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ABSTRACT

Understanding and implementing the brain’s computational paradigm is the one true grand chal-
lenge facing computer researchers. Not only are the brain’s computational capabilities far beyond
those of conventional computers, its energy efficiency is truly remarkable. This book, written from
the perspective of a computer designer and targeted at computer researchers, is intended to give
both background and lay out a course of action for studying the brain’s computational paradigm.
It contains a mix of concepts and ideas drawn from computational neuroscience, combined with
those of the author.

As background, relevant biological features are described in terms of their computational
and communication properties. The brain’s neocortex is constructed of massively interconnected
neurons that compute and communicate via voltage spikes, and a strong argument can be made that
precise spike timing is an essential element of the paradigm. Drawing from the biological features, a
mathematics-based computational paradigm is constructed. The key feature is spiking neurons that
perform communication and processing in space-time, with emphasis on time. In these paradigms,
time is used as a freely available resource for both communication and computation.

Neuron models are first discussed in general, and one is chosen for detailed development.
Using the model, single-neuron computation is first explored. Neuron inputs are encoded as spike
patterns, and the neuron is trained to identify input pattern similarities. Individual neurons are
building blocks for constructing larger ensembles, referred to as “columns”. These columns are
trained in an unsupervised manner and operate collectively to perform the basic cognitive function
of pattern clustering. Similar input patterns are mapped to a much smaller set of similar output
patterns, thereby dividing the input patterns into identifiable clusters. Larger cognitive systems are
formed by combining columns into a hierarchical architecture. These higher level architectures are
the subject of ongoing study, and progress to date is described in detail in later chapters. Simulation
plays a major role in model development, and the simulation infrastructure developed by the author

is described.

KEYWORDS

spiking neural networks, temporal models, unsupervised learning, classification, neuron models,
computing theory
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Preface 2019

Since the time of this book’s publication, the author’s approach to developing Temporal Neural
Networks (TNNs) has continued to evolve. In general, this evolution has been in the direction of
increasing simplicity rather than increasing complexity. The following paragraphs summarize the
most significant changes.

The biggest change in approach has been with respect to synaptic modeling and training.
Both in Part IIT and in the lead-up material in Part II, emphasis is placed on compound synapses.
A compound synapse is the composition of multiple simple synapses that connect the same two
neurons. Each connection has a different delay. Compound synapses are both biologically plausible
and computationally very expressive. This also makes them difficult to work with when developing
a new computing paradigm. Consequently, the author has begun working with simpler synapse
neurons in order to better understand the detailed operation of STDP before proceeding to com-
pound synapses.

On a related matter, the averaging approach to synaptic training has been abandoned in
favor of a more conventional Spike Timing Dependent Plasticity (STDP) approach, wherein the
excitatory column, lateral inhibitory column, and STDP work closely together in a coordinated
way, using only information local to each synapse and its associated neuron body. The averaging
method was intended to simplify and streamline the simulation process. However, this approach
does not generate synaptic weights that are similar to weights produced by conventional STDP.
Unlike compound synapses which may be an avenue for productive future research, the averaging
technique for training does not appear to be viable.

A more conventional STDP approach is also advantageous because it is naturally amenable
to continual learning, in which both evaluation (inference) and training are intertwined ongoing
processes. In the long run, this feature may prove to be one of the most important aspects of TNNGs.
Localized STDP is an essential element of the emergent learning behavior that will be crucial to
the eventual success of this enterprise, and devising efficient, robust, localized STDP is a hard
problem.

With regard to training inhibitory blocks, the author no longer uses the Pareto optimizing
approach used in Section 7.7. Although this method may eventually prove to be useful for some
types of TNNSs, it is does not appear to be necessary for the TNNs under consideration here. Cur-
rently, inhibition parameters are manually specified, and the same parameters hold for all inhibitory

columns in the same network layer.
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With regard to input encoding, biologically plausible “OnOft” encoding computes the dif-
ference between a center pixel and the average of its surround. At the time this book was originally
written in 2017, it was felt that similar computational properties could be achieved with an encod-
ing composed of both the positive and negative of an image (Section 7.3). However, a closer ap-
proximation to true OnOff encoding has been found to work better. Furthermore, OnOff encoding
is relatively easy to compute, so there are no apparent advantages to the positive-negative approach.

Space-time algebra and its association with Generalized Race Logic (GRL) were added late
in the development of the book. This aspect of the work appears to be very promising, and a fuller
development can be found in the paper: James E. Smith (2018). “Space-time algebra: A model for
neocortical computation.” In Proceedings of the 45th Annual International Symposium on Computer
Architecture, pp. 289-300, DOI: 10.1109/ISCA.2018.00033.

