Compiling Algorithms

for Heterogeneous Systems

Synthesis Lectures on
Computer Architecture

Editor

Margaret Martonosi, Princeton University

Founding Editor Emeritus
Mark D. Hill, University of Wisconsin, Madison

Synthesis Lectures on Computer Architecture publishes 50~ to 100-page publications on topics
pertaining to the science and art of designing, analyzing, selecting and interconnecting hardware
components to create computers that meet functional, performance and cost goals. The scope will
largely follow the purview of premier computer architecture conferences, such as ISCA, HPCA,

MICRO, and ASPLOS.

Compiling Algorithms for Heterogeneous Systems
Steven Bell, Jing Pu, James Hegarty, and Mark Horowitz
2018

Architectural and Operating System Support for Virtual Memory
Abhishek Bhattacharjee and Daniel Lustig
2017

Deep Learning for Computer Architects
Brandon Reagen, Robert Adolf, Paul Whatmough, Gu-Yeon Wei, and David Brooks
2017

On-Chip Networks, Second Edition
Natalie Enright Jerger, Tushar Krishna, and Li-Shiuan Peh
2017

Space-Time Computing with Temporal Neural Networks
James E. Smith
2017

Hardware and Software Support for Virtualization
Edouard Bugnion, Jason Nieh, and Dan Tsafrir
2017

iv

Datacenter Design and Management: A Computer Architect’s Perspective

Benjamin C. Lee
2016

A Primer on Compression in the Memory Hierarchy
Somayeh Sardashti, Angelos Arelakis, Per Stenstrém, and David A. Wood
2015

Research Infrastructures for Hardware Accelerators
Yakun Sophia Shao and David Brooks
2015

Analyzing Analytics
Rajesh Bordawekar, Bob Blainey, and Ruchir Puri
2015

Customizable Computing
Yu-Ting Chen, Jason Cong, Michael Gill, Glenn Reinman, and Bingjun Xiao
2015

Die-stacking Architecture
Yuan Xie and Jishen Zhao
2015

Single-Instruction Multiple-Data Execution
Christopher J. Hughes
2015

Power-Efficient Computer Architectures: Recent Advances
Magnus Sjilander, Margaret Martonosi, and Stefanos Kaxiras
2014

FPGA-Accelerated Simulation of Computer Systems
Hari Angepat, Derek Chiou, Eric S. Chung, and James C. Hoe
2014

A Primer on Hardware Prefetching
Babak Falsafi and Thomas F. Wenisch
2014

On-Chip Photonic Interconnects: A Computer Architect’s Perspective
Christopher J. Nitta, Matthew K. Farrens, and Venkatesh Akella
2013

Optimization and Mathematical Modeling in Computer Architecture

Tony Nowatzki, Michael Ferris, Karthikeyan Sankaralingam, Cristian Estan, Nilay Vaish, and
David Wood

2013

Security Basics for Computer Architects
Ruby B. Lee
2013

'The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale
Machines, Second edition

Luiz André Barroso, Jimmy Clidaras, and Urs Holzle

2013

Shared-Memory Synchronization
Michael L. Scott
2013

Resilient Architecture Design for Voltage Variation
Vijay Janapa Reddi and Meeta Sharma Gupta
2013

Multithreading Architecture
Mario Nemirovsky and Dean M. Tullsen
2013

Performance Analysis and Tuning for General Purpose Graphics Processing Units
(GPGPU)

Hyesoon Kim, Richard Vuduc, Sara Baghsorkhi, Jee Choi, and Wen-mei Hwu

2012

Automatic Parallelization: An Overview of Fundamental Compiler Techniques
Samuel P. Midkiff
2012

Phase Change Memory: From Devices to Systems
Moinuddin K. Qureshi, Sudhanva Gurumurthi, and Bipin Rajendran
2011

Multi-Core Cache Hierarchies
Rajeev Balasubramonian, Norman P. Jouppi, and Naveen Muralimanohar
2011

A Primer on Memory Consistency and Cache Coherence
Daniel J. Sorin, Mark D. Hill, and David A. Wood
2011

Dynamic Binary Modification: Tools, Techniques, and Applications
Kim Hazelwood
2011

Quantum Computing for Computer Architects, Second Edition
Tzvetan S. Metodi, Arvin 1. Faruque, and Frederic T. Chong
2011

High Performance Datacenter Networks: Architectures, Algorithms, and Opportunities
Dennis Abts and John Kim
2011

Processor Microarchitecture: An Implementation Perspective

Antonio Gonzilez, Fernando Latorre, and Grigorios Magklis
2010

Transactional Memory, 2nd edition
Tim Harris, James Larus, and Ravi Rajwar
2010

Computer Architecture Performance Evaluation Methods
Lieven Eeckhout
2010

Introduction to Reconfigurable Supercomputing
Marco Lanzagorta, Stephen Bique, and Robert Rosenberg
2009

On-Chip Networks
Natalie Enright Jerger and Li-Shiuan Peh
2009

The Memory System: You Can’t Avoid It, You Can't Ignore It, You Can’t Fake It
Bruce Jacob
2009

Fault Tolerant Computer Architecture
Daniel J. Sorin
2009

'The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale
Machines

Luiz André Barroso and Urs Holzle

2009

Computer Architecture Techniques for Power-Efficiency
Stefanos Kaxiras and Margaret Martonosi
2008

Chip Multiprocessor Architecture: Techniques to Improve Throughput and Latency
Kunle Olukotun, Lance Hammond, and James Laudon

2007

Transactional Memory
James R. Larus and Ravi Rajwar

2006

Quantum Computing for Computer Architects
Tzvetan S. Metodi and Frederic T. Chong
2006

© Springer Nature Switzerland AG 2022
Reprint of original edition © Morgan & Claypool 2018

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations

in printed reviews, without the prior permission of the publisher.

