# An Introduction to Partial Differential Equations

# Synthesis Lectures on Mathematics and Statistics

#### Editor

Steven G. Krantz, Washington University, St. Louis

#### An Introduction to Partial Differential Equations

Daniel J. Arrigo 2017

#### Aspects of Differential Geometry III

Esteban Calviño-Louzao, Eduardo García-Río, Peter Gilkey, JeongHyeong Park, and Ramón Vázquez-Lorenzo 2017

#### The Fundamentals of Analysis for Talented Freshmen

Peter M. Luthy, Guido L. Weiss, and Steven S. Xiao 2016

### Aspects of Differential Geometry II

Peter Gilkey, Jeong Hyeong Park, Ramón Vázquez-Lorenzo 2015

### Aspects of Differential Geometry I

Peter Gilkey, Jeong Hyeong Park, Ramón Vázquez-Lorenzo 2015

### An Easy Path to Convex Analysis and Applications

Boris S. Mordukhovich and Nguyen Mau Nam 2013

### Applications of Affine and Weyl Geometry

Eduardo García-Río, Peter Gilkey, Stana Nikčević, and Ramón Vázquez-Lorenzo 2013

## Essentials of Applied Mathematics for Engineers and Scientists, Second Edition

Robert G. Watts

2012

## Chaotic Maps: Dynamics, Fractals, and Rapid Fluctuations

Goong Chen and Yu Huang 2011

#### Matrices in Engineering Problems

Marvin J. Tobias 2011

#### The Integral: A Crux for Analysis

Steven G. Krantz 2011

#### Statistics is Easy! Second Edition

Dennis Shasha and Manda Wilson 2010

#### Lectures on Financial Mathematics: Discrete Asset Pricing

Greg Anderson and Alec N. Kercheval 2010

#### Jordan Canonical Form: Theory and Practice

Steven H. Weintraub 2009

### The Geometry of Walker Manifolds

Miguel Brozos-Vázquez, Eduardo García-Río, Peter Gilkey, Stana Nikčević, and Ramón Vázquez-Lorenzo 2009

#### An Introduction to Multivariable Mathematics

Leon Simon 2008

### Jordan Canonical Form: Application to Differential Equations

Steven H. Weintraub 2008

### Statistics is Easy!

Dennis Shasha and Manda Wilson 2008

## A Gyrovector Space Approach to Hyperbolic Geometry

Abraham Albert Ungar 2008 © Springer Nature Switzerland AG 2022

Reprint of original edition © Morgan & Claypool 2018

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in printed reviews, without the prior permission of the publisher.

An Introduction to Partial Differential Equations
Daniel J. Arrigo

ISBN: 978-3-031-01285-3 paperback ISBN: 978-3-031-02413-9 ebook ISBN: 978-3-031-00259-5 hardcover

DOI 10.1007/978-3-031-02413-9

A Publication in the Springer series SYNTHESIS LECTURES ON MATHEMATICS AND STATISTICS

Lecture #21

Series Editor: Steven G. Krantz, Washington University, St. Louis

Series ISSN

Print 1938-1743 Electronic 1938-1751

# An Introduction to Partial Differential Equations

Daniel J. Arrigo Universital of Central Arkansas

SYNTHESIS LECTURES ON MATHEMATICS AND STATISTICS #21



#### **ABSTRACT**

This book is an introduction to methods for solving partial differential equations (PDEs). After the introduction of the main four PDEs that could be considered the cornerstone of Applied Mathematics, the reader is introduced to a variety of PDEs that come from a variety of fields in the Natural Sciences and Engineering and is a springboard into this wonderful subject. The chapters include the following topics: First-order PDEs, Second-order PDEs, Fourier Series, Separation of Variables, and the Fourier Transform. The reader is guided through these chapters where techniques for solving first- and second-order PDEs are introduced. Each chapter ends with a series of exercises illustrating the material presented in each chapter.

