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ABSTRACT

Natural language processing (NLP) went through a profound transformation in the mid-1980s
when it shifted to make heavy use of corpora and data-driven techniques to analyze language.
Since then, the use of statistical techniques in NLP has evolved in several ways. One such exam-
ple of evolution took place in the late 1990s or early 2000s, when full-fledged Bayesian machin-
ery was introduced to NLP. This Bayesian approach to NLP has come to accommodate various
shortcomings in the frequentist approach and to enrich it, especially in the unsupervised setting,
where statistical learning is done without target prediction examples.

In this book, we cover the methods and algorithms that are needed to fluently read
Bayesian learning papers in NLP and to do research in the area. These methods and algorithms
are partially borrowed from both machine learning and statistics and are partially developed
“in-house” in NLP. We cover inference techniques such as Markov chain Monte Carlo sam-
pling and variational inference, Bayesian estimation, and nonparametric modeling. In response
to rapid changes in the field, this second edition of the book includes a new chapter on rep-
resentation learning and neural networks in the Bayesian context. We also cover fundamental
concepts in Bayesian statistics such as prior distributions, conjugacy, and generative modeling.
Finally, we review some of the fundamental modeling techniques in NLP, such as grammar
modeling, neural networks and representation learning, and their use with Bayesian analysis.

KEYWORDS

natural language processing, computational linguistics, Bayesian statistics, Bayesian
NLP, statistical learning, inference in NLP, grammar modeling in NLP, neural
networks, representation learning
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Preface (rirst Edition)

When writing about a topic that intersects two areas (in this case, Bayesian Statistics and Natural
Language Processing), the focus and the perspective need to be considered. I took a rather
practical one in writing this book, aiming to write it for those in the same position as myself
during my graduate studies. At that time, I already had a reasonable grasp of the problems in
natural language processing and knowledge of the basic principles in machine learning. I wanted
to learn more about Bayesian statistics—in a rather abstract way—particularly the parts that
are most relevant to NLP. Thus, this book is written from that perspective, providing abstract
information about the key techniques, terminology and models that a computational linguist
would need in order to apply the Bayesian approach to his or her work.

Most chapters in this book, therefore, are rather general and have relevance to other uses
of Bayesian statistics. The last chapter in this book, though, presents some specific NLP appli-
cations for grammar models that are mostly (but not exclusively) used in NLP.

Ideally, this book should be read by a person who already has some idea about statistical
modeling in NLP, and wants to gain more depth about the specific application of Bayesian tech-
niques to NLP. The motivation for this decision to focus more on the mathematical aspects of
Bayesian NLP is simple. Most computational linguists get exposed quite early in their graduate
career or otherwise to the basic core terminology in NLP, the linguistic structures it predicts
and perhaps some of the linguistic motivation behind them. Ideas from Bayesian statistics and
other statistical tools are often “picked up” on the way. As such, there are sometimes miscon-
ceptions and a missing global picture. This book tries to provide some of these missing details
to the reader.

There are several approaches to doing statistics, two of which are the frequentist approach
and the Bayesian approach. The frequentist approach is also sometimes referred to as “classic
statistics.” One of the things that motivated me to learn more about Bayesian statistics is the
rich and colorful history it has. To this day, the famous frequentist-Bayesian divide still ex-
ists. This kind of divide regarding the philosophy that statistical analysis should follow is even
more persistently and more ardently argued about than theories of grammar were in the famous
“linguistics war” between generative semanticians and generative grammarians. It does not end
there—even within the Bayesian camp there are those who support a subjective interpretation
of probability and those who support an objective one.

Although I was captivated by the mathematical elegance of Bayesian statistics when I was
first exposed to the core ideas (in principle, Bayesian statistics relies on one basic principle of
applying Bayes’ rule to invert the relationship between data and parameters), I take a pragmatic
approach and do not try to present Bayesian statistics as the ultimate theory for doing statistical
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NLP. I also do not provide the philosophical arguments that support Bayesian statistics in this
monograph. Instead, I provide the technical mechanisms behind Bayesian statistics, and advise
the reader to determine whether the techniques work well for him or her in the problems they
work on. Here and there, I also describe some connections that Bayesian statistics have to the
frequentist approach, and other points of confluence. If the reader is interested in learning more
about the philosophy behind Bayesian statistics, I suggest reading Jaynes (2003) and also looking
at Barnett (1999). To better understand the history and the people behind Bayesian statistics, I
suggest reading the book by McGrayne (2011). This book consists of eight chapters as following:

Chapter 1 is a refresher about probability and statistics as they relate to Bayesian NLP. We
cover basic concepts such as random variables, independence between random vari-
ables, conditional independence, and random variable expectations; we also briefly dis-
cuss Bayesian statistics and how it differs from frequentist statistics. Most of this chapter
can probably be skipped if one already has some basic background in computer science or
statistics.

Chapter 2 introduces Bayesian analysis in NLP with two examples (the latent Dirichlet allo-
cation model and Bayesian text regression), and also provides a high-level overview of the
topic.

Chapter 3 covers an important component in Bayesian statistical modeling—the prior. We dis-
cuss the priors that are most commonly used in Bayesian NLP, such as the Dirichlet dis-
tribution, non-informative priors, the normal distribution and others.

Chapter 4 covers ideas that bring together frequentist statistics and Bayesian statistics through
the summarization of the posterior distribution. It details approaches to calculate a point
estimate for a set of parameters while maintaining a Bayesian mindset.

Chapter 5 covers one of the main inference approaches in Bayesian statistics: Markov chain
Monte Carlo. It details the most common sampling algorithms used in Bayesian NLP,

such as Gibbs sampling and Metropolis-Hastings sampling.

Chapter 6 covers another important inference approach in Bayesian NLP, variational inference.
It describes mean-field variational inference and the variational expectation-maximization
algorithm.

Chapter 7 covers an important modeling technique in Bayesian NLP, nonparametric model-
ing. We discuss nonparametric models such as the Dirichlet process and the Pitman-Yor
process.

Chapter 8 covers basic grammar models in NLP (such as probabilistic context-free grammars
and synchronous grammars), and the way to frame them in a Bayesian context (using
models such as adaptor grammars, hierarchical Dirichlet process PCFGs and others).
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In addition, the book includes two appendices that provide background information that
offers additional context for reading this book. Each chapter is accompanied by at least five
exercises. This book (perhaps with the exercises) could be used as teaching material. Specifically,
it could be used to teach a number of lectures about Bayesian analysis in NLP. If a significant
amount of time is devoted to Bayesian NLP in class (say, four lectures), I would suggest devoting
one lecture to chapter 3, one lecture to chapter 4, one lecture to chapters 5 and 6 together, and
one lecture to chapter 7. Topics from chapter 8 (such as adaptor grammars or Bayesian PCFGs)
can be injected into the various lectures as examples.
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Preface (Second Edition)

I did not expect to release a second edition for this book so quickly, but the last few years of
fast-paced and exciting developments in the world of Natural Language Processing (NLP) have
called for various updates, leading to this second edition.

'The main addition to this book is Chapter 9, which focuses on representation learning and
neural networks in NLP, particularly in a Bayesian context. This chapter was written based on
the observation that in the past five years or so, NLP literature has been dominated by the use
of neural networks; and as such, I believe the fundamentals needed to be addressed in this book.
Adapting the content to the Bayesian “mission” of this book (coupled with the NLP context)
was not always easy, and I will let the reader be the judge of whether I have accomplished my
mission.

In addition to introducing this new chapter in this edition, several typographical errors
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