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ABSTRACT
A common feature of many approaches to modeling sensory statistics is an emphasis on captur-
ing the “average.” From early representations in the brain, to highly abstracted class categories in
machine learning for classification tasks, central-tendency models based on the Gaussian distri-
bution are a seemingly natural and obvious choice for modeling sensory data. However, insights
from neuroscience, psychology, and computer vision suggest an alternate strategy: preferentially
focusing representational resources on the extremes of the distribution of sensory inputs. e
notion of treating extrema near a decision boundary as features is not necessarily new, but a com-
prehensive statistical theory of recognition based on extrema is only now just emerging in the
computer vision literature. is book begins by introducing the statistical Extreme Value eory
(EVT) for visual recognition. In contrast to central-tendency modeling, it is hypothesized that
distributions near decision boundaries form a more powerful model for recognition tasks by fo-
cusing coding resources on data that are arguably the most diagnostic features. EVT has several
important properties: strong statistical grounding, better modeling accuracy near decision bound-
aries than Gaussian modeling, the ability to model asymmetric decision boundaries, and accurate
prediction of the probability of an event beyond our experience. e second part of the book uses
the theory to describe a new class of machine learning algorithms for decision making that are
a measurable advance beyond the state-of-the-art. is includes methods for post-recognition
score analysis, information fusion, multi-attribute spaces, and calibration of supervised machine
learning algorithms.

KEYWORDS
visual recognition, extreme value theory, machine learning, statistical methods, de-
cision making, failure prediction, information fusion, score normalization, open set
recognition, object recognition, information retrieval, biometrics, deep learning
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Preface
e choice of a probability distribution can have a profound effect on the results coming from
a model for an underlying analysis task—and not always in a good way. Consider the case of
the 2008 financial crisis. Many different quantitative methods are deployed by economists and
financial analysts to gauge the health of the economy. Some of thesemethods attempt tomodel the
overall composition of a market sector, while others look at specific circumstances that may impact
the market at large. A central tendency model would lead to an understanding of average market
forces, and would have good predictive power when significant market forces move collectively in
a certain direction (perhaps toward a bull or bear market).

An analyst using such amodel back in 2007 would have had a rosy picture of the economy—
a correction as large as the looming financial crisis was a seemingly improbable event. What
eventually brought the financial system to the brink was a series of extreme market movements as
firms holding mortgage-backed securities collapsed. An alternative modeling strategy would have
focused not on average movement in the market, but on the tails of distributions representing
specific market returns. Under such a model, where the extrema contribute to the model in a
meaningful way, the financial crisis was well within the realm of possibility.

It is not an enormous leap of faith to believe that the same phenomenon occurs in computer
vision. Most often we find that the extrema (e.g., edges, attributes, parts, salient objects) in a
scene contained within a digital image define visual appearance, and not the average pixel content
(e.g., background). is calls for statistical modeling that does not deemphasize or ignore the rare
facets of images or the features extracted from them. However in practice, this is not what we find.
Remarkably, the field of computer vision has maintained a steady fixation with central tendency
modeling, in spite of the complex nature of the underlying statistics of natural scenes. Extrema
may be rare, but their influence is more often than not considerable.

ese observations lead us to the topic at hand: the statistical extreme value theory. From
predicting floods to downturns in the market, extreme value theory is a workhorse of predictive
modeling in many fields outside of computer science. However, we are just starting to see its
emergence within computer vision—an exciting and much welcomed development. Admittedly,
there is some safety in central tendency modeling, as it allows one to invoke the central limit
theorem, and assume that the normal distribution applies in approximation. But as we shall see,
the first extreme value theorem functions in much the same way, and gives us access to a number
of limiting distributions that apply in the tails of overall distributions, regardless of form. Given
such flexibility, researchers within computer vision may find the extreme value theory becoming
an indispensable part of their statistics toolkit once they get a feel for it.



x PREFACE

is book is a summary of close to a decade of research into the application of the statistical
extreme value theory to visual recognition. Unlike various references found in the statistics litera-
ture, it is intended to be a practical introductory guide to extreme value theory-based algorithms,
and thus eschews proofs and other non-essential formalities. e interested reader is encouraged
to dig deeper into the cited papers for that material as necessary. Further, this book can be read
as a companion volume to the “Statistical Methods for Open Set Recognition” tutorial that
was presented at CVPR 2016 in Las Vegas. e material from that tutorial, including slides
and code, is available at the following URL: http://www.wjscheirer.com/misc/openset/.
While this book represents a milestone of sorts for a budding research area within computer
vision, we are sure to see even more intriguing work in this direction in the coming years.

Walter J. Scheirer
January 2017
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