps for almost every
aspect of our lives. When the apps don’t perform as expected, the consequences can range from
midly irritating to life-threatening. For this reason, testing smartphone apps is very important—
particularly the GUI that is the main window into the app’s functionality. Unfortuanately, GUI
testing can be a time-consuming process, which leads to fewer tests being run, further exacerbating
the app’s quality problems.

This book focuses on the specific problem of GUI testing for iOS apps found on Apple’s
products such as the iPhone and the iPad. Apple provides developers with a testing framework
called UI Automation, but its capabilities are limited in terms of speeding up the testing process.
The result is that GUI testing of complex iOS apps can take many hours.

The solution proposed here is to leverage the parallelism inherent in the Hadoop distributed
platform to provide an environment for concurrent test execution. The approach builds upon an
existing system, called HadoopUnit, that was previously used to reduce regression testing time of
large JUnit test suites. HadoopUnit has been customized to drive UI Automation test cases in a
manner that is easy for developers and testers to adopt, yet provides measurable improvement in
test case execition times.

WHAT IS UNIQUE ABOUT THIS BOOK?
This book represents the continuation of research that began in 2009 on addressing the problem
of execution times for large regression test suites. The first of this work were the HadoopUnit dis-
tributed exection environment and the SMART-T migration decision framework [60]. The work
also led to the creation of a new community of researchers and practicioners interesting in software
testing in the cloud (STITC) [59][62].

The STITC project evolved to examine the applicability of testing as a service (TaaS) to hard
problems in software testing (HPST) [61][58]. TaaS is a promising new development that offers a
service-oriented interface to the testing capabilities provided by an environement like HadoopUnit.
The number one problem found in the HPST project was education & training, and it’s currently
an open question where TaaS may help alleviate this timeless challenge.

GUI testing of iOS apps is a timely update and specific instance of the classic regression
testing problem, and one that HadoopUnit is well suited to address. The research reported in this
book is unique is its application of an advanced environment such as HadoopUnit for concurrent

xvi

testing in manner that is accessible to almost all developers and testers—even if they are of modest
means. A simple two-node cluster is all that is needed to realize significant testing benefits.

WHO SHOULD READ THIS BOOK?
Anyone who is involved in GUI testing of iOS apps will find the material presented in this book
valuable. This is particularly true for testers, but developers, managers, and even end-users can ben-
efit from understanding the challenges faced when using the UI Automation framework and the
possible benefits of using the customized HadoopUnit to address these challenges.

Modern software engineering—and app development in particular—involves the use of so-
phisticated IDEs and integrated coding platforms. Many of these tools are moving to the cloud. An
understanding of how Hadoop can be used in the domain of GUI testing provides valuable insight
into the power of the MapReduce programmign paradigm.

OUTLINE OF THE BOOK
Chapter 1 discusses the challenges of GUI testing with UI Automation, outlines prior results for
rapid testing using HadoopUnit, and outlines related work in the areas of GUI testing tools and
distributed testing platforms. Chapter 2 provides background information on the challenges of
software testing in general, and GUI testing of iOS apps with UI Automation in particular, and
summarizes the Hadoop platform and the HadoopUnit distributed test execition environment.
Chapter 3 outines how HadoopUnit can be used to drive the UI Automation framework to facil-
iate parallel test execution. Chapter 4 details three experiments in rapid GUI testing of iOS apps
using the customized HadoopUnit. Lastly, Chapter 5 summarizes the main results, objectives, and
contributions of this work and outlines possile avenues of further investiation.

The book also contains two appendices. Appendix A describes how to set up a HadoopUnit
cluster on Mac OS X. Appendix B provides source code samples for HadoopUnit, suitably modified
for iOS GUI testing with UI Automation.

 October 2014

Scott Tilley
Melbourne, FL

Krissada Dechokul
Bangkok, Thailand

xvii

Acknowledgments
We are indebted to everyone who helped develop HadoopUnit—the platform upon which this
research is built: Tauhida Parveen, Eric Bower, colleagues at Yahoo!, collaborators at SAP, and
members of the global STITC community.

Our thanks to Apple for making the excellent UI Automation framework available for free
as part of the Xcode development environment.

We appreciate the the invaluable comments privided by the book’s reviewers. Their sugges-
tions helped improve the text. Any remaining errors or omissions are ours alone.

We are grateful to the Florida Institute of Technology for supporting this research.
Finally, our gratitude to Morgan & Claypool for their guidance and patience in helping us

publish the results of our work.

xix

Dedication

To Miel
— Scott Tilley

To my parents
— Krissada Dechokul

	Copyright Page
	Title Page
	Contents
	Figures
	Tables
	Foreword
	Preface
	Acknowledgments
	Dedication