Compiling Algorithms for Heterogeneous Systems

Steven Bell, Jing Pu, James Hegarty, and Mark Horowitz

ISBN:978-3-031-00630-2 paperback

ISBN:978-3-031-01758-2 ebook
ISBN:978-3-031-00055-3 hardcover

DOI10.1007/978-3-031-01758-2

A Publication in the Springer series
SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE

Lecture #43

Series Editor: Margaret Martonosi, Princeton University

Founding Editor Emeritus: Mark D. Hill, University of Wisconsin, Madison
Series ISSN

Print 1935-3235 Electronic 1935-3243

Compiling Algorithms

for Heterogeneous Systems

Steven Bell
Stanford University

Jing Pu
Google

James Hegarty

Oculus

Mark Horowitz
Stanford University

SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE #43

ABSTRACT

Most emerging applications in imaging and machine learning must perform immense amounts
of computation while holding to strict limits on energy and power. To meet these goals, archi-
tects are building increasingly specialized compute engines tailored for these specific tasks. The
resulting computer systems are heterogeneous, containing multiple processing cores with wildly
different execution models. Unfortunately, the cost of producing this specialized hardware—and
the software to control it—is astronomical. Moreover, the task of porting algorithms to these
heterogeneous machines typically requires that the algorithm be partitioned across the machine
and rewritten for each specific architecture, which is time consuming and prone to error.

Over the last several years, the authors have approached this problem using domain-
specific languages (DSLs): high-level programming languages customized for specific domains,
such as database manipulation, machine learning, or image processing. By giving up general-
ity, these languages are able to provide high-level abstractions to the developer while producing
high-performance output. The purpose of this book is to spur the adoption and the creation of
domain-specific languages, especially for the task of creating hardware designs.

In the first chapter, a short historical journey explains the forces driving computer archi-
tecture today. Chapter 2 describes the various methods for producing designs for accelerators,
outlining the push for more abstraction and the tools that enable designers to work at a higher
conceptual level. From there, Chapter 3 provides a brief introduction to image processing al-
gorithms and hardware design patterns for implementing them. Chapters 4 and 5 describe and
compare Darkroom and Halide, two domain-specific languages created for image processing
that produce high-performance designs for both FPGAs and CPUs from the same source code,
enabling rapid design cycles and quick porting of algorithms. The final section describes how
the DSL approach also simplifies the problem of interfacing between application code and the
accelerator by generating the driver stack in addition to the accelerator configuration.

'This book should serve as a useful introduction to domain-specialized computing for com-
puter architecture students and as a primer on domain-specific languages and image processing
hardware for those with more experience in the field.

KEYWORDS

domain-specific languages, high-level synthesis, compilers, image processing accel-
erators, stencil computation

Contents

Preface xiii
Acknowledgments XV
Introduction 1
1.1 CMOS Scaling and the Rise of Specialization 2
1.2 What Wil We Build Now? 7

1.2.1 Performance, Power,and Area 7

1.2.2 Flexibility.o 9
1.3 The Cost of Specializationuuutuiiieeitiniiiiiie.. 10
1.4 Good Applications for Accelerationc.ooiiiiiiiio... 13
Computationsand Compilers L 17
2.1 Direct Specificationoueiiiiiiii i 18
22 Compilers 19
2.3 High-level Synthesis 21
2.4 Domain-specific Languages oo 24
Image Processing with Stencil Pipelines 27
3.1 Image Signal Processors........... ... i 27
3.2 Example Applications 29
Darkroom: A Stencil Language for Image Processing 33
4.1 Language Description 34
4.2 A Simple Pipeline in Darkroom oo 36
4.3 Optimal Synthesis of Line-buffered Pipelines 37

