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ABSTRACT
Book IV continues the discussion begun in the first three volumes. Although it is aimed at first-
year graduate students, it is also intended to serve as a basic reference for people working in
affine differential geometry. It also should be accessible to undergraduates interested in affine
differential geometry. We are primarily concerned with the study of affine surfaces which are
locally homogeneous. We discuss affine gradient Ricci solitons, affine Killing vector fields, and
geodesic completeness. Opozda has classified the affine surface geometries which are locally
homogeneous; we follow her classification. Up to isomorphism, there are two simply connected
Lie groups of dimension 2. The translation group R2 is Abelian and the ax C b group is non-
Abelian.The first chapter presents foundational material. The second chapter deals with TypeA
surfaces.These are the left-invariant affine geometries onR2. Associating to each TypeA surface
the space of solutions to the quasi-Einstein equation corresponding to the eigenvalue � D �1

turns out to be a very powerful technique and plays a central role in our study as it links an analytic
invariant with the underlying geometry of the surface. The third chapter deals with Type B
surfaces; these are the left-invariant affine geometries on the ax C b group. These geometries
form a very rich family which is only partially understood. The only remaining homogeneous
geometry is that of the sphere S2.The fourth chapter presents relations between the geometry of
an affine surface and the geometry of the cotangent bundle equipped with the neutral signature
metric of the modified Riemannian extension.

KEYWORDS
affine gradient Ricci solitons, affine Killing vector fields, geodesic completeness,
locally homogeneous affine surfaces, locally symmetric affine surfaces, projectively
flat, quasi-Einstein equation
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Preface
This four-volume series arose out of work by the authors over a number of years both in teaching
various courses and in their research endeavors. For technical reasons, the material is divided
into four books and each book is largely self-sufficient. To facilitate cross references between the
books, we have numbered the chapters of Book I from 1–3, the chapters of Book II from 4–8,
the chapters of Book III from 9–11, and the chapters of the present Book IV on affine surfaces
from 12–15. A final book in the series dealing with elliptic operator theory and its applications
to Differential Geometry is proposed.

Up to isomorphism, there are two simply connected Lie groups of dimension 2. The
translation group R2 is Abelian and acts on R2 by translation; the group structure is given by
.a; b/C .a0; b0/ D .aC a0; b C b0/. The ax C b group RC � R acts on RC � R by

.x1; x2/ ! .ax1; ax2
C b/ for a > 0 and b 2 R I

the group structure is given by composition and is non-Abelian;

.a; b/ � .a0; b0/ D .aa0; ab0
C b/ :

An affine surface M is a pair .M;r/ where M is a smooth surface and r is a torsion-free
connection on the tangent bundle ofM . One saysM D .M;r/ is locally homogeneous if given
any two points of M , there is the germ of a diffeomorphism mapping one point to the other
point which preserves the connection r. Opozda [53] showed that any locally homogeneous
affine surface geometry is modeled on one of the following three geometries:

• TypeA. M D .R2;r/ where r has constant Christoffel symbols �ij
k D �j i

k . This ge-
ometry is homogeneous; the TypeA connections are the left-invariant connections on the
Lie group R2. An affine surface is modeled on such a geometry if and only if there exists
a coordinate atlas so that the Christoffel symbols ˛�ij

k D �ij
k are constant in each chart

of the atlas.
• Type B. M D .RC � R;r/ where r has Christoffel symbols �ij

k D .x1/�1Aij
k where

Aij
k D Aj i

k is constant. This geometry is homogeneous; the action of the ax C b group
sending .x1; x2/ ! .ax1; ax2 C b/ acts transitively on RC � R. If we identify the ax C b

group with RC � R, then the Type B connections are the left-invariant connections. An
affine surface is modeled on such a geometry if there is a coordinate atlas so the Christoffel
symbols ˛�ij

k D .x1
˛/

�1Aij
k in each chart of the atlas.

