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ABSTRACT

Partial differential equations (PDEs) are one of the most used widely forms of mathematics in
science and engineering. PDEs can have partial derivatives with respect to (1) an initial value
variable, typically time, and (2) boundary value variables, typically spatial variables. Therefore,
two fractional PDEs can be considered, (1) fractional in time (TFPDEs), and (2) fractional in
space (SFPDEs). The two volumes are directed to the development and use of SFPDEs, with

the discussion divided as:
* Vol 1: Introduction to Algorithms and Computer Coding in R
* Vol 2: Applications from Classical Integer PDEs.

Various definitions of space fractional derivatives have been proposed. We focus on the
Caputo derivative, with occasional reference to the Riemann-Liouville derivative.

'The Caputo derivative is defined as a convolution integral. Thus, rather than being /oca/
(with a value at a particular point in space), the Caputo derivative is non-local (it is based on
an integration in space), which is one of the reasons that it has properties not shared by integer
derivatives.

A principal objective of the two volumes is to provide the reader with a set of documented
R routines that are discussed in detail, and can be downloaded and executed without having to
first study the details of the relevant numerical analysis and then code a set of routines.

In the first volume, the emphasis is on basic concepts of SFPDEs and the associated nu-
merical algorithms. The presentation is not as formal mathematics, e.g., theorems and proofs.
Rather, the presentation is by examples of SFPDEs, including a detailed discussion of the algo-
rithms for computing numerical solutions to SFPDEs and a detailed explanation of the associ-
ated source code.

KEYWORDS

space fractional partial differential equations (SFPDEs), initial value (temporal)
conditions, boundary value (spatial) conditions; nonlinear SFPDEs, numerical al-

gorithms for SFPDEs, fractional calculus
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Preface

Partial differential equations (PDEs) are one of the most used widely forms of mathematics in
science and engineering. PDEs can have partial derivatives with respect to (1) an initial value
variable, typically time, and (2) boundary value variables, typically spatial variables. Therefore,
two fractional PDEs (FPDEs) can be considered, (1) fractional in time (TFPDEs), and (2)
fractional in space (SFPDEs). The books! are directed to the development and use of SFPDEs.

FPDEs have features and solutions that go beyond the established integer PDEs (IPDEs),
for example, the classical field equations including the Euler, Navier-Stokes, Maxwell and Ein-
stein equations. FPDEs therefore offer the possibility of solutions that have features that better
approximate physical/chemical/biological phenomena than IPDEs.

Fractional calculus dates back to the beginning of calculus (e.g., to Leibniz, Riemann and
Liouville), but recently there has been extensive reporting of applications, typically as expressed
by TFPDE/SFPDEs. In particular, SFPDEs are receiving broad attention in the research lit-
erature, especially when applied to the computer-based modeling of heterogeneous media. For
example, SFPDEs are being applied to living tissue (with potential applications in biomedical
engineering, biology and medicine).

Various definitions of space fractional derivatives have been proposed. Therefore, as a first
step in the use of SFPDEs, a definition of the derivative must be selected. In both books, we
focus on the Caputo derivative, with occasional reference to the Riemann-Liouville derivative.

'The Caputo derivative has at least two important advantages:

1. For the special case of an integer derivative, the usual properties of integer calculus follow.
For example, the Caputo derivative of a constant is zero.

2. 'The definition of a Caputo derivative is based the integral of an integer derivative. There-
fore, the established algorithms for approximating integer derivatives can be used. For the
numerical methods that follow, the integer derivatives are approximated with splines.

'The Caputo derivative is defined as a convolution integral. Thus, rather than being /oca/
(with a value at a particular point in space), the Caputo derivative is non-local, (it is based on
an integration in space), which is one of the reasons that it has properties not shared by integer
derivative).

IThe two volume set has the titles:

Numerical Integration of Space Fractional Partial Differential Equations
Vol 1: Introduction to Algorithms and Computer Coding in R

Vol 2: Applications from Classical Integer PDEs.
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A parameter of the Caputo derivative that is of primary interest is the order of the deriva-
tive, which is fractional, with integer order as a special case. The various example applications
that follow generally permit the variation of the fractional order in computer-based analysis.

'The papers cited as a source of the SFPDE models generally consist of a statement of the
equations followed by reported numerical solutions. Generally, little or no information is given
about how the solutions were computed (the algorithms) and in all cases, the computer code
that was used to calculate the solutions is not provided.

In other words, what is missing is: (1) a detailed discussion of the numerical methods
used to produce the reported solutions and (2) the computer routines used to calculate the re-
ported solutions. For the reader to complete these two steps to verify the reported solutions with
reasonable effort is essentially impossible.

A principal objective of the books is therefore to provide the reader with a set of docu-
mented R routines that are discussed in detail, and can be downloaded and executed without
having to first master the details of the relevant numerical analysis and then code a set of routines.

The example applications are intended as introductory and open ended. They are based
mainly on classical (legacy) IPDEs. The focus in each chapter is on:

1. A statement of the SFPDE system, including initial conditions (ICs), boundary conditions
(BCs) and parameters.

2. 'The algorithms for the calculation of numerical solutions, with particular emphasis on
splines.

3. A set of R routines for the calculation of numerical solutions, including a detailed expla-
nation of each section of the code.

4. Discussion of the numerical solution.
5. Summary and conclusions about extensions of the computer-based analysis.

In summary, the presentation is not as formal mathematics, e.g., theorems and proofs.
Rather, the presentation is by examples of SFPDE applications, including the details for com-
puting numerical solutions, particularly with documented source code. The authors would wel-
come comments, especially pertaining to this format and experiences with the use of the R
routines. Comments and questions can be directed to wes1@lehigh.edu.

Younes Salehi and William E. Schiesser
November 2017
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