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Abstract Context: Multidimensional arrays are used by many different algorithms. As such, indexing and
broadcasting complex operations over multidimensional arrays are ubiquitous tasks and can be performance
limiting.

Inquiry: Simultaneously indexing two ormoremultidimensional arrays with different shapes (e.g., copying
data from one tensor to another larger, zero padded tensor in anticipation of a convolution) is difficult to do
efficiently: Hard-coded nested for loops in C, Fortran, and Go cannot be applied when the dimension of a tensor
is unknown at compile time. Likewise, boost::multi_array cannot be used unless the dimensions of the array are
known at compile time, and the style of implementation restricts the user from using the index tuple inside a
vectorized operation (as would be required to compute an expected value of a multidimensional distribution).
On the other hand, iteration methods that do not require the dimensionality or shape to be known at compile
time (e.g., incrementing and applying carry operations to index tuples or remapping integer indices in the
flat array), can be substantially slower than hard-coded nested for loops.

Approach:Using a few tasks that broadcast operations over multidimensional arrays, several existingmeth-
ods are compared: hard-coded nested for loops in C and Go, vectorized operations in Fortran, boost::multi_array,
numpy, tuple incrementing, and integer reindexing.

Knowledge: A new approach to this problem, “template-recursive iteration over tensors” (TRIOT), is pro-
posed. This new method, which is made possible by features of C++11, can be used when the dimensions of the
tensors are unknown at compile time. Furthermore, the proposed method can access the index tuple inside
the vectorized operations, permitting much more flexible operations.

Grounding: Runtimes of all methods are compared, and demonstrate that the proposed TRIOT method
is competitive with both hard-coded nested for loops in C and Go, as well as vectorized operations in Fortran,
despite not knowing the dimensions at compile time. TRIOT outperforms boost::multi_array, numpy, tuple
incrementing, and integer reindexing.

Importance: Manipulation of multidimensional arrays is a common task in software, especially in high-
performance numerical methods. This paper proposes a novel way to leverage template recursion to iterate
over and apply operations to multidimensional arrays, and then demonstrates the superior performance and
flexibility of operations that can be achieved using this new approach.
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TRIOT: Faster tensor manipulation in C++11

1 Introduction

Tensors (i.e., multidimensional arrays) are extremely important in many areas of
research, including physics [4] (where tensors prominently feature in numerical simu-
lations in a discretized space), statistics [3] (where tensors represent multidimensional
probability mass functions and where tensor convolutions are bijective to sums and
differences between random variables), and signal processing [1] (where tensors are
used to represent multidimensional images, e.g., tomography on magnetic resonance
imaging scans). The most fundamental tasks for tensor code are to efficiently retrieve
data from a particular index and to use those indexing routines to vectorize many
such indexing operations (and possible modifications at each index).
However, where 1-dimensional vector lookup is simple (it can be performed as a

pointer addition and a pointer dereference or as a single LDR load relative assembly
instruction), tensor indexing is more complicated, because indices are integer tuples
(note: this manuscript uses “tuple” in the mathematical sense rather than as a type-
heterogeneous list as denoted by std::tuple). For example accessing element (2, 0,4, 1)
of a tensor with the shape (4,9, 7,5) would be performed by first computing that
element’s linear memory offset (the integral “flat index”), 2 · 9 · 7 · 5 + 0 · 7 · 5 + 4 ·
5 + 1. Although converting a tuple index to a flat integer index can be avoided
when vectorizing operations over the flat array (e.g., performing an element-wise
multiplication on every element in a tensor can be done by simply iterating over its flat
integer indices), the flat integer indices are not sufficient when vectorizing operations
over two or more tensors of different shapes (this is very common when multiplying
two probability mass functions with different support or when zero padding a tensor
to perform convolution via the multidimensional fast Fourier transform). In that
case, tuple indexing must be performed. Consider a tensor x with dimension d
and shape x .shape = (s0, s1, . . . , sd−1). Lookup of index tuple t = (t0, t1, . . . , td−1)
(where ∀i ∈ {0,1, . . . , d − 1}, t i ∈ {0, 1, . . . , si − 1}) is performed by computing the
corresponding integer index in the flat vector x . f lat:

x[t] = x . f lat
�

t0 · s1 · s2 · s3 · s4 · · · sd−1 +

t1 · s2 · s3 · s4 · · · sd−1 +

t2 · s3 · s4 · · · sd−1 + · · ·
· · ·+ td−2 · sd−1

+ td−1] ,

assuming row-major order of the flat vector (as used in the C programming language).
This can be rewritten more efficiently using Horner’s rule:

x[t] = x . f lat[(· · · (((t0 · s1 + t1) · s2 + t2) · s3 + t3) · s4 + · · ·+ td−2 · sd−1) + td−1].

The classic manner for iterating over the tensor x is therefore to use nested for loops
(Algorithm 1).

However, to write those nested for loops, it is necessary at compile time to know both
the number of nested loops (which means it is necessary to know the dimensionality
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Algorithm 1 Iterating over a tensor with nested for loops. The algorithm iterates over
tensor x with shape x .shape, where x .dimension is the dimensionality of x .

1 typedef unsigned long*__restrict const tup_t;
2 typedef const unsigned long*__restrict const const_tup_t;
3
4 void nested_for_loops(const_tup_t shape) {
5 // Writing x.dimension separate nested for loops:
6 for (unsigned long i0=0; i0<shape[0]; ++i0)
7 for (unsigned long i1=0; i1<shape[1]; ++i1)
8 for (unsigned long i2=0; i2<shape[2]; ++i2)
9 // ...
10 {
11 // Inside innermost loop:
12 unsigned long x_index = ((i0*shape[1] + i1)*shape[2] + i2)*shape[3] /* + ...
13 using each loop variable once */ ;
14
15 // Perform operations on x.�at[x_index] for some tensor x in global scope:
16 }
17 }

Algorithm 2 Tuple to flat index with respect to shape. The algorithm takes a tuple tup and
a shape shape, both of length dimension, and returns the flat index of tup
with respect to shape.

