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ABSTRACT

Many scientific disciplines rely on observational data of systems for which it is difficult (or impos-
sible) to implement controlled experiments. Data analysis techniques are required for identifying
causal information and relationships directly from such observational data. This need has led to
the development of many difterent time series causality approaches and tools including transfer
entropy, convergent cross-mapping (CCM), and Granger causality statistics.

A practicing analyst can explore the literature to find many proposals for identifying drivers
and causal connections in time series data sets. Exploratory causal analysis (ECA) provides a
framework for exploring potential causal structures in time series data sets and is characterized
by a myopic goal to determine which data series from a given set of series might be seen as the
primary driver. In this work, ECA is used on several synthetic and empirical data sets, and it is
found that all of the tested time series causality tools agree with each other (and intuitive notions
of causality) for many simple systems but can provide conflicting causal inferences for more com-
plicated systems. It is proposed that such disagreements between different time series causality
tools during ECA might provide deeper insight into the data than could be found otherwise.
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Preface

Consider a scientist wishing to find the driving relationships among a collection of time series
data. The scientist probably has a particular problem in mind, e.g., comparing the potential driving
effects of different space weather parameters, but a quick search of the data analysis literature
would reveal that this problem is found in many different fields. They would find proposals for
different approaches, most of which are justified with philosophical arguments about definitions
of causality and are only applicable to specific types of data. However, the scientist would not find
any consensus of which tools consistently provide intuitive causal inferences for specific types of
systems. The literature seems to lack straightforward guidance for drawing causal inferences from
time series data. Many of the proposed approaches are tested on a small number of data sets,
usually generated from complex dynamics, and most authors do not discuss how their techniques
might be used as part of a general causal analysis.

'This work was developed from the realization that drawing causal inferences from time
series data is subtle. The study of causality in data sets has a long history, so the first step is to
develop a loose taxonomy of the field to help frame the specific types of approaches an analyst may
be seeking (e.g., time series causality). Then, the philosophical causality studies must be carefully
and deliberately divorced from the data causality studies, which is done here with the introduction
of exploratory causal analysis (ECA). Finally, examples need to be presented where the different
approaches are compared on identical data sets that have strongly intuitive driving relationships.
Using such an approach, the analyst can develop an understanding of how a causal analysis might
be performed, and how the results of that analysis can be interpreted. This work presents all three
of these steps and is intended as an introduction and guide to such analysis.

James M. McCracken
March 2016
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