The book can be used as a textbook for any introductory course in PDEs typically found in both science and engineering programs and has been used at the University of Central Arkansas for over ten years.

#### **KEYWORDS**

advection equation, heat equation, wave equation and Laplace's equation, method of characteristics, separation of variables, Fourier series, and the Fourier transform

# Contents

|   | Pref                     | aceix                                 |  |
|---|--------------------------|---------------------------------------|--|
|   |                          | nowledgments xi                       |  |
|   |                          |                                       |  |
| 1 | Intr                     | oduction1                             |  |
|   | 1.1                      | Model Equations                       |  |
|   |                          | 1.1.1 Advection Equation              |  |
|   |                          | 1.1.2 Diffusion Equation              |  |
|   |                          | 1.1.3 Laplace's Equation              |  |
|   |                          | 1.1.4 Wave Equation                   |  |
|   | 1.2                      | PDEs Are Everywhere                   |  |
|   | 1.3                      | Exercises                             |  |
| 2 | First-Order PDEs         |                                       |  |
|   | 2.1                      | Constant Coefficient Equations        |  |
|   | 2.2                      | Linear Equations                      |  |
|   | 2.3                      | Method of Characteristics             |  |
|   | 2.4                      | Quasilinear Equations                 |  |
|   | 2.5                      | Higher-Dimensional Equations          |  |
|   | 2.6                      | Fully Nonlinear First-Order Equations |  |
|   |                          | 2.6.1 Method of Characteristics       |  |
|   |                          | 2.6.2 Charpit's Method                |  |
|   | 2.7                      | Exercises                             |  |
| 3 | Second-Order Linear PDEs |                                       |  |
|   | 3.1                      | Introduction                          |  |
|   | 3.2                      | Standard Forms                        |  |
|   |                          | 3.2.1 Parabolic Standard Form         |  |
|   |                          | 3.2.2 Hyperbolic Standard Form        |  |
|   |                          | 3.2.3 Modified Hyperbolic Form        |  |
|   |                          | 3.2.4 Regular Hyperbolic Form         |  |
|   |                          | 3.2.5 Elliptic Standard Form          |  |

|   | 3.3               | The Wave Equation                                           | 59  |
|---|-------------------|-------------------------------------------------------------|-----|
|   | 3.4               | Exercises                                                   | 63  |
| 4 | Fourier Series    |                                                             |     |
|   | 4.1               | Fourier Series                                              | 67  |
|   | 4.2               | Fourier Series on $[-\pi,\pi]$                              | 69  |
|   | 4.3               | Fourier Series on $[-L, L]$                                 | 74  |
|   | 4.4               | Odd and Even Extensions                                     | 80  |
|   |                   | 4.4.1 Sine Series                                           | 81  |
|   |                   | 4.4.2 Cosine Series                                         | 84  |
|   | 4.5               | Exercises                                                   | 88  |
| 5 | Sepa              | aration of Variables                                        | 91  |
|   | 5.1               | The Heat Equation                                           | 91  |
|   |                   | 5.1.1 Nonhomogeneous Boundary Conditions                    | 100 |
|   |                   | 5.1.2 Nonhomogeneous Equations                              | 105 |
|   |                   | 5.1.3 Equations with a Solution-Dependent Source Term       | 109 |
|   |                   | 5.1.4 Equations with a Solution-Dependent Convective Term   | 112 |
|   | 5.2               | Laplace's Equation                                          | 114 |
|   |                   | 5.2.1 Laplace's Equation on an Arbitrary Rectangular Domain | 122 |
|   | 5.3               | The Wave Equation                                           | 126 |
|   | 5.4               | Exercises                                                   | 129 |
| 6 | Fourier Transform |                                                             |     |
|   | 6.1               | Fourier Transform                                           | 133 |
|   | 6.2               | Fourier Sine and Cosine Transforms                          | 140 |
|   | 6.3               | Exercises                                                   | 146 |
| 7 | Solutions         |                                                             |     |
|   | Aut               | hor's Biography                                             | 155 |

## **Preface**

This is an introductory book about obtaining exact solutions to partial differential equations (PDEs). It is based on my lecture notes from a course I have taught almost every year since 2001 at the University of Central Arkansas (UCA).

