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Abstract Context. An extension method is a method declared in a package other than the package of its
host class. Thanks to extension methods, developers can adapt to their needs classes they do not own: adding
methods to core classes is a typical use case. This is particularly useful for adapting software and therefore
to increase reusability.
Inquiry. In most dynamically-typed languages, extension methods are globally visible. Because any devel-
oper can define extension methods for any class, naming conflicts ocur: if two developers define an extension
method with the same signature in the same class, only one extension method is visible and overwrites the
other. Similarly, if two developers each define an extension method with the same name in a class hierarchy,
one overrides the other. To avoid such “accidental overrides”, some dynamically-typed languages limit the
visibility of an extension method to a particular scope. However, their semantics have not been fully described
and compared. In addition, these solutions typically rely on a dedicated and slow method lookup algorithm
to resolve conflicts at runtime.
Approach. In this article, we present a formalization of the underlying models of Ruby refinements, Groovy
categories, Classboxes, and Method Shelters that are scoping extension method solutions in dynamically-
typed languages.
Knowledge. Our formal framework allows us to objectively compare and analyze the shortcomings of the
studied solutions and other different approaches such as MultiJava. In addition, language designers can use
our formal framework to determine which mechanism has less risk of “accidental overrides”.
Grounding.Our comparison and analysis of existing solutions is grounded because it is based on denotational
semantics formalizations.
Importance. Extension methods are widely used in programming languages that support them, especially
dynamically-typed languages such as Pharo, Ruby or Python. However, without a carefully designed mech-
anism, this feature can cause insidious hidden bugs or can be voluntarily used to gain access to protected
operations, violate encapsulation or break fundamental invariants.
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Scoped Extension Methods in Dynamically-Typed Languages

1 Introduction

Extension methods are a popular feature in dynamically-typed object-oriented lan-
guages. An extension method is a method that a developer adds to a class which he
does not own. Variants of extension methods are available in many dynamically-typed
languages: it is known as open classes in Ruby [10], categories in Objective-C [12]
and Groovy [9], and extension methods in Smalltalk [8] and Pharo [5]. Other lan-
guages such as Golo [13], which is a dynamically-typed language but offering only
static method resolution, offers class extensions named class ’augmentations’ but only
supporting function addition.
Extension methods are globally visible in most existing implementations, causing

two problems: accidental overwrites and accidental overrides. An accidental overwrite
happens when two developers define an extension method with the same signature in
the same class: in this case a conflict occurs and one method overwrites the other. An
accidental override happens when two developers define an extension method with the
same signature in the same class hierarchy: one method overrides the other. We call
such overrides accidental because they happen silently and unintentionally. Another
common problem is the absence of dependency declarations between extension meth-
ods and their callers. Together with the global visibility of extension methods, this
promotes the emergence of hidden dependencies that are difficult to track, especially
in a dynamically-typed language.
One way to solve these problems is to assign each extension method a particular

scope. Variants of scoped extension methods have already been discussed in the
literature with the Classbox model [2, 3, 4], the Method Shelters model [1] and
Matriona class extensions [15]. In addition, scoped extension methods have been
implemented in Ruby since version 2.1 and in Groovy. These variants, however, have
different semantics that must be well understood by the developers. To the day of
this writing, there is no clear description and comparison of their semantics as well
as pros and cons of their impact on the way applications are built. In addition, these
variants rely on dedicated method lookup algorithms to resolve conflicts at runtime
and tend to have a negative impact on speed.
In this article, we study the semantic differences between variants of scoped exten-

sion methods. We scope our analysis to solutions in dynamically-typed languages. We
acknowledge solutions for this problem exist also in the context of statically-typed
languages [6, 7, 16], but they are not directly applicable to dynamically-typed lan-
guages because they rely on static type information. For the sake of completion, we
finally compare solutions for both dynamically and statically typed languages.
The main contributions of this paper are:
a precise study of the problems induced by extension methods (section 2);
an in-depth study of existing solutions analyzing their main characteristics (sec-
tion 3);
a formalization and comparison of the underlying models of these solutions (sec-
tion 4 and section 5);
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an example of how such formalisation can be used in the form of a metric to estimate
the risk of accidental overrides (section 6).

