Reasoning with Probabilistic and Deterministic Graphical Models

Exact Algorithms

Second Edition

Synthesis Lectures on Artificial Intelligence and Machine Learning

Editors

Ronald J. Brachman, Jacobs Technion-Cornell Institute at Cornell Tech Francesca Rossi, IBM Research AI Peter Stone, University of Texas at Austin

Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algorithms, Second Edition

Rina Dechter 2019

Lifelong Machine Learning, Second Edition

Zhiyuan Chen and Bing Liu 2018

Adversarial Machine Learning

Yevgeniy Vorobeychik and Murat Kantarcioglu 2018

Strategic Voting

Reshef Meir 2018

Predicting Human Decision-Making: From Prediction to Action

Ariel Rosenfeld and Sarit Kraus 2018

Game Theory for Data Science: Eliciting Truthful Information

Boi Faltings and Goran Radanovic 2017

Multi-Objective Decision Making

Diederik M. Roijers and Shimon Whiteson 2017

Lifelong Machine Learning

Zhiyuan Chen and Bing Liu 2016

Statistical Relational Artificial Intelligence: Logic, Probability, and Computation

Luc De Raedt, Kristian Kersting, Sriraam Natarajan, and David Poole 2016

Representing and Reasoning with Qualitative Preferences: Tools and Applications

Ganesh Ram Santhanam, Samik Basu, and Vasant Honavar 2016

Metric Learning

Aurélien Bellet, Amaury Habrard, and Marc Sebban 2015

Graph-Based Semi-Supervised Learning

Amarnag Subramanya and Partha Pratim Talukdar 2014

Robot Learning from Human Teachers

Sonia Chernova and Andrea L. Thomaz 2014

General Game Playing

Michael Genesereth and Michael Thielscher 2014

Judgment Aggregation: A Primer

Davide Grossi and Gabriella Pigozzi 2014

An Introduction to Constraint-Based Temporal Reasoning

Roman Barták, Robert A. Morris, and K. Brent Venable 2014

Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algorithms

Rina Dechter

2013

Introduction to Intelligent Systems in Traffic and Transportation

Ana L.C. Bazzan and Franziska Klügl 2013

A Concise Introduction to Models and Methods for Automated Planning

Hector Geffner and Blai Bonet

2013

Essential Principles for Autonomous Robotics

Henry Hexmoor

2013

Case-Based Reasoning: A Concise Introduction

Beatriz López

2013

Answer Set Solving in Practice

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub 2012

Planning with Markov Decision Processes: An AI Perspective

Mausam and Andrey Kolobov

2012

Active Learning

Burr Settles

2012

Computational Aspects of Cooperative Game Theory

Georgios Chalkiadakis, Edith Elkind, and Michael Wooldridge 2011

Representations and Techniques for 3D Object Recognition and Scene Interpretation

Derek Hoiem and Silvio Savarese

2011

A Short Introduction to Preferences: Between Artificial Intelligence and Social Choice

Francesca Rossi, Kristen Brent Venable, and Toby Walsh 2011

Human Computation

Edith Law and Luis von Ahn 2011

Trading Agents

Michael P. Wellman 2011

Visual Object Recognition

Kristen Grauman and Bastian Leibe 2011

Learning with Support Vector Machines

Colin Campbell and Yiming Ying

2011

Algorithms for Reinforcement Learning

Csaba Szepesvári 2010

Data Integration: The Relational Logic Approach

Michael Genesereth 2010

Markov Logic: An Interface Layer for Artificial Intelligence

Pedro Domingos and Daniel Lowd 2009

Introduction to Semi-Supervised Learning

XiaojinZhu and Andrew B.Goldberg 2009

Action Programming Languages

Michael Thielscher 2008

Representation Discovery using Harmonic Analysis

Sridhar Mahadevan 2008

Essentials of Game Theory: A Concise Multidisciplinary Introduction

Kevin Leyton-Brown and Yoav Shoham 2008

A Concise Introduction to Multiagent Systems and Distributed Artificial Intelligence Nikos Vlassis

2007

Intelligent Autonomous Robotics: A Robot Soccer Case Study

Peter Stone 2007

© Springer Nature Switzerland AG 2022

Reprint of original edition © Morgan & Claypool 2019

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in printed reviews, without the prior permission of the publisher.

Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algorithms, Second Edition Rina Dechter

ISBN: 978-3-031-00455-1 paperback ISBN: 978-3-031-01583-0 ebook ISBN: 978-3-031-00028-7 hardcover

DOI 10.1007/978-3-031-01583-0

A Publication in the Springer series

SYNTHESIS LECTURES ON ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Lecture #41

Series Editors: Ronald J. Brachman, Jacobs Technion-Cornell Institute at Cornell Tech

Francesca Rossi, IBM Research AI

Peter Stone, University of Texas at Austin

Series ISSN

Synthesis Lectures on Artificial Intelligence and Machine Learning

Print 1939-4608 Electronic 1939-4616

Reasoning with Probabilistic and Deterministic Graphical Models

Exact Algorithms

Second Edition

Rina Dechter University of California, Irvine

SYNTHESIS LECTURES ON ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING #41

ABSTRACT

Graphical models (e.g., Bayesian and constraint networks, influence diagrams, and Markov decision processes) have become a central paradigm for knowledge representation and reasoning in both artificial intelligence and computer science in general. These models are used to perform many reasoning tasks, such as scheduling, planning and learning, diagnosis and prediction, design, hardware and software verification, and bioinformatics. These problems can be stated as the formal tasks of constraint satisfaction and satisfiability, combinatorial optimization, and probabilistic inference. It is well known that the tasks are computationally hard, but research during the past three decades has yielded a variety of principles and techniques that significantly advanced the state of the art.