1 unsigned long tuple_to_index(const_tup_t tup, const_tup_t shape, unsigned int dimension) {
2 unsigned long res = 0;
3 unsigned int k;
4 for (k=0; k<dimension−1; ++k) {
5 res += tup[k];
6 res *= shape[k+1];
7 }
8 res += tup[k];
9 return res;
10 }

d) and the operations that will be performed inside the loops. Of course, if a method is
simply applying a single operation to each index (e.g., x[x_index] += 1), the loop can be
performed by iterating with an integer index over the flat index values ∈ {0, 1,2, . . . , s0·
s1 · s2 · · · sd−1−1}. But when performing operations on tensors of different shapes, that
is not a viable solution. For instance, ∀ valid tuples t in range of shape s, x[t] += y[t]
(or equivalently x[x_index] += y[y_index] for the appropriate flat index values) could
be performed by initializing x_index=0 and incrementing it inside the innermost for
loop. This would allow x_index to be computed trivially, but y_index would still need
to be computed as x_index is in Algorithm 1.
When the dimensionality d is not known at compile time, one can consider a tuple

index stored in an array. Looking up the flat index value can be performed in a simple
C-style routine ( Algorithm 2).
What is less trivial is advancing the tuple index to the next lexicographic tuple index

(note that other advancing strategies may be possible, but lexicographic ordering
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Algorithm 3 Advance tuple with respect to shape. The algorithm takes a tuple tup and a
shape shape, both of length dimension, and advances tup to its next lexico-
graphic value with respect to shape.

1 void advance_tuple(tup_t tup, const_tup_t shape, unsigned int dimension) {
2 ++tup[dimension−1];
3
4 for (unsigned int k=dimension−1; k>=1; −−k)
5 if ( tup[k] >= shape[k] ) {
6 // Perform carry operation:
7 ++tup[k−1];
8 tup[k] = 0;
9 }
10 else
11 // No more carry operations:
12 return;
13 }

corresponds to the ideal order for caching). The lexicographic ordering can be iterated
through just as one would count numbers with carry operations (Algorithm 3).
For a problem of dimension d, this advance_tuple routine runs in O(d) in the worst

case, but in the average case it is more efficient because it returns early once there are
no further carry operations to perform. Consider that for a random valid tuple t with
respect to shape s, the chances of returning after 1 iteration (i.e., performing no carry
operations at all) will be sd−1−1

sd−1
, because that carry operation will only be performed

when td−1 = sd−1 before calling advance_tuple. The chances of performing the second
carry are even smaller sd−1−1

sd−1
· sd−2−1

sd−2
, so that the chances of progressing to each next

carry will decay exponentially for tensors with non-trivial shapes (i.e. for tensors with
no axis i along which si = 1); Therefore, the average number of iterations required
by the for loop in Algorithm 3 will be a constant (because it is bounded above by
summing a geometric series). Since each valid tuple will be visited, this average cost
will equal the amortized cost, and the runtime of advance_tuple will be in (1).
However, at least one if statement is needed for each call to advance_tuple, and

so the runtime can be seriously affected by the extra BR branch line in the resulting
assembly code. Because of this and because the loop in advance_tuple cannot be easily
unrolled, using tuple iteration and the advance_tuple routine can be significantly
slower than performing the equivalent nested for loops.
An alternative to tuple iteration is to use a number-theoretic strategy, which iterates

over a single flat index with respect to a first shape and then preforms reindexing to
convert it to a flat index with respect to another shape. For some unknown tuple t,
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suppose x_index is the flat integer index with respect to shape s and y_index is the flat
integer index with respect to shape s′:

x_index= t0 · s1 · s2 · s3 · s4 · · · sd−1 +

t1 · s2 · s3 · s4 · · · sd−1 +

t2 · s3 · s4 · · · sd−1 + · · ·
· · ·+ td−2 · sd−1

+ td−1

Consider that in the sum to compute x_index, every term is multiplied with sd−1

except td−1, meaning that x_index ≡ td−1 (mod sd−1). Furthermore, for every axis i, a
valid tuple t with respect to shape s is always in range {0,1, 2, . . . , sd−1 − 1}. Together
these imply that td−1 = x_index % sd−1. Subtracting the computed value of td−1 from
x_index and dividing by sd−1 yields an expression of the same form, and so it is possible
to compute the full tuple t. From there, it is possible to compute the value of y_index:

y_index= t0 · s′1 · s
′
2 · s

′
3 · s

′
4 · · · s

′
d−1 +

t1 · s′2 · s
′
3 · s

′
4 · · · s

′
d−1 +

t2 · s′3 · s
′
4 · · · s

′
d−1 +

...

+ td−2 · s′d−1

+ td−1.

These steps can be combined into a single loop that computes y_indexwhile it computes
each next t i ( Algorithm 4). This type of reindexing means that for some applications
it is possible to completely avoid storing the tuple and simply iterate over flat integer
indices in one tensor and thenmap each to its appropriate flat integer index in the other
tensor. Although this method seems promising, it simply moves the computational
cost from advance_tuple into reindex, and because division and modulo operation are
almost always slower than multiplication and addition, this method is slower than
tuple iteration in practice.
Here a novel pattern is proposed for efficiently vectorizing over tensors in C++11.

This strategy allows iterating over tuples with speed comparable to the C-style nested
for loops but with the generality of tuple iteration and where the dimensionality
does not need to be known at compile time. The proposed method does require that
the maximum tensor dimension to be fixed at compile time (as with languages like
Fortran); however, as we will show, this is not limiting in practice, as the memory
usage is superexponential in the dimension. The proposed method is fairly involved to
derive, but can be used in an intuitive, flexible manner via the provided header-only
library.
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Algorithm 4 Reindex flat index from one tensor shape to another tensor shape. The al-
gorithm takes a flat integer index with respect to shape and converts it to a
flat integer index with respect to new_shape, where both shapes have length
dimension.