2 Extension Methods

This section presents the extension method mechanism in detail. First, we give some
common use cases of extension methods. Then, we show some problems induced by
globally visible extension methods.

2.1 Usage of Extension Methods

We show the advantages of extension methods with examples taken from PetitParser, a
parser combinator library for Pharo [14]. In PetitParser, parsers are modeled as objects
and parser combinators accept one or several parsers to produce a new composed
parser. Examples of combinators include “,” to sequence two parsers and “star” to
repeat a parser zero or more times. For example, the following piece of code shows
how we can create a parser that accepts the regular expressions of the form ab*¹:

1 (PPLiteralObjectParser on: $a), (PPLiteralObjectParser on: $b) star.

Core

CharacterString

Symbol

Object

PetitParser

Character

String

Symbol
asParser

asParser

asParser

Parser 
hierarchy

extends

extends

extends

creates

creates

creates

Figure 1 The PetitParser parser combinator library defines asParser extension methods on
core classes to create various kinds of parsers.

As syntactic sugar. In addition to these combinators, PetitParser defines convenient
asParser extension methods to some core classes. These extension methods create
parsers depending on the receiver (see figure 1). For example, the asParser extension
method defined in the class Character returns² a parser that accepts the receiver
character.

1 Character >> asParser
2 ^ PPLiteralObjectParser on: self

1 The syntax to denote a character in Smalltalk is the character itself preceded by a dollar
sign ($).

2 The character ^ stands for return in Smalltalk syntax.
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Together, combinators and asParser extension methods give a readable DSL-like
syntax. For example, the following expression creates the same parser as before for
ab*:

1 $a asParser, $b asParser star

In this example, extension methods asParser act as syntactic sugar i.e., $a asParser
has the same meaning as PPLiteralObjectParser on: $a.

To improve extensibility. Extension methods can also improve code quality by making
classes polymorphic together. Consider the following code:

1 MyParser>>one: a thenMany: b
2 ^ a asParser , b asParser star.
3
4 MyParser>>id MyParser>>int
5 ^ self ^ self
6 one: #uppercase one: ($1 to: $9)
7 thenMany: #letter thenMany: #digit

In the MyParser class, the one:thenMany: method takes as parameter two objects
that can be converted into parsers and returns a new parser. The id and int methods
use that first method to build custom parsers. The method id sends the message
one:thenMany: with two symbols (uppercase and letter) while the method int sends the
same message with an interval and a symbol. Extension methods are useful here as
they allow any developer to add the method asParser to any class and pass instances
of this class to one:thenMany:.

To adapt classes interface. The Adapter pattern adapts the interface of an existing
class to work with other classes without modifying its source code. The classic real-
ization consists in creating an adaptor class whose instances are used to wrap the
instances of the adapted class whenever needed at the expenses of obtaining a differ-
ent identity. Extension methods permit a class interface to be adapted without relying
on an adapter class. Instances of the adapted class can be used directly as they do not
need to be wrapped with an adapter object. Therefore, object identity is preserved
and less objects are created (no adapters).

Monkey-patching. If a third-party library or framework has a bug, a developer can
create overwriting extension methods to correct the bug. This technique is known
as monkey patching. While monkey patching is often recognized as a bad practice in
developer communities, it is occasionally useful.

2.2 Problems of Globally Visible Extension Methods

Despite all the benefits that extension methods bring to developers, they can also cause
several conflicts and headaches, specially when their usage is not controlled or scoped.
Most implementations of extension methods, such as the ones present in various
Smalltalk dialects, Ruby (before the introduction of refinements) and Objective-C,
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make extension methods globally visible. This can lead to undeclared dependencies,
accidental overwrites and accidental overrides.

Undeclared dependencies. Once an extension method is loaded it is globally visible.
The method can be called from any class of any loaded package without any form
of declaration. This means that an application can work correctly in the developer’s
environment and fail once deployed because the application depends on an extension
method from a non-loaded package. The absence of declaration favors the emergence
of such hidden dependencies.