This book provides comprehensive coverage of the primary exact algorithms for reasoning with such models. The main feature exploited by the algorithms is the model's graph. We present inference-based, message-passing schemes (e.g., variable-elimination) and search-based, conditioning schemes (e.g., cycle-cutset conditioning and AND/OR search). Each class possesses distinguished characteristics and in particular has different time vs. space behavior. We emphasize the dependence of both schemes on few graph parameters such as the treewidth, cycle-cutset, and (the pseudo-tree) height. The new edition includes the notion of influence diagrams, which focus on sequential decision making under uncertainty. We believe the principles outlined in the book would serve well in moving forward to approximation and anytime-based schemes. The target audience of this book is researchers and students in the artificial intelligence and machine learning area, and beyond.

KEYWORDS

graphical models, Bayesian networks, constraint networks, Markov networks, influence diagrams, induced-width, treewidth, cycle-cutset, loop-cutset, pseudo-tree, bucket-elimination, variable-elimination, AND/OR search, conditioning, reasoning, inference, knowledge representation

Contents

	Pref	ace xiii				
1	Intr	Introduction				
	1.1	Probabilistic vs. Deterministic Models				
	1.2	Directed vs. Undirected Models				
	1.3	General Graphical Models				
	1.4	Inference and Search-Based Schemes				
	1.5	Overview of the Book				
2	Defi	ining Graphical Models				
	2.1	General Graphical Models				
	2.2	The Graphs of Graphical Models				
		2.2.1 Basic Definitions				
		2.2.2 Types of Graphs				
	2.3	Constraint Networks				
	2.4	Cost Networks				
	2.5	Probability Networks				
		2.5.1 Bayesian Networks				
		2.5.2 Markov Networks				
	2.6	Influence Diagrams				
	2.7	Mixed Networks				
	2.8	Summary and Bibliographical Notes				
3	Infe	rence: Bucket Elimination for Deterministic Networks				
	3.1	Bucket Elimination for Constraint Networks				
	3.2	Bucket Elimination for Propositional CNFs				
	3.3	Bucket Elimination for Linear Inequalities				
	3.4	The Induced-Graph and Induced-Width				
		3.4.1 Trees				
		3.4.2 Finding Good Orderings				
	3.5	Chordal Graphs				
	3.6	Summary and Bibliography Notes				

4	Infe	erence: Bucket Elimination for Probabilistic Networks	49
	4.1	Belief Updating and Probability of Evidence	49
		4.1.1 Deriving BE-bel	50
		4.1.2 Complexity of BE-bel	56
		4.1.3 The Impact of Observations	58
	4.2	Bucket Elimination for Optimization Tasks	61
		4.2.1 A Bucket Elimination Algorithm for mpe	62
		4.2.2 A Bucket Elimination Algorithm for map	64
	4.3	Bucket Elimination for Markov Networks	65
	4.4	Bucket Elimination for Influence Diagrams	66
	4.5	Bucket Elimination for Cost Networks and Dynamic Programming .	71
	4.6	Bucket Elimination for Mixed Networks	73
	4.7	The General Bucket Elimination	78
	4.8	Summary and Bibliographical Notes	79
	4.9	Appendix: Proofs	80
5	Tree	e-Clustering Schemes	81
	5.1	Bucket-Tree Elimination	81
		5.1.1 Asynchronous Bucket-Tree Propagation	87
	5.2	From Bucket Trees to Cluster Trees	88
		5.2.1 From Buckets to Clusters – the Short Route	88
		5.2.2 Acyclic Graphical Models	90
		5.2.3 Tree Decomposition and Cluster Tree Elimination	92
		5.2.4 Generating Tree Decompositions	95
	5.3	Properties of CTE for General Models	98
		5.3.1 Correctness of CTE	98
		5.3.2 Complexity of CTE	101
	5.4	Illustration of CTE for Specific Models	102
		5.4.1 Belief Updating and Probability of Evidence	102
		5.4.2 Constraint Networks	105
		5.4.3 Optimization	107
	5.5	Summary and Bibliographical Notes	107