1 inline unsigned long reindex(unsigned long index, const_tup_t shape, const_tup_t new_shape, unsigned
,→ int dimension) {

2 unsigned long new_index = 0;
3 unsigned long new_axis_product_from_right = 1;
4 for (int i=dimension−1; index>0 && i>=0; −−i) {
5 unsigned long next_axis = shape[i];
6 unsigned long new_next_axis = new_shape[i];
7
8 unsigned long next_value = index % next_axis;
9
10 new_index += next_value * new_axis_product_from_right;
11 index /= next_axis;
12
13 new_axis_product_from_right *= new_next_axis;
14 }
15 return new_index;
16 }

2 Methods

It is first assumed the dimension of the tensors, denoted DIMENSION, is known at
compile time (i.e., it is constexpr). Later, that implementation is generalized to allow
the dimension to be known only at runtime. First, Algorithm 2 is re-implemented to
exploit compile-time knowledge of the dimension (Algorithm 5). Second, nested for
loops over a given shape are produced via template recursion ( Algorithm 6). Note
that this proposed strategy is distinct from fully unrolling loops on flat integer indices
via template recursion; while forced loop unrolling can sometimes be fast, it can also
lead to an enormous executable (which in turn can also burden the cache and end up
making slower code).
When invoking ForEachFixedDimension<DIMENSION>::template apply, the typename

FUNCTION and the template parameter pack typename ...TENSORS can be inferred at
compile time based on the contents of the tensor args... and the argument types to
function. Also note that function can have any valid callable type: C-style function
pointer, std::function, or any functor (i.e., any object that defines an () operator). This
so-called “duck typing”, means that the method can be used whenever valid type
substitutions can be found. It also offers variadic support while ensuring type safety
(unlike the unsafe C-style ... used to implement a varargs function like printf). Note
that the tuple value can be safely declared __restrict, meaning that it is referred
to from no other location in memory, because it will be constructed specifically for
iteration and then deallocated.
Template recursion can likewise be used to convert a runtime value into a compile-

time constant (Algorithm 7). Note that here, even though template recursion is used,
the dimension need not be known until runtime. This is essentially achieved by using
templates as a form of just-in-time (JIT) compilation, precomputing strategies for all
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Algorithm 5 Tuple to flat index with respect to shape (special case for fixed dimension).
Equivalent to Algorithm 2, but where the dimension is restricted to a constant
known at compile time. On some newer compilers, this will not offer a
substantial speedup, because aggressive constant propagation will already
recognize cases where DIMENSION is known at compile time.

1 template <unsigned int DIMENSION>
2 inline unsigned long tuple_to_index_�xed_dimension(const_tup_t tup, const_tup_t shape) {
3 unsigned long res = 0;
4 unsigned int k;
5 for (k=0; k<DIMENSION−1; ++k) {
6 res += tup[k];
7 res *= shape[k+1];
8 }
9 res += tup[k];
10 return res;
11 }

Algorithm 6 Nesting loops via template recursion. Nested for loops are unrolled while
keeping the tuple iterated over in a contiguous array for later use.

1 template <unsigned int DIMENSION, unsigned int CURRENT>
2 class ForEachFixedDimensionHelper {
3 public:
4 template <typename FUNCTION, typename ...TENSORS>
5 inline static void apply(tup_t counter, const_tup_t shape, FUNCTION function, TENSORS & ...args) {
6 for (counter[CURRENT]=0; counter[CURRENT]<shape[CURRENT]; ++counter[CURRENT])
7 ForEachFixedDimensionHelper<DIMENSION−1, CURRENT+1>::template apply<FUNCTION, TENSORS...>(

,→ counter, shape, function, args...);
8 }
9 };
10
11 template <unsigned int CURRENT>
12 class ForEachFixedDimensionHelper<1u, CURRENT> {
13 public:
14 template <typename FUNCTION, typename ...TENSORS>
15 inline static void apply(tup_t counter, const_tup_t shape, FUNCTION function, TENSORS & ...args) {
16 for (counter[CURRENT]=0; counter[CURRENT]<shape[CURRENT]; ++counter[CURRENT])
17 function(args[tuple_to_index_�xed_dimension<CURRENT+1>(counter, args.data_shape())]...);
18 /* tensor.data_shape() is an accessor for returning the shape member. */
19 }
20 };
21
22 template <unsigned char DIMENSION>
23 class ForEachFixedDimension {
24 public:
25 template <typename FUNCTION, typename ...TENSORS>
26 inline static void apply(const_tup_t shape, FUNCTION function, TENSORS & ...args) {
27 unsigned long counter[DIMENSION];
28 memset(counter, 0, DIMENSION*sizeof(unsigned long));
29 ForEachFixedDimensionHelper<DIMENSION,0>::template apply<FUNCTION, TENSORS...>(counter,

,→ shape, function, args...);
30 }
31 };
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Algorithm 7 Dynamic linear template lookup. Searches linearly from MINIMUM to MAXIMUM
to find a compile-time constant matching a value known only at runtime. This
essentially converts runtime integer values into constexpr values.

1 typedef unsigned int TEMPLATE_SEARCH_INT_TYPE;
2 template <TEMPLATE_SEARCH_INT_TYPE MINIMUM, TEMPLATE_SEARCH_INT_TYPE MAXIMUM, template <

,→ TEMPLATE_SEARCH_INT_TYPE> class WORKER>
3 class LinearTemplateSearch {
4 public:
5 template <typename...ARG_TYPES>
6 inline static void apply(TEMPLATE_SEARCH_INT_TYPE v, ARG_TYPES && ... args) {
7 if (v == MINIMUM)
8 WORKER<MINIMUM>::apply(std::forward<ARG_TYPES>(args)...);
9 else
10 LinearTemplateSearch<MINIMUM+1, MAXIMUM, WORKER>::apply(v, std::forward<ARG_TYPES>(args)...);
11 }
12 };
13
14 template <TEMPLATE_SEARCH_INT_TYPE MAXIMUM, template <TEMPLATE_SEARCH_INT_TYPE> class WORKER