Accidental overwrites. Extension methods defined by different packages may conflict
in two different ways. The first kind of conflict arises when two packages each define
an extension method with the same signature in the same class. In this case, one
extension method replaces the other. We call this situation an accidental overwrite. We
show an example in figure 2. The class Object is part of the package Core. A package
SimpleLog declares an extension method log for the class Object. This package is a
logging framework that records the string representation of an object in a log file.
The package ObjectLog declares another extension method log for the class Object.
This latter package is another logging framework that serializes objects in a log file
for later analysis. Both extension methods conflict and the two logging frameworks
cannot be loaded at the same time.
Even though these name clashes happen sparingly, they are difficult to anticipate,

especially when considering package co-evolution in large projects involving several
packages.

Object Object Object

log() ... log()

SimpleLog Core ObjectLog

extendsextends

... ... ...

Figure 2 An example of accidental overwrite. Two packages each declare an extension
method log for the class Object.

Accidental overrides. The second kind of conflict arises when an extension method
overrides another extension method defined higher in the class hierarchy. We depict
two examples of such overrides in figure 3. On the left part, a regular method log in
package Math accidentally overrides an extension method in its superclass declared
in package Logger. While Logger’s extension method log prints the receiver object
in some log file, Math’s extension method log computes the logarithm of a number.
When they send the message log to an object, users of the Logger package expects
that the extension method of Logger is taken into account. However, Number class, as
a subclass of Object overrides that log method in package Math. On the right part of
figure 3, an extension method in package Math overrides another extension methods
in package Logger. The situation is very similar to the previous one. The package Math
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and Logger are unaware of each other so none of them know that Math’s extension
method overrides Logger’s.

Large programs usually involve multiple concerns and domains, each coming with
its own terminology. Accidental overwrites and overrides happen when these termi-
nologies overlap. In the context of extension methods, the probability of accidental
overwrites and overrides is large because any package can declare an extensionmethod
for any class. Accidental overrides are a form of interference between packages which
is more insidious than accidental overwrites. Indeed, an accidental overwrite is easily
noticeable because the client packages are likely to break upon the first invocation
of the overwriting method. Accidental overrides are much less noticeable because
they affect only instances of the class defining the overriding method. Note that this
problem only appears because defining a method implies overriding methods with
the same signature upper in the hierarchy.

Number

Object

log()
      ...

...

Math

Core

Number

Object Object

log()

Core Logger

extends

...

...

...
...

...

...

Number
log()
      ...

Math

...

extends

Object

log()

Logger

extends

...

Figure 3 Two examples of accidental overrides. To the left, a regular method accidentally
overrides an extension method. To the right, an extension method accidentally
override another extension method.

Since multiple parties can enhance the interface of any class, one party should not
be able to override the methods defined by an unrelated party it is not aware of. In
other words, extension methods need to be scoped.

3 Existing Mechanisms for Scoped Extension Methods

Because extension methods with global visibility exhibit the above-mentioned prob-
lems, several implementations propose a narrower visibility. This section describes
five of these solutions we selected because they are representative of five different
scoping strategies. Depending on the solutions, the scope of activation of extension
methods is either lexical or dynamic. In solutions where the scope of activation is
lexical, the set of extension methods that are active at a given point is determined
statically. In solutions with a dynamic scope of activation, the set of extension methods
active at a given point depends on a dynamic context: the call stack. Dynamic scoping
is necessary to support a property called local rebinding.
First we present the local rebinding property and some of its weaknesses. Then,

we show three solutions that expose the local rebinding property: Classboxes [3, 4],
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Method Shelters [1] and Groovy’s categories [9]. Finally, we present Ruby’s refinements
and Selector Namespaces [17] where extension method activation is determined
lexically.

3.1 De�nitions

In the following, we use the following terms:
Package. We call package, the language-specific unit of deployment that gathers

definitions of classes and other constructs from the language. Different packages are
potentially maintained by different parties. A package also declares dependencies
to other packages by importing some definitions.