4.3.1 Generating Line-buffered Pipelines 37

4.3.2 Shift Operatorot 39

4.3.3 Finding Optimal Shifts.......... L. 39
44 Implementationuiiiiiiiiiiiii e 42

4.4.1 ASIC and FPGA Synthesis 43

442 CPU Compilation.............ooiiiiiiiiiiiiiiiii... 44

45 Evaluation.i i 46
4.5.1 Scheduling for Hardware Synthesis 47
4.5.2 Scheduling for General-purpose Processors................... ... 49
4.6 SUMMATY ..ottt ettt et ettt 50
Programming CPU/FPGA Systems from Halide 51
51 The Halide Language i 52
5.2 Mapping Halide to Hardware o i oL, 53
5.3 Compiler Implementation i i 57
5.3.1 Architecture Parameter Extraction............................. 57
5.3.2 IR Transformationuuiiiuiiieeiaieeaan. 59
5.3.3 Loop Perfection Optimization 59
5.3.4 Code Generation.uuuiie e et 61
5.4 Implementation and Evaluation L. 63
5.4.1 Programmability and Efficiency ool 63
5.4.2 Quality of Hardware Generationcooiiiia. ... 66
55 Conclusioncoouiiii 68
Interfacing with Specialized Hardware 69
6.1 Common Interfaces i 69
6.2 'The Challenge of Interfaces, 70
6.3 Solutions to the Interface Problem 71
6.3.1 Compiler Support 71
6.3.2 Library Interface 71
6.3.3 APIplus DSL ... 71
6.4 Drivers for Darkroom and Halide on FPGA 72
6.4.1 Memory and Coherency o i 73
6.4.2 Running the Hardware o o il 74
6.4.3 Generating Systems and Drivers 76
6.4.4 Generating the Whole Stack with Halide 76
6.4.5 Heterogeneous System Performance 77
Conclusions and Future Directions 81
Bibliography i 83

Authors’ Biographies 89

Preface

Cameras are ubiquitous, and computers are increasingly being used to process image data to
produce better images, recognize objects, build representations of the physical world, and extract
salient bits from massive streams of video, among countless other things. But while the data
deluge continues to increase, and while the number of transistors that can be cost-effectively
placed on a silicon die is still going up (for now), limitations on power and energy mean that
traditional CPUs alone are insufficient to meet the demand. As a result, architects are building
more and more specialized compute engines tailored to provide energy and performance gains
on these specific tasks.

Unfortunately, the cost of producing this specialized hardware—and the software to con-
trol it—is astronomical. Moreover, the resulting computer systems are heterogeneous, contain-
ing multiple processing cores with wildly different execution models. The task of porting al-
gorithms to these heterogeneous machines typically requires that the algorithm be partitioned
across the machine and rewritten for each specific architecture, which is time consuming and
prone to error.

Over the last several years, we have approached this problem using domain-specific lan-
guages (DSLs)—high-level programming languages customized for specific domains, such as
database manipulation, machine learning, or image processing. By giving up generality, these
languages are able to provide high-level abstractions to the developer while producing high-
performance output. Our purpose in writing this book is to spur the adoption and the creation
of domain-specific languages, especially for the task of creating hardware designs.

'This book is not an exhaustive description of image processing accelerators, nor of domain-
specific languages. Instead, we aim to show why DSLs make sense in light of the current state
of computer architecture and development tools, and to illustrate with some specific examples
what advantages DSLs provide, and what tradeoffs must be made when designing them. Our
examples will come from image processing, and our primary targets are mixed CPU/FPGA
systems, but the underlying techniques and principles apply to other domains and platforms as
well. We assume only passing familiarity with image processing, and focus our discussion on the
architecture and compiler sides of the problem.

In the first chapter, we take a short historical journey to explain the forces driving com-
puter architecture today. Chapter 2 describes the various methods for producing designs for
accelerators, outlining the push for more abstraction and the tools that enable designers to work
at a higher conceptual level. In Chapter 3, we provide a brief introduction to image processing
algorithms and hardware design patterns for implementing them, which we use through the
rest of the book. Chapters 4 and 5 describe Darkroom and Halide, two domain-specific lan-

xiv. PREFACE

guages created for image processing. Both are able to produce high-performance designs for
both FPGAs and CPUs from the same source code, enabling rapid design cycles and quick
porting of algorithms. We present both of these examples because comparing and contrasting
them illustrates some of the tradeofts and design decisions encountered when creating a DSL.
'The final portion of the book discusses the task of controlling specialized hardware within a het-
erogeneous system running a multiuser operating system. We give a brief overview of how this
works on Linux and show how DSLs enable us to automatically generate the necessary driver
and interface code, greatly simplifying the creation of that interface.

'This book assumes at least some background in computer architecture, such as an advanced
undergraduate or early graduate course in CPU architecture. We also build on ideas from com-
pilers, programming languages, FPGA synthesis, and operating systems, but the book should
be accessible to those without extensive study on these topics.

Steven Bell, Jing Pu, James Hegarty, and Mark Horowitz
January 2018

Acknowledgments

Any work of this size is necessarily the result of many collaborations. We are grateful to John
Brunhaver, Zachary DeVito, Pat Hanrahan, Jonathan Ragan-Kelley, Steve Richardson, Jeff Set-
ter, Artem Vasilyev, and Xuan Yang, who influenced our thinking on these topics and helped
develop portions of the systems described in this book. We're also thankful to Mike Morgan,
Margaret Martonosi, and the team at Morgan & Claypool for shepherding us through the
writing and production process, and to the reviewers whose feedback made this a much bet-
ter manuscript than it would have been otherwise.

Steven Bell, Jing Pu, James Hegarty, and Mark Horowitz
January 2018

	Copyright Page
	Title Page
	Contents
	Preface
	Acknowledgments