,→ >
15 class LinearTemplateSearch<MAXIMUM, MAXIMUM, WORKER> {
16 public:
17 template <typename...ARG_TYPES>
18 inline static void apply(TEMPLATE_SEARCH_INT_TYPE v, ARG_TYPES && ... args) {
19 assert(v == MAXIMUM);
20 WORKER<MAXIMUM>::apply(std::forward<ARG_TYPES>(args)...);
21 }
22 };

dimensionalities of interest and then looking up the correct one at runtime. As shown,
this runtime lookup will be unrolled into a series of branches that will give a lookup
runtime linear in the dimension queried. Note that log search (rather than linear
search) would also be possible, but it would not amortize out the runtime the same:
here only O(d) steps are used, which is already a prerequisite cost for processing
d-dimensional tensors. Likewise, instead of linear search, virtual functions can be
used via a base class that offers an interface for shared functionality regardless of d.
This can be used to construct a table of derived objects (or a table of factories) where
the compile-time constant corresponds to its index in the table, and then the table
can be queried to retrieve a pointer to a derived object (cast as base class pointer).
Although virtual functions would achieve this lookup in O(1) rather than O(d), they
shield function calls from inlining and thus can impede compiler optimizations. For
these reasons, the linear search is preferred.
Algorithm 6 and Algorithm 7 can be invoked together to efficiently iterate over

a tuple with dimension known only at runtime (Algorithm 8). This can be called
elegantly with λ-functions from C++11, which can even modify external state using
variable capture. The use of λ-functions and variadic templates (which allow expres-
sions to be mapped over an arbitrary number of tensors) are essential, and are the
reasons that this pattern is restricted to C++11.
Using the same approach, similar functions can be defined to allow modification (or

modification of only one argument as implemented in apply_tensors) of tensor data by
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Algorithm 8 Template-recursive iteration over tensors (TRIOT). Pairing Algorithm 6 with
Algorithm 7 enables mapping of functions over tensors. An example is shown
that uses variable capture to compute the inner product between two tensors
of different shape. The maximal tensor dimension of 32 will be discussed
later on.

1 /* check_tensor_pack_bounds scrutinizes if the dimensions match between the two tensors and controls
,→ that the shape of the second tensor is in bounds with the �rst tensor. */

2
3 const unsigned int MAX_TENSOR_DIMENSION = 32u;
4 template <typename FUNCTION, typename ...TENSORS>
5 /* Note: using simple in−house vector type (not std::vector), which is also used as tensor.�at */
6 template <typename FUNCTION, typename ...TENSORS>
7 void for_each_tensors(FUNCTION function, const Vector<unsigned long> & shape, const TENSORS & ...args)

,→ {
8 check_tensor_pack_bounds<TENSORS...>(args..., shape);
9 LinearTemplateSearch<0u,MAX_TENSOR_DIMENSION,TRIOT::ForEachFixedDimension>::apply(shape.size(),

,→ shape, function, args...);
10 }
11
12 double dot_product(const tensor & x<double>, const tensor<double> & y) {
13 // This function written for homogeneous types, but not unnecessary
14 double tot = 0.0;
15 for_each_tensors([&tot](double xV, double yV) {
16 tot += xV * yV;
17 },
18 x.data_shape(), /* Iterate over valid tuples for x.data_shape(); as written, this line assumes x has smaller

,→ shape */
19 x, y);
20 return tot;
21 }

function ( Algorithm 9). Likewise, this pattern can be trivially extended to pass a const
view of the tuple counter through as the first argument to function (Algorithm 10).
When combined with variable capture, this enables fast vector operations with a much
greater generality. For example, numpy is very efficient for straightforward vector
operations, but loops must be used when the tuple index is needed. For example, there
is no native way in numpy to efficiently find the bounding box containing all nonzero
values in a tensor. Likewise, the type of iteration used by libraries like boost [2] to
vectorize operations over tensors is inherently hierarchical, and thus does not have
access to the index tuple. Using the template-recursive iteration over tensors (TRIOT)
pattern, it would be trivial to find the nonzero bounding box for the element-wise
product of two tensors. Importantly, classic and numerically demanding problems
such as marginalization and expected value computation require the tuple index to
compute their results (simple example shown in Algorithm 11).
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Algorithm 9 Alternative functions to allow external modifications of the tensors. mod-
ify_tensors allows modification of all arguments, apply_tensors only allows
modification to the destination argument. Regardless, the ForEachFixedDimen-
sion class is used and the appropriate const type is automatically detected by
the compiler.

1 // Allows modi�cations to all arguments:
2 template <typename FUNCTION, typename ...DEST_TENSORS>
3 void modify_tensors(FUNCTION function, const Vector<unsigned long> & shape, DEST_TENSORS && ...args)

,→ {
4 check_tensor_pack_bounds<DEST_TENSORS...>(args..., shape);
5 LinearTemplateSearch<0u,MAX_TENSOR_DIMENSION,TRIOT::ForEachFixedDimension>::apply(shape.size(),

,→ shape, function, args...);
6 }
7
8 // Allows modi�cations only to dest:
9 template <typename FUNCTION, typename DEST_TENSOR, typename ...SOURCE_TENSORS>
10 void apply_tensors(FUNCTION function, const Vector<unsigned long> & shape, DEST_TENSOR && dest,

,→ const SOURCE_TENSORS & ...source_args) {
11 check_tensor_pack_bounds<DEST_TENSOR, SOURCE_TENSORS...>(dest, source_args..., shape);
12 LinearTemplateSearch<0u,MAX_TENSOR_DIMENSION,TRIOT::ForEachFixedDimension>::apply(shape.size(),

,→ shape, function, dest, source_args...);
13 }

3 Results

The TRIOT pattern is compared to alternative methods: tuple iteration; tuple iteration
where the dimension is known at compile time; integer reindexing; integer reindexing
where the axes are restricted to powers of 2 (see Algorithm 12; this is an unrealistic
constraint in practice, but it is interesting to investigate the performance gains from
converting % operations to & operations and / and * operations to » and « operations,
respectively); numpy; boost::multi_array (using version 1.61.0); C-style for loops (hard
coded for each problem size); vectorized Fortran code; for loops in Go. Note that of
these methods only tuple iteration, integer reindexing, numpy, and TRIOT are possible
when the dimension is not known at compile time.