Class extension. A class extension is a named set of extension methods that apply to
the same class. We do not consider addition of instance variables.

Extension group. An extension group is a named set of extension methods that may
apply to different classes.

3.2 Introduction to Local Rebinding

Local rebinding is a method-lookup algorithm first defined in the Classbox model [3,
4] and refined in the Method Shelters model [1] and hierarchical layer-based class
extensions [15]. This property permits extension methods to override regular methods
in a contextual manner. An active extension method takes precedence over regular
methods, even for indirect calls. In figure 4, the MyEditor package defines an extension
method printIndentation(int) that redefines the one in the original package. This
extension method prints spaces instead of tabs. When invoked from within this
package, this redefinition is taken into account, even in indirect calls: when invoking
the print() method defined in the SimpleEditor package, the redefined version of
printIndentation(int) will be executed and not the one defined in the SimpleEditor
package.

MyEditor

printIndentation(int level) {
  // prints some spaces
}

Model

SimpleEditor

print() {
  int indentLvl = ...
  printIndentation(indentLvl);
  ...
}
printIndentation(int level) {
  // prints some tabs
}

Model

extends

new Model().printIndentation(3)
> prints with spaces
new Model().print(3)
> prints with spaces

Figure 4 With local rebinding, changes made by an extension method are applied in case
of indirect calls.

With local rebinding, the lookup algorithm may have to dispatch to different meth-
ods in different contexts. In technical terms, when the signature of an extension
method e matches the one of a method m of the extended class, local rebinding en-
sures that e overrides m during the dynamic extent of message sent by importers of e.
The method lookup algorithm has to access this contextual information to determine
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the active extension methods. Such a method lookup algorithm can be implemented
either by inspecting the call stack or by storing the set of active extension methods in
a dynamic variable.

3.3 Illustrating local rebinding stack behavior

Collections

All Collections
add(element)
at(index)
...

Collection

All CollectionsAll Collections

SimpleLog

log()
Object

Core

...
Object

ObjectLog

log()
Objectextendsextends

ReadOnly

add(element)
at(index)
...

ReadOnlyDecorator

Record

add(element)
at(index)
...

RecordDecorator

imports imports

1 1

Figure 5 Decorating collections: two potentially conflicting extensions selected by on stack
state.

Consider the example depicted in figure 5. A Collections package defines common
collections and an abstract class Collection. Two packages ReadOnly and Record each
define a collection decorator.
The read-only decorator disables all operations that mutate the decorated collection.

When one of these operations is invoked, the read-only decorator logs the attempt
using the logging facility of the SimpleLog package and throws an error. The record
decorator just logs the operations done on the decorated collection using the logging
facility of the ObjectLog package for latter analysis as shown below in pseudo-code.

1 ReadOnlyDecorator>>at(index) ReadOnlyDecorator>>add(element)
2 return decoree.at(index) 'adding failed'.log();
3 throw IllegalWrite()
4
5 RecordDecorator>>at(index) RecordDecorator>>add(anObject)
6 { 'accessing'. decoree. index }.log(); {'adding'. decoree. anObject }.log();
7 return decoree.at(index) return decoree.add(index)

If a client application uses both decorators together, one log() method is likely to
contextually override the other. This is the case when one decorator decorates the
other. In this case, the composition order matters because it impacts the call stack
and thus the extension methods that are active when looking up log().

list = new List([1,2,3,4]);
Case 1 (new ReadOnlyDecorator(new RecordDecorator(list))).at(3);
Case 2 (new RecordDecorator(new ReadOnlyDecorator(list))).add(5);
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Stack for Case 1 Stack for Case 2
2. RecordDecorator.at() 2. ReadOnlyDecorator.add()
1. ReadOnlyDecorator.at() 1. RecordDecorator.add()

In Case 1, a read-only decorator decorates a record decorator that decorates a
list. When sending the at(3) message to the read-only decorator, first its at() method
transfers the request to the record decorator. The at() method of the record decorator
then tries to log this operation. At this point, two method activations are at the top
of the call-stack: first an activation of the at() method of record decorator, then an
activation of the at() method of the read-only decorator. Since each package defining
the at() method imports a different log() extension method, the lookup algorithm must
decide which one to select. A similar situation occurs with Case 2 with another call
order.
We now study two strategies to select a method in case of ambiguities: bottom-up

local rebinding and top-down local rebinding.