When I began teaching the course, I tried several textbooks. There are many fine textbooks on the market but they just seemed to miss the mark for students at UCA. Even though the average ACT scores of incoming freshmen at UCA are among the highest in the state, the textbooks that were available were too sophisticated for my students. I also felt that the way most books taught the subject matter could be improved upon. For example, a lot of the books start with the separation of variables, a technique used for solving second-order linear PDEs. As most books on ordinary differential equations start with solving first-order ODEs before considering second-order ODEs, I felt the same order would be beneficial in solving PDEs. This naturally led to the presentation in this book.

In Chapter 1, I introduce four basic PDEs which some would consider the cornerstone of Applied Mathematics: the advection equation, the heat equation, Laplace's equation, and the wave equation. After this, I list 12 PDEs (systems of PDEs) that appear in science and engineering and provide a springboard into the subject matter. Most of these PDEs are nonlinear in nature since our world is inherently nonlinear. However, one must first know how to solve linear PDEs before entering the nonlinear world.

In Chapter 2, I introduce the student to first-order PDEs. Through a change of variables, we solve constant coefficient and linear PDEs and are led to the method of characteristics. We continue with solving quasilinear and higher-dimensional PDEs, and then progress to fully nonlinear first-order PDES. The chapter ends with Charpit's method, a method that seeks compatibility between two first-order PDEs.

In Chapter 3, we focus on second-order PDEs, and in particular, three standard forms: (i) parabolic standard form, (ii) hyperbolic standard form, and (iii) elliptic standard form. Students learn how to transform to each standard form. The chapter ends with a derivation of the classic d'Alembert solution.

In Chapter 4, after a brief introduction to separation of variables for the heat equation, I introduce Fourier series. I introduce both the regular Fourier series and the Fourier Sine and Cosine series. Several examples are considered showing various standard functions and their Fourier series representations. At this point, I return the students to solving PDEs.

In Chapter 5, we continue our discussion with the separation of variables where we consider the heat equation, Laplace's equation and the wave equation. We start with the heat equation and consider several types of problems. One example has fixed homogeneous boundary

#### x PREFACE

conditions, no flux boundary conditions and radiating boundary conditions; then we consider nonhomogeneous boundary conditions. Next, we consider nonhomogeneous equations, equations with solution dependent source terms, then solution dependent convective terms. We move on to Laplace's equation and, finally, to the wave equation.

The final chapter, Chapter 6, involves the Fourier (Sine/Cosine) transform. It is a generalization of the Fourier series, where the length of the interval approaches infinity. It is through these transforms that we are able to solve a variety of PDEs on the infinite and half infinite domain.

The book is self-contained; the only requirements are a solid foundation in calculus and elementary differential equations. Chapters 1–5 have been the basis of a one-semester course at the University of Central Arkansas for over a decade. The material in Chapter 6 could certainly be included. For the times that I have taught the course, I have omitted Chapter 6 in favor of student seminars. I ask students to pick topics, extensions or applications of the material covered in class, and present oral seminars to the class with formal write-ups on their topic being due by the end of the course. My goal is that at the end of the course the students understand why studying this subject is important.

Daniel J. Arrigo January 2018

## Acknowledgments

I first would like to thank my wife Peggy, who once again became a book widow. My love and thanks. Second, I would like to thank Professors West Vayo (University of Toledo) and Jill Guerra (University of Arkansas – Fort Smith) who used earlier versions of this book and gave valuable feed back. Third, I would like to thank all of my students who, over the past 10+ years, volunteered to read the book and gave much-needed input on both the presentation of material and on the complexity of the examples given. Finally, I would like to thank Susanne Filler of Morgan & Claypool Publishers. Once again, she made the process a simple and straightforward one.

Daniel J. Arrigo January 2018