These methods are compared on four test problems: In benchmark 1, data is copied
from a tensor of shape (210, 29, 28) to a tensor of shape (29, 29, 25). In benchmark 2, an
inner product between two tensors of shape (210, 29, 28) and (29, 29, 25) is computed
(visiting only tuple indices shared by both). In benchmark 3, x[t] ← x[t] + y[t] ·
x[t]− z[t] is performed for all tuples t that are valid with respect to the shape of x ,
using x .data_shape() = (27+1, 25, 23+5, 24), y.data_shape() = (28−3, 26, 26, 24+7),
and z.data_shape() = (28, 25+7, 26, 25+1). In benchmark 4, implementations of mul-
tidimensional convolution via tuple iteration (Algorithm 14), TRIOT ( Algorithm 15),
and numpy are compared by convolving two matrices, each with shape (28, 23). Al-
though in scientific computing the fast Fourier transform (FFT) convolution is often
used for large convolutions, small problems are often much faster to solve using the
naive approach demonstrated here.
Wherever possible, the competing methods (but not TRIOT) are allowed to exploit

the fact that lexicographically iterating over all tuples in tensor x is the same as
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Algorithm 10 Providing safe access to the current tuple index. As the loops iterate, a const
view of the counter will be sent as the first argument of function.

1 template <unsigned int DIMENSION, unsigned int CURRENT>
2 class ForEachVisibleCounterFixedDimensionHelper {
3 public:
4 template <typename FUNCTION, typename ...TENSORS>
5 inline static void apply(tup_t counter, const_tup_t shape, FUNCTION function, TENSORS & ...args) {
6 for (counter[CURRENT]=0; counter[CURRENT]<shape[CURRENT]; ++counter[CURRENT])
7 ForEachVisibleCounterFixedDimensionHelper<DIMENSION−1, CURRENT+1>::template apply<

,→ FUNCTION, TENSORS...>(counter, shape, function, args...);
8 }
9 };
10
11 template <unsigned int CURRENT>
12 class ForEachVisibleCounterFixedDimensionHelper<1u, CURRENT> {
13 public:
14 template <typename FUNCTION, typename ...TENSORS>
15 inline static void apply(tup_t counter, const_tup_t shape, FUNCTION function, TENSORS & ...args) {
16 for (counter[CURRENT]=0; counter[CURRENT]<shape[CURRENT]; ++counter[CURRENT])
17 // Cast the counter to a const_tup_t pointer so that its
18 // contents cannot be modi�ed by function:
19 function(static_cast<const_tup_t>(counter), CURRENT+1, args[tuple_to_index_�xed_dimension<

,→ CURRENT+1>(counter, args.data_shape())]...);
20 }
21 };
22
23 template <unsigned char DIMENSION>
24 class ForEachVisibleCounterFixedDimension {
25 public:
26 template <typename FUNCTION, typename ...TENSORS>
27 inline static void apply(const_tup_t shape, FUNCTION function, TENSORS & ...args) {
28 unsigned long counter[DIMENSION];
29 memset(counter, 0, DIMENSION*sizeof(unsigned long));
30 ForEachVisibleCounterFixedDimensionHelper<DIMENSION,0>::template apply<FUNCTION, TENSORS...>(

,→ counter, shape, function, args...);
31 }
32 };
33
34 template <typename FUNCTION, typename ...TENSORS>
35 void enumerate_for_each_tensors(FUNCTION function, const Vector<unsigned long> & shape, const

,→ TENSORS & ...args) {
36 check_tensor_pack_bounds<TENSORS...>(args..., shape);
37 LinearTemplateSearch<0u,MAX_TENSOR_DIMENSION,TRIOT::ForEachVisibleCounterFixedDimension>::

,→ apply(shape.size(), shape, function, args...);
38 }
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Algorithm 11 Example of TRIOT using the index tuple. The index tuple is passed to the
function to compute a sum over all tuples, as weighted by all tensor argu-
ments.

1 Vector<double> result(DIMENSION);
2 result.�ll(0.0);
3 enumerate_for_each_tensors([&result](const_tup_t counter, const unsigned int dim, double xV, double yV,

,→ double zV) {
4 /* Could alternatively capture the variable DIMENSION instead of passing in unsigned int dim; however,

,→ as written, even though dim is not constexpr, it will essentially become a compile−time
,→ constant due to constant propagation. This can permit greater optimization. */

5 for (unsigned int k=0; k<dim; ++k)
6 result[k] += counter[k] * xV * yV * zV;
7 },
8 x.data_shape(),
9 x, y, z);

Algorithm 12 Reindex flat index from one tensor shape to another tensor shape (special
case where axes are all powers of 2). The algorithm takes a flat integer index
with respect to log_shape and converts it to a flat integer index with respect
to new_log_shape, where both shapes have length dimension.

1 inline unsigned long reindex_powers_of_2(unsigned long index, const unsigned int*__restrict const
,→ log_shape, const unsigned int*__restrict const new_log_shape, unsigned int dimension) {

2 unsigned long new_index = 0;
3 unsigned int new_axis_sum_from_right = 0;
4 for (int i=dimension−1; index>0 && i>=0; −−i) {
5 unsigned long next_log_axis = log_shape[i];
6 unsigned long new_next_log_axis = new_log_shape[i];
7
8 unsigned long next_value = index & ((1ul<<next_log_axis)−1);
9
10 new_index += (next_value << new_axis_sum_from_right);
11 index >>= next_log_axis;
12
13 new_axis_sum_from_right += new_next_log_axis;
14 }
15 return new_index;
16 }
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iterating over all flat indices in order. The reported runtimes measure only the desired
task; the cost of initialization is not included. On every benchmark, each method was
run 128 times on a cold boot of Ubuntu 16.04 with no other programs running and the
X server shut down (via sudo service lightdm stop). Runtimes are reported in Figures 1–
4. These benchmarks were run on an 2.0 GHz Intel Core i7 with 256KB of L1 cache, 1MB
of L2 cache, 6MB of L3 cache, and 8GB RAM. All C / C++ programs (including boost)
were compiled with clang++ (version 3.8), g++ (version 5.4) and Intel icc (version
17.0 using trial license) with the following flags: -std=c++11 -Ofast -march=native -
mtune=native -fomit-frame-pointer. The Fortran programs were written using Fortran
95 and compiled with f95 -Ofast -march=native -mtune=native -fomit-frame-pointer.
All Fortran implementations use axes in reversed order and access data in a cache-
optimized fashion, because Fortran uses column-major array format. All methods also
had bounds checking explicitly disabled for greater speed (e.g., using #de�ne NDEBUG
and #de�ne BOOST_DISABLE_ASSERTS for the boost benchmarks). Benchmark 1 was
the only benchmark to which all methods could be applied; therefore, the respective
implementations of each method for benchmark 1 are shown in Algorithm 13.
The principal motivation with all four benchmarks is to address accessing data