With regard to new areas for TNN research that are not discussed in the book, dendritic
computation provides significant potential for innovation. With dendritic computation, input
spikes coming into the same dendrite can interact in ways that implement simple functions. For
example, in terms of space-time algebra, max and min functions may be implemented in the den-
drites, prior to STDP. This opens up the possibility of operations that are akin to pooling operations
in conventional machine learning systems.

J. E. Smith
April 30,2019
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Preface 2017

Understanding, and then replicating, the basic computing paradigms at work in the brain will be
a monumental breakthrough in both computer engineering and theoretical neuroscience. I believe
that the breakthrough (or a series of breakthroughs) will occur in the next 40 years, perhaps signifi-
cantly sooner. This means that it will happen during the professional lifetime of anyone beginning
a career in computer engineering today. For some perspective, consider the advances in computation
that can be accomplished in 40 years.

When I started working in computer architecture and hardware design in 1972, the highest
performing computer was still being constructed from discrete transistors and resistors. The CDC
7600, which began shipping in 1969, had a clock frequency that was two orders of magnitude
slower than today’s computers, and it had approximately 512 KB of main memory. Now, 40+ years
later, we have clock frequencies measured in GHz and main memories in GB. The last 40 years has
been an era of incredible technology advances, primarily in silicon, coupled with major engineering
and architecture refinements that exploit the silicon advances.

It is even more interesting to consider the 40 years prior to 1972.That was a period of funda-
mental invention. In the early 1930s, Church, Gédel, and Turing were just coming onto the scene.
Less than 30 years prior to 1972, in 1945, von Neumann wrote his famous report. Twenty years
prior, in 1952, Seymour Cray was a newly minted engineer. Just before our 1972 division point, the
CDC 7600 had a very fast in-order instruction pipeline and used a RISC instruction set (although
the term hadn't yet been coined). Also in the first 40 years, cache memory, micro-coding, and issu-
ing instructions out-of-order had already been implemented in commercially available computers;
so had virtual memory and multi-threading.

To summarize: the most recent 40 years of computer architecture, spanning an entire career,
has largely been a period of application and technology-driven refinement. In contrast, the 40 years
before that was an era of great invention—the time when the giants walked the earth. Based on an
admittedly self-taught understanding of neuroscience, I believe we are at the threshold of another
40 years of great invention—inventing an entirely new class of computing paradigms.

Computer architects and engineers have a number of roles to play in the discovery of new
computing paradigms as used in the brain’s neocortex. One role is developing large scale, Big Data
platforms to manage and analyze all the information that will be generated by connectome-related
projects. Another role is developing special purpose computing machines to support high perfor-

mance and/or efficient implementations of models proposed by theoretical neuroscientists.
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The role that I emphasize, however, is as an active participant in formulating the underlying
theory of computation. That is, computer architects and engineers should be actively engaged in
proposing, testing, and improving plausible computational methods that are fundamentally similar
to those found in the neocortex.

Computer architecture and engineering, in the broad sense, encompasses CMOS circuits,
logic design, computer organization, instruction set architecture, system software, and application
software. Someone knowledgeable in computer architecture and engineering has a significant un-
derstanding of the entire spectrum of computing technologies from physical hardware to high-level
software. This is a perspective that no other research specialization has.

I am sure that many computer architects and engineers would love to work on the extremely
challenging, far-reaching problem of understanding and implementing paradigms as done in the
brain. Unfortunately, there is a significant barrier to entry. That barrier is the daunting mountain
of neuroscience literature combined with the well-established scientific culture that has grown up
alongside it (e.g., vocabulary, representation style, mathematical style). This isn't insignificant, by the
way: the language you use shapes the way you think.

So, how to overcome this barrier? Answering that question is the over-arching theme of this
book.

First, it requires a lot of reading from the mountain of neuroscience literature; there is no
shortcut, but the papers cited herein can provide some guidance. Then, by taking a bottom-up
approach, computer architects and engineers will achieve their best leverage. At the bottom is the
abstraction from biological neural systems to a mathematics-based formulation. In conventional
computers, the analogous abstraction is from CMOS circuits to Boolean algebra. A computer
architect, with some perspective and insight, can start with biological circuits (as complicated as
they may seem) and model/abstract them to a practical mathematics-based computational method.

'This book contains a description of relevant biological features as background. Then drawing
from these biological features, a mathematics-based computational paradigm is constructed. The
key feature is spiking neurons that perform communication and processing in space-time, with em-
phasis on #ime. In these paradigms, time is used as a freely available resource for communication and
computation. Along the way, a prototype architecture for implementing feedforward data clustering
is developed and evaluated.

