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ABSTRACT
Differential Geometry is a wide field.We have chosen to concentrate upon certain aspects that are
appropriate for an introduction to the subject; we have not attempted an encyclopedic treatment.

In Book I, we focus on preliminaries. Chapter 1 provides an introduction to multivariable
calculus and treats the Inverse Function eorem, Implicit Function eorem, the theory of the
Riemann Integral, and the Change of Variable eorem. Chapter 2 treats smooth manifolds,
the tangent and cotangent bundles, and Stokes’ eorem. Chapter 3 is an introduction to Rie-
mannian geometry. e Levi–Civita connection is presented, geodesics introduced, the Jacobi
operator is discussed, and the Gauss–Bonnet eorem is proved. e material is appropriate for
an undergraduate course in the subject.

We have given some different proofs than those that are classically given and there is some
newmaterial in these volumes. For example, the treatment of the Chern–Gauss–Bonneteorem
for pseudo-Riemannian manifolds with boundary is new.
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Change of Variable eorem, derivative as best linear approximation, Fubini’s eo-
rem,Gauss–Bonneteorem,Gauss’seorem, geodesic, Green’seorem, Implicit
Functioneorem, improper integrals, Inverse Functioneorem, Levi–Civita con-
nection, partitions of unity, pseudo-Riemannian geometry, Riemann integral, Rie-
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Preface
is two-volume series arose out of work by the three authors over a number of years both in
teaching various courses and also in their research endeavors.

e present volume (Book I) is comprised of three chapters. Chapter 1 provides an intro-
duction to multivariable calculus. It begins with two introductory sections on metric spaces and
linear algebra. Various notions of differentiability are introduced and the chain rule is proved.e
Inverse and Implicit Functioneorems are established. One then turns to the theory of integra-
tion. e Riemann integral is introduced and it is shown that a bounded function is integrable if
and only if it is integrable almost everywhere. Compact exhaustions by Jordan measurable sets,
mesa functions, and partitions of unity are used to define improper integrals. Chapter 1 concludes
with a proof of the Change of Variable eorem; upper and lower sums defined by cubes (rather
than rectangles) together with partitions of unity are the fundamental tools employed.

Chapter 2 completes the discussion of multivariable calculus. e basic materials concern-
ing smooth manifolds are introduced. It is shown any compact manifold embeds smoothly in Rm

for some m. A brief introduction to fiber bundle theory and vector bundle theory is given and
the tangent and cotangent bundles are introduced. is formalism is then combined with the
results of Chapter 1 to establish the generalized Stokes’ eorem. e classical Green’s eorem,
Gauss’s eorem, and Stokes’ eorem are then established. e Brauer Fixed Point eorem,
the Fundamental eorem of Algebra, and the Combing the Hair on a Billiard Ball eorem are
presented as applications.

Chapter 3 presents an introduction to Riemannian and pseudo-Riemannian geometry.e
volume form is introduced. e notion of a connection on an arbitrary vector bundle is presented
and the discussion is then specialized to the Levi–Civita connection. Geodesics are treated and
the classical Hopf–Rinow eorem giving various equivalent notions of completeness is estab-
lished in the Riemannian setting.e Jacobi operator is introduced and used to establish theMy-
ers eorem that if the Ricci tensor on a complete Riemannian manifold is uniformly positive,
then the manifold is compact and has finite fundamental group. Riemann surfaces are introduced
and the classical Gauss–Bonnet eorem is established. e Chern–Gauss–Bonnet eorem in
higher dimensions is treated and analytic continuation used to establish an analogous result in the
pseudo-Riemannian setting.



xii PREFACE

We have tried whenever possible to give the original references to major theorems in this
area. We have provided a number of pictures to illustrate the discussion, especially in Chapters 1
and 2. Chapters 1 and 2 are suitable for an undergraduate course on “Calculus onManifolds” and
arose in that context out of a course at the University of Oregon. Chapter 3 is designed for an
undergraduate course in Differential Geometry. us Book I is suitable as an undergraduate text
although, of course, it also forms the foundation of a graduate course in Differential Geometry
as well. Book II can be used as a graduate text in Differential Geometry and arose in that context
out of a second-year graduate course in Differential Geometry at the University of Oregon. e
material can, however, also form the basis of a second-semester course at the undergraduate level
as well. While much of the material is, of course, standard, many of the proofs are a bit different
from those given classically and we hope provide a new viewpoint on the subject. ere are also
new results in the book; our treatment of the generalized Chern–Gauss–Bonnet eorem in the
indefinite signature context arose out of our study of Euler–Lagrange equations using perturba-
tions of complex metrics (i.e., metrics where the gij tensor is C-valued). Similarly, our treatment
of curves in Rm given by the solution to constant coefficient ODEs which have finite total curva-
ture is new.ere are other examples; Differential Geometry is of necessity a vibrant and growing
field – it is not static! ere are, of course, many topics that we have not covered – this is a work
on “Aspects of Differential Geometry” and of necessity must omit more topics than can possibly
be included.

For technical reasons, the material is divided into two books and each book is largely self-
sufficient. To facilitate cross references between the two books, we have numbered the chapters
of Book I from 1 to 3, and the chapters of Book II from 4 to 8.

Peter Gilkey, JeongHyeong Park, and Ramón Vázquez-Lorenzo
February 2015
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