in tensors of different shapes (which will not be accessed in a contiguous fashion).
Benchmark 1 is reminiscent of extracting a smaller tensor slice that is embedded in
a larger tensor; this is an operation commonly performed when when extracting an
FFT convolution result from the zero-padded tensor used for FFT.
All benchmarks 1–4 are challenged by data movement and memory access patterns.

Benchmarks 2–4 also include floating point arithmetic. In benchmarks 1, 3 and 4 data
is directly written to a tensor; this challenges attention to pointer aliasing, which may
cause slower performance when the method does not provide explicit guarantees that
the source and destination tensors refer to different regions of memory.
boost was not applicable to benchmarks 2 and 3 because no operators are provided

for boost::multi_array, and performing the inner product on tensors of different shapes
(benchmark 2), i.e. on non-overlapping flat indices, is difficult to do via iterators
(because the shapes iterated over do not match); however, benchmark 2 is designed
with the same number of tensors and same shape as benchmark 1, in which boost
was comparable to tuple iteration. As such, benchmark 2 and benchmark 3 would
essentially need to be written using nested for loops in a manner identical to the C
method. Benchmark 2 is reminiscent of a marginalization of a product between two
distributions and benchmark 3 resembles the calculation of a covariance. Benchmark
4 challenges the flexibility to efficiently manipulate and use an index tuple on the fly.

Algorithm 13 Various implementations of benchmark 1.
1 // Tuple iteration (DIMENSION must be compile−time constant):
2 vector<unsigned long> t(DIMENSION);
3 t.�ll(0);
4 unsigned long k;
5 for (k=0; k<x.�at.size(); advance_tuple_�xed_dimension<DIMENSION>(&t[0], &x.data_shape()[0]), ++k)
6 x[k] = y[tuple_to_index_�xed_dimension<DIMENSION>(&t[0], &y.data_shape()[0])];
7
8 // boost:
9 x[ boost::indices[range(0, x.shape[0])][range(0,x.shape[1])][range(0,x.shape[2])] ] = y[ boost::indices[range(0,

,→ x.shape[0])][range(0,x.shape[1])][range(0,x.shape[2])] ];
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10
11 ! Fortran 95
12 ! Note that the slice is taken with the axis order reversed to guarantee greater cache performance,

,→ because Fortran stores data in column−major format.
13 x = y(1:2**5,1:2**9,1:2**9)
14
15 // Hard−coded for loops in C:
16 unsigned long k;
17 for (k=0; k<x.data_shape()[0]; ++k) {
18 for (unsigned long j=0; j<x.data_shape()[1]; ++j) {
19 unsigned long x_bias = (k*x.data_shape()[1] + j)*x.data_shape()[2];
20 unsigned long y_bias = (k*y.data_shape()[1] + j)*y.data_shape()[2];
21 for (unsigned long i=0; i<x.data_shape()[2]; ++i)
22 x[x_bias + i] = y[y_bias + i];
23 }
24 }
25
26 // Integer reindexing:
27 unsigned long k;
28 for (k=0; k<x.�at.size(); ++k)
29 x[k] = y[reindex(k, &x.data_shape()[0], &y.data_shape()[0], DIMENSION)];
30
31 // Integer reindexing (axes are powers of 2):
32 unsigned long k;
33 for (k=0; k<x.�at.size(); ++k)
34 x[k] = y[reindex_powers_of_2(k, &x_log_shape[0], &y_log_shape[0], DIMENSION)];
35
36 // Tuple iteration (DIMENSION unknown at compile time):
37 vector<unsigned long> t(DIMENSION);
38 t.�ll(0);
39 unsigned long k;
40 for (k=0; k<x.�at_size(); advance_tuple(&t[0], &x.data_shape()[0], DIMENSION), ++k)
41 x[k] = y[t];
42
43 # numpy (python):
44 # Note that this is hard coded for DIMENSION=3, but it can be implemented generically via list

,→ comprehensions; however, this is hard−coded so as to not penalize numpy for python's
,→ interpreter and let the code get to numpy's underlying C/Fortran underpinnings as quickly as
,→ possible. Also note that the slice of y must be cast as a new array in order to make a copy (rather
,→ than simply point x at a reference slice of y).