Although a number of new ideas are described, many of the concepts and ideas in this book
are not original with the author. Lots of ideas have been proposed and explored over the decades.
At this point, there is much to be gained by carefully choosing from existing concepts and ideas,
then combining them in new and interesting ways—engineering, in other words.

The particular modeling choices made in this book are but one set of possibilities. It is not

even clear that the methods explored in this book are eventually going to work as planned. At the
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time of this writing, the ongoing design study in the penultimate chapter ends with an incomplete
prototype neural network design.

There is no doubt many other approaches and modeling choices that could be, and should
be, explored. Eventually, someone will find just the right combination of ideas—and there is every
reason to expect that person will be a computer engineer.

stk

If the reader’s goal is to achieve a solid understanding of spike-based Neural Computation,
then this book alone is not enough. It is important to read material from the literature concurrently.
There is a long list of references at the end of this book; too long to be a practical supplementary
reading list. Following is a shorter, annotated list of background material. None of the listed papers

is standalone; rather, each provides a good touchstone for a particular area of related research.

Neuron-Level Biology:

Just about any introductory textbook will do. Better yet, use a search engine to find any of a number

of excellent online articles, many illustrated with nice graphics.

Circuit-Level Biology:

Mountcastle, Vernon B. “The columnar organization of the neocortex.” Brain 120, no. 4 (1997):

701-722.

Buxhoeveden, Daniel P. and Manuel F. Casanova. “The minicolumn hypothesis in neuroscience.”

Brain 125, no. 5 (2002): 935-951.

Hill, Sean L., et al. “Statistical connectivity provides a sufficient foundation for specific functional

connectivity in neocortical neural microcircuits.” Proceedings of the National Academy of

Sciences (2012): E2885-E2894.

The paper by Mountcastle is a classic, mostly summarizing his groundbreaking work on the
column hypothesis. The paper by Buxhoeveden and Casanova is an excellent review article. The
paper by Hill et al. is from the Markram group in Switzerland; it is experimental work that
attempts to answer the right kinds of questions regarding connectivity.

Modeling:

Morrison, Abigail, Markus Diesmann, and Wulfram Gerstner. “Phenomenological models of synaptic
plasticity based on spike timing.” Biological Cybernetics 98, no. 6 (2008): 459—-478.

The operation of synapses is critical to the computational paradigm, and this is an excellent

modeling paper specifically directed at synapses and synaptic plasticity. Ihis and other work by

Gerstner and group should be at the top of any reading list on neuron modeling.
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Theory:

Maass, Wolfgang. “Computing with spiking neurons.” In Pulsed Neural Networks, W. Maass and C.
M. Bishop, editors, pages 55, 85. MIT Press (Cambridge), 1999.

Maass did some seminal theoretical research in spiking neural networks. This paper summarizes

much of that work along with related research by others.

Computation:

Masquelier, T, and Simon J. Thorpe. “Unsupervised learning of visual features through spike timing
dependent plasticity.” PLoS Computational Biology 3, no. 2 (2007): e31.

Bohte, Sander M., et al., “Unsupervised clustering with spiking neurons by sparse temporal coding
and multilayer RBF networks.” IEEE Transactions on Neural Networks, 13, no. 2 (2002):
426-435.

Karnani, Mahesh, et al. “A blanket of inhibition: Functional inferences from dense inhibitory con-

nectivity.” Current Opinion in Neurobiology 26 (2014): 96-102.

Simon Thorpe is a pioneer in spiking neural networks of the type described in this book. All the
work by Thorpe and associates is interesting reading, not just the paper listed here. The work by
Bobhte et al., builds on earlier radial basis function research, which should also be read. The paper

by Karnani et al. is a nice discussion of inhibition and the modeling thereof.

Machine Learning:

Ciresan, Dan, et al. “Flexible, high performance convolutional neural networks for image classifi-
cation.” Proceedings of the Twenty-Second International Joint Conference on Artificial Intel-
ligence. 2 (2011): 1237-1242.

The neural networks being developed in this book fit within the broad discipline of machine
learning. Consequently, there are some similarities with conventional machine learning ap-
proaches. This paper describes a deep convolutional neural network of about the same scale as the

networks studied here.

Meta-Theory:

Chaitin, Gregory. META MATH! The Quest for Omega. Vintage, 2008.

The book by Chaitin is fairly easy-to-read and is imbued with the concepts and philosophy
behind algorithmic information theory. When studying a computing paradigm that is not hu-

man-designed, it is good to have a “meta=" perspective.
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