6	ANI	D/OR Search Spaces for Graphical Models
	6.1	AND/OR Search Trees
		6.1.1 Weights of OR-AND Arcs
		6.1.2 Pseudo Trees
		6.1.3 Properties of AND/OR Search Trees
	6.2	AND/OR Search Graphs
		6.2.1 Generating Compact AND/OR Search Spaces
		6.2.2 Building Context-Minimal AND/OR Search Graphs 126
		6.2.3 Size of AND/OR Graph
	6.3	Finding Good Pseudo-Trees
		6.3.1 Pseudo Trees Created from Induced-Graphs
		6.3.2 Hypergraph Decompositions
	6.4	Value Functions of Reasoning Problems
		6.4.1 Searching and/or Tree (AOT) and and/or Graph (AOG) 137
	6.5	General AND-OR Search – AO(i)
		6.5.1 Complexity
	6.6	AND/OR Search Algorithms For Mixed Networks
		6.6.1 AND-OR-CPE Algorithm
		6.6.2 Constraint Propagation in AND-OR-CPE
		6.6.3 Good and Nogood Learning
	6.7	Summary and Bibliographical Notes
	6.8	Appendix: Proofs
7	Con	nbining Search and Inference: Trading Space for Time
	7.1	The Cutset-Conditioning Scheme
		7.1.1 Cutset-Conditioning for Constraints
		7.1.2 General Cutset-Conditioning
		7.1.3 Alternating Conditioning and Elimination
	7.2	The Super-Cluster Schemes
	7.3	Trading Time and Space with AND/OR Search
		7.3.1 AND/OR Cutset-Conditioning
		7.3.2 Algorithm Adaptive Caching (AOC(q))
		7.3.3 Relations Between $AOC(q)$, $AO-ALT-VEC(q)$ and $AO-VEC(q)$ 166
		7.3.4 $AOC(q)$ Compared with $STCE(q)$
	7.4	Summary and Bibliographical Notes
	7.5	Appendix: Proofs

V	ч	1
Δ	ч	1

8	Conclusion
	Bibliography
	Author's Biography

Preface

Graphical models, including constraint networks (hard and soft), Bayesian networks, Markov random fields, and influence diagrams, have become a central paradigm for knowledge representation and reasoning, and provide powerful tools for solving problems in a variety of application domains, including scheduling and planning, coding and information theory, signal and image processing, data mining, computational biology, and computer vision.

These models can be acquired from experts or learned from data. Once a model is available, we need to be able to make deductions and to extract various types of information. We refer to this as *reasoning* in analogy with the human process of thinking and reasoning. These reasoning problems can be stated as the formal tasks of constraint satisfaction and satisfiability, combinatorial optimization, and probabilistic inference. It is well known that these tasks are computationally hard, but research during the past three decades has yielded a variety of effective principles and led to impressive scalability of exact techniques.

In this book we provide a comprehensive coverage of the main exact algorithms for reasoning with such models. The primary feature exploited by the algorithms is the model's graph structure and they are therefore uniformly applicable across a broad range of models, where dependencies are expressed as constraints, cost functions or probabilistic relationships. We also provide a glimpse into properties of the dependencies themselves, known as context-specific independencies, when treating deterministic functions such as constraints. Clearly, exact algorithms must be complemented by approximations. Indeed, we see this book as the first phase of a broader book that would cover approximation algorithms as well. We believe, however, that in order to have effective approximations we have to start with the best exact algorithms.

The book is organized into seven chapters and a conclusion. Chapter 1 provides an introduction to the book and its contents. Chapter 2 introduces the reader to the formal definition of the general graphical model and then describes the most common models, including constraint networks and probabilistic networks, which are used throughout the book. We distinguish two classes of algorithms: inference-based, message-passing schemes (Chapters 3, 4, and 5) and search-based, conditioning schemes (Chapters 6 and 7). This division is useful because algorithms in each class possesses common and distinguished characteristics and in particular have different behavior with respect to the tradeoff between time and memory. Chapter 7 focuses on this tradeoff, introducing hybrids of search and inference schemes. We emphasize the dependence of both types on few graph parameters such as the treewidth, cycle-cutset, and (the pseudo-tree) height.

The book is based on research done in my lab over the past two decades. It is largely founded on work with my graduate and postdoctoral students including: Dan Frost, Irina

xiv PREFACE

Rish, Kalev Kask, David Larkin, Robert Mateescu, Radu Marinescu, Bozhena Bidyuk, Vibhav Gogate, Lars Otten, Natasha Flerova and William Lam and my postdoctoral students Javier Larrosa, and Emma Rollon. Most heavily it relies on the work of Kalev Kask (Chapter 5) and Robert Mateescu (Chapters 6 and 7). I wish to also thank my colleagues at UCI for providing a supportive environment in our AI and machine learning labs, and especially to Alex Ihler for our recent collaboration that has been particularly inspiring and fruitful.

I owe a great deal to members of my family that took an active role in some parts of this book. First, to my son Eyal who spent several months reading and providing editing, as well as very useful suggestions regarding the book's content and exposition. Thanks also go to my husband Avi on providing editorial comments on large parts of this book and to Anat Gafni for her useful comments on Chapter 1.

The second edition of the book contains many edits and corrections that were suggested by students who took my classes over the last five years and by other readers, and I would like to thank them all. It also includes two new subsections on influence diagrams in Chapter 2 and Chapter 4.

Rina Dechter Los Angeles, January 2019