45 x_sh = x.shape.
46 x = np.array(y[:x_sh[0], :x_sh[1], :x_sh[2]])
47
48 // Go:
49 for i := 0; i < 1<<9; i++ {
50 for j := 0; j < 1<<9; j++ {
51 for k := 0; k < 1<<5; k++ {
52 x[i][j][k] = y[i][j][k]
53 }
54 }
55 }
56
57 // TRIOT (DIMENSION unknown at compile time):
58 apply_tensors([](double & xV, double yV) {
59 xV = yV;
60 },
61 x.data_shape(),
62 x, y);
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Figure 1 Benchmark 1: Runtimes (in seconds) of copying a tensor into a tensor of
different shape. The error bars represent the minimum and maximum runtimes
measured for each method and the gray number the mean runtime. Integer
reindexing is the slowest; even when the axes are restricted to powers of 2 and bit
twiddling is used for division, multiplication, and modulo operation, reindexing is
slower than tuple iteration, which does not bode well for ideas that would attempt
to embed tensors into larger shapes with relatively prime indices and perform
fast reindexing via the Chinese remainder theorem. Tuple iteration performed
better than Go and substantially better than reindexing, but is slower than boost.
boost is slower than vectorized Fortran, numpy, hard-coded C-style looping, and
TRIOT, which all produce similar runtimes, regardless of whether clang++ or g++
is used. With the exception of simple nested for loops in C, icc does not optimize
quite as effectively on this benchmark. Of the fastest methods, only numpy and
TRIOT do not need to know the dimension in advance.
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Figure 2 Benchmark 2: Runtimes of inner product between tensors (in seconds) for
all compilers. The error bars represent the minimum and maximum runtimes
measured for each method and the gray number the mean runtime. Integer
reindexing is the slowest and the vectorized Fortran the fastest method; Fortran
is similar in performance to TRIOT and hard-coded for loops in C.
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Figure 3 Benchmark 3: Runtimes of operations broadcast over tensors (in seconds)
for all compilers. The error bars represent the minimum and maximum runtimes
measured for each method and the gray number the mean runtime. Integer rein-
dexing is the slowest followed by a faster tuple iteration and the implementation
in numpy. The performance of TRIOT, hard-coded for loops in C, and vectorized
Fortran are similar to one another and are faster than the other methods, regard-
less of the compiler used. Note that the large error bars from Fortran are partly
due to low precision of the dtime function, which sometimes suffers underflow
for small runtimes.
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Figure 4 Benchmark 4: Runtimes (in seconds) of multidimensional naive convolu-
tion. The error bars represent the minimum and maximum runtime of each
method and the gray number the mean runtime. Convolving two matrices with
shapes (28, 23) with TRIOT is > 3× faster than with tuple iteration and > 7×
faster than the scipy.signal.convolve function.
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Algorithm 14 Multidimensional convolution via tuple iteration.
1 Tensor<double> tuple_iteration_naive_convolve(const Tensor<double> & lhs, const Tensor<double> & rhs)

,→ {
2 assert(lhs.dimension() == rhs.dimension());
3
4 Tensor<double> result(lhs.data_shape() + rhs.data_shape() − 1ul);
5 result.�at().�ll(0.0);
6 Vector<unsigned long> counter_lhs(lhs.dimension());
7 Vector<unsigned long> counter_rhs(rhs.dimension());
8 Vector<unsigned long> counter_result(result.dimension());
9
10 for (unsigned long i=0; i<lhs.�at_size(); ++i, advance_tuple(counter_lhs, lhs.data_shape(), lhs.dimension()

,→ )) {
11 counter_rhs.�ll(0ul);
12 for (unsigned long j=0; j<rhs.�at_size(); ++j, advance_tuple(counter_rhs, rhs.data_shape(), rhs.

,→ dimension())) {
13 for (unsigned int i=0; i<result.dimension(); ++i)
14 counter_result[i] = counter_lhs[i] + counter_rhs[i];
15
16 unsigned long lhs_�at = tuple_to_index(counter_lhs, lhs.data_shape(), lhs.dimension());
17 unsigned long rhs_�at = tuple_to_index(counter_rhs, rhs.data_shape(), rhs.dimension());
18 unsigned long result_�at = tuple_to_index(counter_result, result.data_shape(), result.dimension());
19 result.�at()[result_�at] += lhs.�at()[lhs_�at] * rhs.�at()[rhs_�at];
20 }
21 }
22
23 return result;
24 }

4 Discussion

In the benchmarks performed, clang++ was shown to be the fastest compiler for
TRIOT, perhaps due to clang++’s advanced support of optimizations based on constant
propagation, which pair well with the many constexpr values used in the TRIOT
implementation. In spite of the greater flexibility of TRIOT operations and the fact
that tensor dimensions need not be known at compile time, TRIOT is consistently
competitive with C and Fortran and frequently outperforms the other methods tested.
Although this implementation relies on λ-functions, the use of λ-functions is not

necessary for the general method. The λ-function could possibly be replaced by
expression templates [5, 6], which could be generated in the standard manner, via
the parse trees produced automatically at compile time by defining operators on
tensors (+, -, etc.); however, the generality permitted by variable capture and by
directly accessing the index tuple is a great benefit to the λ-function implementation.
Furthermore, unlike expression templates, no care needs to be taken to prevent parse
trees from obscuring underlying mathematical properties (e.g., x[t] = y[t] + y[t] + y[t] +
· · · can sometimes be optimized as x[t] = y[t]*K for some unsigned integer K known at
compile time). Because the function code is never converted into a data structure and
then back into code, such considerations are unnecessary.
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Algorithm 15 Multidimensional convolution via TRIOT.
1 Tensor<double> triot_naive_convolve(const Tensor<double> & lhs, const Tensor<double> & rhs) {
2 assert(lhs.dimension() == rhs.dimension());
3
4 Tensor<double> result(lhs.data_shape() + rhs.data_shape() − 1ul);
5 result.�at().�ll(0.0);
6 Vector<unsigned long> counter_result(result.dimension());
7
8 enumerate_for_each_tensors([&counter_result, &result, &rhs](const_tup_t counter_lhs, const unsigned

,→ int dim_lhs, double lhs_val) {
9 enumerate_for_each_tensors([&counter_result, &result, &rhs, &counter_lhs, &lhs_val](const_tup_t

,→ counter_rhs, const unsigned int dim_rhs, double rhs_val) {
10 for (unsigned int i=0; i<dim_rhs; ++i)
11 counter_result[i] = counter_lhs[i] + counter_rhs[i];
12 unsigned long result_�at = tuple_to_index(counter_result, result.data_shape(), dim_rhs);
13 result.�at()[result_�at] += lhs_val * rhs_val;
14 },
15 rhs.data_shape(),
16 rhs);
17 },
18 lhs.data_shape(),
19 lhs);
20
21 return result;
22 }