3.4 Bottom-up Local Rebinding

The first strategy gives precedence to extension methods imported by callers (i.e.,
appearing first in the call stack). We refer to this strategy as bottom-up local rebinding.
This is the strategy of the Classbox [3, 4] and Method Shelters [1] models. In the
context of figure 5, this means that the log() method of the SimpleLog package is
selected in Case 1 and the log() extension method of the ObjectLog package is selected
in Case 2. This strategy implies that client code may override other extension methods
defined in any package. As the developer of a package, your methods can be overridden
by a package that is indirectly using yours. Consequently, this forces a developer to
know the implementation of all the packages it uses (even indirectly) to prevent
himself from creating accidental contextual overrides. This raises a tension with
information hiding at the package-level and precludes local reasoning.

3.4.1 Classboxes
A classbox is a modular construct defining classes and class extensions, taking the
role of a package. A classbox can define at most one class extension per imported class.
This prevents useful ways to group related extension methods (See section 5.1). A
classbox can import class extensions from other classboxes. Classboxes have been
devised to facilitate handling of unanticipated changes i.e., a client classbox pushes
modifications to other classboxes. Used sparingly, classboxes allows developers to
customize the implementation of external packages. However, if used extensively,
accidental contextual overrides are likely to occur.

3.4.2 Method Shelters
The Method Shelters model [1] builds upon the Classbox model by adding the ability
to protect some extension methods from accidental contextual overriding. A method
shelter is a package that contains an exposed chamber and a hidden chamber. Each
chamber declares classes and methods, and they can import other method shelters.
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1 shelter :MathShelter shelter :ClientShelter do
2 class Fixnum #�xed size integer in Ruby import :AverageShelter
3 def /(x) def calc
4 Rational(self,x) p([1,2,3,4,5,6,7,8,9,10].avg) #prints "(11/2)"
5 end p(55/10) #prints 5
6 end end
7 end end
8
9 shelter :AverageShelter do shelter_eval :ClientShelter do
10 class Array calc
11 def avg end
12 sum = self.inject(0){|r,i| r + i}
13 sum / self.size
14 end
15 end
16 hide
17 import :MathShelter
18 end

Figure 6 Example taken from [1]. Method shelters provide the ability to control which
method can be overridden: extension methods declared after hide cannot be
overridden by client shelters

Importing a method shelter brings the extension methods of its exposed chamber
into the importing chamber. Thus, only methods imported or declared in the exposed
chamber can be contextually overridden by other method shelters.
We illustrate the behaviour of hidden chambers in figure 6. In the figure, two

definitions of division (/) over integers coexist without accidental contextual override.
The default / method of the FixNum class defines euclidian division. The Math shelter
redefines / as exact division: the method returns a rational number. The average shelter
imports the math shelter in its hidden chamber. The avgmethod of Array uses the exact
division of the Math shelter to compute the average of an array of integers. Finally
a client shelter imports the average shelter and computes the average of an integer
array: the computation results in a rational number. The client shelter is oblivious of
the fact that the average shelter uses the Math shelter. From its point of view, / still
refers to the standard euclidian division.
Method shelters work as classboxes if a program uses only the exposed chambers,

and thus, this means that the same problems arise. On the other hand, putting all
methods inside the hidden chamber prevents the redefinition of methods, avoiding
the local rebinding property.

3.5 Top-Down Local Rebinding

The second strategy gives priority to extension methods imported by callees. With
this priority strategy, an extension method can be overridden in a called method. In
the context of figure 5, this means that the log() method of the ObjectLog package is
selected in Case 1 and the log() extension method of the SimpleLog package is selected
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in Case 2. We refer to this strategy as top-down local rebinding. This is the strategy of
Categories in Groovy [9].