• Type C.M D .M;r/ where r is the Levi–Civita connection of a metric of constant non-
zero sectional curvature.



xiv PREFACE
This present volume is organized around this observation. There is a non-trivial intersec-

tion between the TypeA and the TypeB geometries.There is no geometry which is both TypeA
and C. And the only Type C geometry which is not also Type B is modeled on the round sphere
S2 in R3. Chapter 12 of the book deals with preliminary material. We introduce the basics of
affine geometry, discuss the affine quasi-Einstein equation, and establish its basic properties.
We discuss affine gradient Ricci solitons and other preliminary matters. For surface geometries,
the Ricci tensor

�.x; y/ WD Trfz ! R.z; x/yg

carries the geometry; an affine connection on a surface is flat if and only if � D 0.
Chapter 13 is devoted to a discussion of the geometry of Type A surfaces. Any Type A

surface is strongly projectively flat. The solution space to the quasi-Einstein equation for the
critical eigenvalue � D �1 will play a central role in our discussion as it is a complete invariant
of strongly projectively flat surfaces. By identifying the Christoffel symbols f�ij

kg with a point
of R6, we parameterize such surfaces. The Ricci tensor of any Type A surface is symmetric
and any such surface is strongly projectively flat. The set of flat Type A surfaces where � does
not vanish identically is a smooth 4-dimensional manifold which may be identified with a Z2

quotient of S1 � S2 � R. The set of Type A surfaces where the Ricci tensor has rank 1 and
is positive or negative semi-definite is a 5-dimensional manifold which may be identified with
S1 � S1 � R3. It is natural to identify TypeA geometries which differ by a change of coordinates
or, equivalently, by the action of the general linear group GL.2;R/. The resulting moduli spaces
of flat Type A surfaces, of Type A surfaces where the Ricci tensor has rank 1, and of Type A
surfaces where the Ricci tensor is non-degenerate and has signature .p; q/ is determined quite
explicitly. The surfaces which are geodesically complete are described up to linear equivalence.
We discuss affine Killing vector fields and affine gradient Ricci solitons for such geometries.

In Chapter 14, we present an analogous discussion for the Type B surfaces.These surfaces
are, in general, not strongly projectively flat, and thus the solution space to the quasi-Einstein
equation is of less utility. The structure group here is the ax C b group rather than the general
linear group where the action this time is .x1; x2/ ! .x1; bx1 C ax2/. Let kerBf�g � �0 be the
the space of flat connections other than the trivial connection where all the Christoffel symbols
vanish and let kerBf�sg � kerBf�g be the space of all connections where the Ricci tensor is purely
alternating but does not vanish identically. In contrast to the situation for Type A geometries,
these two spaces are not smooth.The set kerBf�g � �0 (resp. kerBf�sg � kerBf�g) is an immersed
3-dimensional (resp. 2-dimensional) manifold with transversal intersections. We also discuss
affine Killing vector fields and affine gradient Ricci solitons in this context. We determine the
locally symmetric Type B surfaces.

In Chapter 15, we present some applications of affine surface theory. If M D .M;r/ is
an affine surface, the modified Riemannian extension gives rise to a neutral signature metric
gr;ˆ;T;S;X on the cotangent bundle ofM where X is a tangent vector field onM , where ˆ is a
symmetric 2-tensor onM , and where T and S are endomorphisms of the tangent bundle ofM .



PREFACE xv
There is an intimate relation between the geometry of the affine surfaceM and the geometry of
N WD .T �M;gr;ˆ;T;S;X /. We relate solutions to the affine quasi-Einstein equation on M and
the Riemannian quasi-Einstein equation. We also construct Bach flat signature .2; 2/ metrics
using the Riemannian extension and construct vanishing scalar invariant (VSI) manifolds.

Esteban Calviño-Louzao, Eduardo García-Río, Peter Gilkey, JeongHyeong Park, and Ramón
Vázquez-Lorenzo
April 2019
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