Also, because of the way that operations are vectorized, it is easy to safely read
and write from the same tensor (e.g., x[t] += y[t] * x[t]) by simply applying a two-
argument λ-function with a reference parameter (for the x[t] reference) and one
value parameter (for the y[t] value). apply_tensors would be called with only two
tensor arguments x, y. Pairing TRIOT with expression templates would make this
guarantee much more difficult, since the tensor x would appear multiple times in
the expression tree. This distinction is important to allow the underlying flat vector
pointer to be of type T*__restrict, which guarantees the compiler that it will not be
modified from one view while read from another view. The end result is that values
indexed by such pointers do not need to be re-read from memory when another
pointer is dereferenced and changed. This “pointer aliasing” problem and the making
of copies when using operators (+, -, . . .) on tensors are together often referred to
casually as the only reasons that Fortran is faster than C / C++, but __restrict pointers
would not be an issue with TRIOT, because the value or reference can occur multiple
times in the λ-function, but the tensor reference need only be included once. The
runtimes presented use __restrict pointers in the vector<T> type, and so the hard-coded
for loops in C, vectorized Fortran, and TRIOT methods are all comparable.
Bounds checking can also be performed to make code safe but perform a sin-

gle check over shapes rather than over indices (this would make a significant
difference compared to boost, where bounds checking on the benchmark prob-
lems yielded 2× the runtime of boost without bounds checking). The method
can also be trivially paired with slices, which reference the original tensor and
store a bias added when performing all flat index operations. For example, for
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a tensor x with shape x .data_shape() and dimension d = x .dimension(), a ten-
sor slice starting at index tuple (i1, i2, . . . , id) can be constructed by using a bias:
bias← tuple_to_index((i1, i2, . . . , id), x .data_shape(), d). Any valid accesses to the
tensor slice x_sl ice[ f lat_index] can be performed as x . f lat[bias+ f lat_index].
Parallelism could be automatically exploited by specializing the classes in the tem-

plate recursion that correspond to the outermost for loops (template <unsigned int
DIMENSION> class ForEachVisibleCounterFixedDimensionHelper<DIMENSION, 0>, template
<unsigned int DIMENSION> class ForEachVisibleCounterFixedDimensionHelper<DIMENSION,
1>, etc.). This would allowmultiple processors, cores, or GPUs to simultaneously process
partitions of tensors. The limitation of GPUs is frequently the cost of data movement:
the processing bandwidth of a GPU often far exceeds the bandwidth of the bus. For
this reason, a GPU speed-up is most likely when operating on a large, contiguous
block of memory, which is allocated on the GPU or copied to the GPU in chunks,
which are subsequently processed on the GPU for a long duration. Since operations
on multiple tensors of different shapes will access non-contiguous blocks of memory,
a GPU-based TRIOT implementation may still be much slower than the CPU-based
TRIOT implementation on some problems. Specifically, when the innermost for loop
iterates over several indices and when the numeric operations applied to each element
require several steps each (improving the benefit of parallelization), then a GPU-based
implementation may be worthwhile. Even when GPU-based TRIOT implementation
is particularly efficient due to the small contiguous blocks of memory accessed by
the innermost for loop (e.g., when operating on only the (n, 4) submatrix of a matrix
with shape (n, n)), TRIOT can be used to efficiently move the relevant portion of the
tensor into a contiguous block of memory allocated via cudaMalloc, which can then be
processed by the GPU. Regardless, using multiple cores to process a TRIOT expression
can be used to parallelize any arbitrary for loop (not necessarily the innermost one)
and will likely provide a reasonable speedup in the general case because CPUs com-
monly offer a dedicated cache for each core. Multiple parallel threads that modify the
same variable (via variable capture in the lambda functions) may result in undefined
behavior, and so applications where it’s essential (e.g., computing an inner product)
could rely on a reduce-like methodology, in which each thread computes its own
pre-result and these pre-results are amalgamated together to produce the final result.
The only real downside of the proposed method is compile time, which increases

with the maximum dimension permitted: When the maximum dimension is set to
16, it compiles in 16 seconds and when the maximum tensor dimension is set to 32,
it compiles in 1 minute; however, this can be solved easily by compiling the tensor
code offline so that the resulting library is already optimized for all realistic tensor
dimensions. Note that if no axes are trivial, then the memory usage to store the tensor
must grow in Ω(2d), so it is reasonable to assume that the dimensionality should be
limited; if some axes have trivial length 1, then those axes can simply be ignored to
operate on a tensor in a lower dimension. Even if the dimensionality is not known at
compile time, a tight bound on the maximum dimensionality should be reasonably
known (in comparison, Fortran 95 only supports dimensions up to 7). Furthermore, the
compile time is reduced when dimensionality of TRIOT expressions can be inferred at
compile time (the dmax = 32 case compiled in 3 seconds).
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Importantly, TRIOT expressions use universal references in C++11 (that is, template
types paired with rvalue references). This permits any type to be used in TRIOT
expressions: value parameters, rvalue references, references, and const references.
The practical implication of this is that tensor views, non-contiguous regions of a
particular window of a tensor, can be sent into TRIOT expressions without needing to
declare a separate variable before the TRIOT expression (as value parameters, they
will be interpreted by the compiler as rvalue references). This feature is useful if you
want to compute, for example, the product of two or more probability mass functions
with varying support: Tensor views can first be constructed, which window smaller
regions of the tensors over their intersecting support. Then, these tensor views are
operated on by TRIOT expressions as if they were themselves tensors. This allows
TRIOT expressions to be used without allocating memory for these views (they simply
refer to the memory in the original tensor arguments).
The real advantage of this pattern is in its simultaneous simplicity and flexibility,

which allows high performance while still allowing both the dimension and the shape
to be unknown at compile time with a simple interface to the programmer. This is a
large advantage over libraries like boost, which requires more complicated code, is
slower in benchmarks, requires the dimension of all tensors must be known at compile
time, and does not allow access to the tuple index inside a vector operation. More
flexible methods for easy, efficient manipulation of tensors are crucially important for
computing in fields of research where the dimensionality may be changing dynamically
during runtime, for example iterative machine learning algorithms for which the
sparsity of solutions increases as convergence is reached, thus restricting tensors to
subspaces of lower dimension.

5 Availability

A small tensor library demonstrating these ideas (including demonstrations of how
TRIOT would be used for a few problems and how tensor views are used) is available at
https://bitbucket.org/orserang/triot. It is licensed with a Creative Commons Attribution
4.0 International license, and can be freely used in both academic or commercial
software.
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