3.5.1 Groovy Categories
Groovy developers can define scoped extension methods in categories. A category
defines a named extension that can be put into the scope of a block of code using the
use keyword. When a use block is entered, the category is activated by pushing it onto
a thread-local stack variable. This extension is popped from the thread-local stack of
active extensions when the block is exited. Upon method lookup, a method redefined
in a category takes priority over the original method in the extended class. In case of
conflict between two extension methods in two categories, the method defined in the
lastly-activated category (the one that is nearest to the top of the stack) is selected.
Moreover, a use block can activate several categories. If there is conflicting methods
in these categories, the first definition hides the others.

3.6 Lexical extension activation

This section presents scoped extension mechanisms using a lexical scope of activation,
in contrast to the already presented models providing local-rebinding. In these solu-
tions, only extensions defined and imported explicitly in the current lexical scope are
active during the execution of a program. This kind of scoped extension methods is
provided by refinements in Ruby, and selector namespaces in SmallScript. In the rest
of this section we describe ruby refinements and selector namespaces as significant
examples of these solutions.

3.6.1 Subsystems and Selector Namespaces
We report on the Subsystem proposal since it is probably the source of inspiration for
SmallScript [17]. In the subsystem proposal [17], method signatures (selectors) are
decomposed in two parts: a value and a name. A selector value is the key that is used
to actually identify methods. A message send uses a selector value to select a method
with the same selector value. This value is not known to the programmer. A selector
name is the actual symbolic name used in Smalltalk code to refer to a selector value.
A message send using a selector name dispatches to whichever selector value that

is bound to it in the lexical scope. In other words, message name resolution is static.
Selectors are organized into hierarchies that support redefinition and shadowing.
When the Smalltalk compiler processes a message, it looks up the selector names in
the current scope and any of its enclosing scopes and uses the selector value that is
found.
Unfortunately, the lack of a more clear documentation for selector namespaces

prevents us from analyzing its properties more in detail.

3.6.2 Ruby Re�nements
Since its first versions, Ruby supports globally visible extension methods under the
name of open classes. Ruby 2.1 introduces scoped class extensions under the name
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of refinements. In refinements, only modules and classes importing a refinement
can call its extension methods. In addition, if a class imports a refinement in its
body, this refinement is also active in the scope of the subclasses, even when the
subclasses are defined in another package. This propagation of visibility provides
some common facilities to subclasses, a feature that may be useful in frameworks
where an abstract class of the framework is subclassed by users. Also, developers
who subclass an external class should be aware of the refinements that are active in
that class. Surprisingly, while the sequence of active refinements can be determined
statically, the implementation of refinements does the resolution dynamically with a
dedicated and slower method lookup. This choice may be due to other implementation
constraints.

4 Method Lookup Formalization of Scoped Extension Solutions

We presented in section 3 several models of scoped extension methods. To study the
different design choices of each model, we present in this section a formal specification
of a method lookup algorithm for scoped extension methods. Using this specification,
we formalized the different strategies of the studied solutions to select active extensions
and then select the method to execute.

4.1 Notations and Base Model

We use five semantic domains and three functions to model language entities and
their relations. We use 7→ to denote partial functions.

c ∈ C superclass :C 7→ C
s ∈ S method :C ×S ×E 7→M
m ∈M imports :M →E ∗

e ∈ E
m̄ ∈ Γ where Γ =M ∗

Classes are elements of C . Signatures are elements of S . In a dynamically-typed
language a signature usually consists of a name and a number of parameters. Methods
are modeled as elements ofM and extension groups are modeled as elements of E .
The partial function superclass denotes the class-superclass relationship. Because a

class cannot inherit from itself, this function is acyclic. For a class c that has no super-
class, superclass(c) is undefined: usually, only one such class exists in programming
languages.
The partial function method denotes the existence of a method in a given context.

