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ABSTRACT

In recent years, transmitarray antennas have attracted growing interest with many antenna re-
searchers. Transmitarrays combines both optical and antenna array theory, leading to a low pro-
file design with high gain, high radiation efliciency, and versatile radiation performance for many
wireless communication systems. In this book, comprehensive analysis, new methodologies, and
novel designs of transmitarray antennas are presented.

* Detailed analysis for the design of planar space-fed array antennas is presented. The basics
of aperture field distribution and the analysis of the array elements are described. The ra-
diation performances (directivity and gain) are discussed using array theory approach, and
the impacts of element phase errors are demonstrated.

* 'The performance of transmitarray design using multilayer frequency selective surfaces (M-
FSS) approach is carefully studied, and the transmission phase limit which are generally
independent from the selection of a specific element shape is revealed. The maximum trans-
mission phase range is determined based on the number of layers, substrate permittivity, and
the separations between layers.

* In order to reduce the transmitarray design complexity and cost, three different methods
have been investigated. As a result, one design is performed using quad-layer cross-slot ele-
ments with no dielectric material and another using triple-layer spiral dipole elements. Both
designs were fabricated and tested at X-Band for deep space communications. Furthermore,
the radiation pattern characteristics were studied under different feed polarization condi-
tions and oblique angles of incident field from the feed.

* New design methodologies are proposed to improve the bandwidth of transmitarray an-
tennas through the control of the transmission phase range of the elements. These design
techniques are validated through the fabrication and testing of two quad-layer transmitarray
antennas at Ku-band.

* A single-feed quad-beam transmitarray antenna with 50 degrees elevation separation be-
tween the beams is investigated, designed, fabricated, and tested at Ku-band.

In summary, various challenges in the analysis and design of transmitarray antennas are
addressed in this book. New methodologies to improve the bandwidth of transmitarray antennas
have been demonstrated. Several prototypes have been fabricated and tested, demonstrating the
desirable features and potential new applications of transmitarray antennas.

KEYWORDS

transmitarray antennas, frequency selective surfaces, multilayer aperture antennas,
high gain antennas, wideband transmitarray antennas, multibeam transmitarray an-
tennas
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