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ABSTRACT

Most emerging applications in imaging and machine learning must perform immense amounts
of computation while holding to strict limits on energy and power. To meet these goals, archi-
tects are building increasingly specialized compute engines tailored for these specific tasks. The
resulting computer systems are heterogeneous, containing multiple processing cores with wildly
different execution models. Unfortunately, the cost of producing this specialized hardware—and
the software to control it—is astronomical. Moreover, the task of porting algorithms to these
heterogeneous machines typically requires that the algorithm be partitioned across the machine
and rewritten for each specific architecture, which is time consuming and prone to error.

Over the last several years, the authors have approached this problem using domain-
specific languages (DSLs): high-level programming languages customized for specific domains,
such as database manipulation, machine learning, or image processing. By giving up general-
ity, these languages are able to provide high-level abstractions to the developer while producing
high-performance output. The purpose of this book is to spur the adoption and the creation of
domain-specific languages, especially for the task of creating hardware designs.

In the first chapter, a short historical journey explains the forces driving computer archi-
tecture today. Chapter 2 describes the various methods for producing designs for accelerators,
outlining the push for more abstraction and the tools that enable designers to work at a higher
conceptual level. From there, Chapter 3 provides a brief introduction to image processing al-
gorithms and hardware design patterns for implementing them. Chapters 4 and 5 describe and
compare Darkroom and Halide, two domain-specific languages created for image processing
that produce high-performance designs for both FPGAs and CPUs from the same source code,
enabling rapid design cycles and quick porting of algorithms. The final section describes how
the DSL approach also simplifies the problem of interfacing between application code and the
accelerator by generating the driver stack in addition to the accelerator configuration.

'This book should serve as a useful introduction to domain-specialized computing for com-
puter architecture students and as a primer on domain-specific languages and image processing
hardware for those with more experience in the field.

KEYWORDS

domain-specific languages, high-level synthesis, compilers, image processing accel-
erators, stencil computation
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Preface

Cameras are ubiquitous, and computers are increasingly being used to process image data to
produce better images, recognize objects, build representations of the physical world, and extract
salient bits from massive streams of video, among countless other things. But while the data
deluge continues to increase, and while the number of transistors that can be cost-effectively
placed on a silicon die is still going up (for now), limitations on power and energy mean that
traditional CPUs alone are insufficient to meet the demand. As a result, architects are building
more and more specialized compute engines tailored to provide energy and performance gains
on these specific tasks.

Unfortunately, the cost of producing this specialized hardware—and the software to con-
trol it—is astronomical. Moreover, the resulting computer systems are heterogeneous, contain-
ing multiple processing cores with wildly different execution models. The task of porting al-
gorithms to these heterogeneous machines typically requires that the algorithm be partitioned
across the machine and rewritten for each specific architecture, which is time consuming and
prone to error.

Over the last several years, we have approached this problem using domain-specific lan-
guages (DSLs)—high-level programming languages customized for specific domains, such as
database manipulation, machine learning, or image processing. By giving up generality, these
languages are able to provide high-level abstractions to the developer while producing high-
performance output. Our purpose in writing this book is to spur the adoption and the creation
of domain-specific languages, especially for the task of creating hardware designs.

'This book is not an exhaustive description of image processing accelerators, nor of domain-
specific languages. Instead, we aim to show why DSLs make sense in light of the current state
of computer architecture and development tools, and to illustrate with some specific examples
what advantages DSLs provide, and what tradeoffs must be made when designing them. Our
examples will come from image processing, and our primary targets are mixed CPU/FPGA
systems, but the underlying techniques and principles apply to other domains and platforms as
well. We assume only passing familiarity with image processing, and focus our discussion on the
architecture and compiler sides of the problem.

In the first chapter, we take a short historical journey to explain the forces driving com-
puter architecture today. Chapter 2 describes the various methods for producing designs for
accelerators, outlining the push for more abstraction and the tools that enable designers to work
at a higher conceptual level. In Chapter 3, we provide a brief introduction to image processing
algorithms and hardware design patterns for implementing them, which we use through the
rest of the book. Chapters 4 and 5 describe Darkroom and Halide, two domain-specific lan-
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guages created for image processing. Both are able to produce high-performance designs for
both FPGAs and CPUs from the same source code, enabling rapid design cycles and quick
porting of algorithms. We present both of these examples because comparing and contrasting
them illustrates some of the tradeofts and design decisions encountered when creating a DSL.
'The final portion of the book discusses the task of controlling specialized hardware within a het-
erogeneous system running a multiuser operating system. We give a brief overview of how this
works on Linux and show how DSLs enable us to automatically generate the necessary driver
and interface code, greatly simplifying the creation of that interface.

'This book assumes at least some background in computer architecture, such as an advanced
undergraduate or early graduate course in CPU architecture. We also build on ideas from com-
pilers, programming languages, FPGA synthesis, and operating systems, but the book should
be accessible to those without extensive study on these topics.

Steven Bell, Jing Pu, James Hegarty, and Mark Horowitz
January 2018
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