This function returns a method if a given extension defines such method with a given
signature for a given class. It is undefined if the extension defines no such method.
The function imports returns a sequence that models which extension imports are

effective in the context of a method, in order of decreasing priority (we note X ∗ the
set of finite sequences of elements of X ). These imports could be declared for a single
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method, for a whole class, for a whole class hierarchy, for a whole package, etc. What
matters is which one affects a method and this is what imports indicates.
Finally, call stacks are elements of Γ . For the purpose of modelling lexical and

local-rebinding mechanisms, knowing the method of a stack frame is enough so call
stacks are modeled as a finite sequence of methods (Γ =M ∗). The first element of
such a method sequence corresponds to the bottom of the call stack and the last
element corresponds to the method that sent the message being looked up. We use
the notation x̄ for sequences (i.e., x̄ =< x̄1, . . . , x̄| x̄ | >).

Standard Lookup. The standard lookup algorithm for class-based dynamically-typed
languages with single dispatch depends on the class of the receiver object and a
method signature. To take the dynamic scoping of classboxes and method shelters
into account, a lookup algorithm must also consider the call stack. Consequently, we
model the lookup as:

lookup :C ×S × Γ 7→M

A method lookup fails whenever the lookup function is undefined. To better distin-
guish between the different kinds of lookup algorithms, we divide the lookup in two
steps. The first step determines the sequence of active method extensions from a call
stack. The second step selects a suitable method to be executed among a sequence of
extensions. The lookup function is then defined using two functions: activeExts and
select that represent these two steps.

lookup(c, s, m̄) = select(c, s, activeExts(m̄)) where:

¨

activeExts : Γ →E ∗

select :C ×S ×E ∗ 7→M

We can now describe different versions of the activeExts and selection functions
separately. We call the different versions of activeExts: active extensions strategies; and
the different versions of select: method selection strategies.

4.2 Active Extensions Strategies

We now review the different active extension strategies. In the context of local rebind-
ing, the lookup has to consider the chain of callers to find if one imports an extension
with an overriding extension method. The extension activation is dynamically-scoped.
This means that the lookup algorithm traverses the call stack or uses a thread-local
variable to determine active extensions. The call-stack can be traversed bottom-up
giving priority to callers imports, or top-down, giving priority to callees imports.
Without local rebinding, the extension activation is said to be lexical. For each strategy,
we consider that a global extension named global contains all regular methods and it
is implicitly imported by default.
Besides the formalization, figure 7 summarizes and illustrates active extension

strategies through an example. In the example, two packages P2 and P3 extend class
C1 from package P1 with an override. The table illustrates how four different method
invocations behave in this scenario: (a) a class in P2 calls a redefined method of C1;
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(b) a class in P2 calls a method of P1 calling a redefined method of C1; (c) a class in
P3 calls (a); (d) a class in P3 calls (b). At runtime, this generates overrides between
the redefined method in P2 and P3. We see that lexical activations use the definition
available in the current lexical scope. Local-rebinding, on the other side, will depend
on the order of message sends in the stack. Cases (c) and (d) give precedence to the
method defined in P2 or P3, depending on the local-rebinding strategy.

P1

P2 P3

C1
redefined
    ^ #P1

selfSend
    ^ self redefined

C1
redefined
    ^ #P2

C1
redefined
    ^ #P3

sendRedefinedTo: aC1
    ^ aC1 redefined

sendSelfSendTo: aC1
    ^ aC1 selfSend

C2

sendRedefinedTo: aC1 via: aC2
    ^ aC2 redefinedSendTo: aC1

sendSelfSendTo: aC1 via: aC2
    ^ aC2 sendSelfSendTo: aC1

C3

extends extends

LR↑ LR↓ Lex
aC2 sendRedefinedTo: aC1 #P2 #P2 #P2
aC2 sendSelfSendTo: aC1 #P2 #P2 #P1
aC3 sendRedefinedTo: aC1 via: aC2 #P3 #P2 #P2
aC3 sendSelfSendTo: aC1 via: aC2 #P3 #P2 #P1

Figure 7 Active Extension Strategies by Example. This figure shows what are the results
of four different expressions in the presence of the different active extension
strategies.

