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ABSTRACT

This book provides a thorough introduction to the subfield of theoretical computer science known as
grammatical inference from a computational linguistic perspective. Grammatical inference provides
principled methods for developing computationally sound algorithms that learn structure from
strings of symbols. The relationship to computational linguistics is natural because many research
problems in computational linguistics are learning problems on words, phrases, and sentences: What
algorithm can take as input some finite amount of data (for instance a corpus, annotated or otherwise)
and output a system that behaves “correctly” on specific tasks?

Throughout the text, the key concepts of grammatical inference are interleaved with illus-
trative examples drawn from problems in computational linguistics. Special attention is paid to the
notion of “learning bias.” In the context of computational linguistics, such bias can be thought to
reflect common (ideally universal) properties of natural languages. This bias can be incorporated
either by identifying a learnable class of languages which contains the language to be learned or by
using particular strategies for optimizing parameter values. Examples are drawn largely from two
linguistic domains (phonology and syntax) which span major regions of the Chomsky Hierarchy
(from regular to context-sensitive classes). The conclusion summarizes the major lessons and open

questions that grammatical inference brings to computational linguistics.
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Preface

Once authors have written the words “The End,” they realize how much has been left out. And this
rule holds if instead of one author, there are three. This is one reason why prefaces are important.
They let readers know (and remind the authors) what the book achieves and what it does not.

The tasks addressed in this book become more formidable with each passing day. It is
becoming more complex and intricate because there are more and more cases where one is delivered
a huge amount of strings, words, or sentences, or has access to some such data, and one is asked
how to build a model summarizing or explaining this information. Furthermore, for many reasons—
for example, the fact that most computer scientists have taken courses on graph theory and formal
languages—the types of models people are secking will be very often linked with grammars and
automata.

That is why, today, there are people attempting to build or infer grammars or finite-state
machines in fields as different as verification, pattern recognition, bioinformatics, and linguistics.
That is why techniques of all sorts are being used to infer these models: some rely on statistics, others
on linear algebra, some on formal language theory, and many quite often on a combination of these.
And finally, that is why certain choices have been made in this book, and therefore some readers
might be frustrated.

Before we explain why some of our choices may frustrate readers, let us state who we
think our readers are. One reason we embarked on this project was because there is no text
which introduces grammatical inference to people working in computational linguistics and natural
language processing. Our hope is that this book helps bridge the gap between the needs of #hese
researchers and a particular way of thinking about the problems of learning automata and grammars
in machine learning. We sincerely believe grammatical inference can help address problems in
computational linguistics and that problems in computational linguistics can inform and lead to
new developments in grammatical inference (in fact, such mutual benefits exist and are ongoing).

We also have in mind readers who are not encountering automata and grammars for the first
time. The kind of background knowledge we expect readers to have is of the type that could be found
in standard textbooks on formal language theory that one might take as an advanced undergraduate
student or a beginning graduate student. We also expect readers to have some familiarity with topics
in computational linguistics and natural language processing, like the kinds discussed in the books
by Jurafsky and Martin [2008] or Manning and Schiitze [1999] (or their more recent editions).
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So what are the choices that may frustrate readers? The first choice we made was to concentrate
on only some tools and techniques, and not attempt to be exhaustive.

The second choice was to cover the tools and techniques which have been developed in what
may informally be called the school of grammatical inference, as represented, over the past 30 years,
by the papers published in the series of conferences called ICGI—International Conference on

Grammatical Inference. These share a certain number of aspects.

* They build upon well-understood formal language formalisms and avoid, whenever possible,

technical complications in the definitions of the objects themselves.

* They either attempt to deliver formal learnability results, independent of some particular
corpus, or, on the other hand, aim to produce a very general algorithm whose proof of concept

will be given by its results on particular corpora without corpus-specific tweaks.

Consequently, this means the knowledge we present builds from formal language theory and
concentrates on those techniques whose intricate theoretical backbone comes from that field.

A third choice is that the book is not self-contained, in the sense that not every algorithm
discussed is presented and proved correct in full detail. Instead, we have chosen to focus on ideas, and
to include only the notation, definitions, and theorems that we felt important because they support
those main points. We do not include proofs, but we try to point to them and further material
which helps readers find detailed descriptions and explanations of the algorithms or formalisms. For
instance, we often refer to de la Higuera [2010], a book on grammatical inference with a general
orientation, which is self-contained.

Together all of this means leaving out certain results, which no doubt deserve closer attention.

For finite-state machines, one notable area left out is spectral methods, which identify finite-
state machines with sets of matrices and therefore transforms the learning problem into one which
searches for an optimal set of parameters which fits those matrices. The techniques here are attractive:
they allow the learning of very rich classes of finite-state machines, rely on linear algebra’s vast
literature, and can be redefined as global optimization problems, for which a large number of
researchers are bettering the algorithms all the time.

For formal grammars, a number of results (sometimes grouped under the name grammar
induction) are based on starting with a backbone grammar, either extremely general or devised from
using data for which the structure is known, and adjusting the parameters by just observing relative
frequencies. The types of grammars will themselves be adapted to better fit the knowledge we have
of natural language.

We do not argue here that the techniques covered in this book work better, just that they
correspond to a uniform set of ideas which, when understood, can allow a number of problems to

be solved.
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Perhaps one argument which we would like to put forward is that of intelligibility. Albeit
informal in most cases, the idea is that the types of techniques proposed in this book rely on
wanting to understand the machines and grammars learned. An undeclared goal is that one should
be able to run a grammatical inference algorithm, obtain perhaps a large automaton or grammar, and
nevertheless be able to observe it and understand it, not just its effects. This helps to explain why
we believe that the issue of learning the structure of the grammar is essential, and why this theme
recurs throughout the book.

One may wonder if this is necessary, as the grammar will often be evaluated through a success
or error rate, not through its capacity to speak to us. On the other hand, there are increasingly many
applications where the user wants more than a black box.

All of this, and the idea of making the book useful to as many readers as possible, was what
the authors had in mind when they launched this adventure.
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