Bottom-up local rebinding. We first consider the extension activation strategy of
bottom-up local rebinding as exemplified by Classboxes and also by Method Shelters
exposed chambers. The selection of active extensions for method shelters is more
refined as it stops searching if one of the shelters is imported in a hidden chamber.
Here is the definition of the activeExtslr↑ that computes the active extensions following
this strategy:

activeExtslr↑(m̄) = imports(m̄1)_ . . ._ imports(m̄|m̄|)_< global>
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If the call stack is empty, that is if this is the first lookup of the associated thread,
the function just returns the implicitly imported global extensions. Otherwise, the
function recursively concatenates the imports of each method in m̄ from the oldest
method activation (m̄1) to the newest (m̄|m̄|). Concatenation of sequence is noted “_".
As a result of this bottom-up approach, extensions imported in the methods of the
oldest stack frames come first.

Top-down local rebinding. Now, we consider top-down call-stack traversal as exem-
plified by Groovy categories. Here is the definition of the activeExtslr↓ that computes
the active extensions following this strategy:

activeExtslr↓(m̄) = imports(m̄|m̄|)_ . . ._ imports(m̄1)_< global>

Like with the function activeExtslr↓, if call stack is empty activeExtslr↓ returns the
implicitly imported global extension. Otherwise, the function recursively concatenates
the imports of each method in m̄ from the newest method activation to the oldest. As
a result of this top-down approach, extensions imported in the methods of the newest
stack frames come first.

Lexical extension activation. We finally consider the lexical extension activation strat-
egy as exemplified by Ruby refinements. A lexical extension activation means that the
call-site is enough to know the active extensions. It also means that the sequence of
active extension is known statically. The active extensions are the ones imported by
the calling method, that is the first element of the sequence m̄.

activeExtslex(m̄) = imports(m̄1)_< global>

Choosing one of these three active extensions determination strategies (bottom-
up local rebinding, top-down local rebinding, lexical) determines which method
extensions are active during a message send. The next step of the lookup is to choose
a method among these extensions.

4.3 Method Selection Strategy

Once the sequence of active extensions are determined according to one of the previous
strategies, the second step is to select one method from all these extensions. One
strategy is to lookup a method in the first active extension throughout the hierarchy
and then continue with following extensions (See figure 8). We refer to this strategy
as hierarchy-first method selection strategy. Another solution is to lookup the method
in the receiver class for each active scope in order and then continue to the superclass.
We refer to this strategy as extensions-first selection strategy.
The choice of the method selection strategy has a big impact for the accidental

override depicted in figure 3. Indeed, given a sequence of active extensions, these
strategies determine whether in a hierarchy two extension methods with the same
name from different extensions have an override relationship or not.
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Number

Object Object

log()

Core ObjectLogger

extends...
...

...

...

Number
log()
      ...

SimpleLogger

...

extends

extensions-first
Extension

hierarchy-first

Figure 8 Two method selection strategies: extensions-first and hierarchy first.

Extensions-�rst. It searches for a suitable method in each active extension before
searching in the superclass of the receiver class. This is the strategy used by all
solutions presented in section 3.

selectext(c, s, ē) =











lookupInClass(c, s, ē) if it is defined

selectext(superclass(c), s, ē) else if superclass(c) is defined

is undefined otherwise

The function selectext first looks if the first of extension in ē defines a method for
the provided class and signature using the function lookupInClass. If no method is
found (i.e., lookupInClass(c, s, ē) is undefined), selectext continues recursively with the
superclass of c if it exists. Otherwise, it is undefined if superclass(c) is undefined. The
function lookupInClass searches for the first suitable method defined for a given class
in a given sequence of extensions. It is defined as follow:

lookupInClass(c, s,<>) is undefined

lookupInClass(c, s, ē) =

¨

method(c, s, ē1) if it is defined

lookupInClass(c, s, tail(ē)) otherwise

With extension-first method selection, a method can be overridden in extensions
with higher priority in the class of the method or in any active extensions in subclasses
of that method class.

Hierarchy-�rst. It first looks up for the whole hierarchy of the receiver class in the
context of the first extension and then consider the other extensions. As we will see
later, this solution permits to limit occurrence of accidental overrides.

selecthrc(c, s,<>) is undefined

selecthrc(c, s, ē) =

¨

lookupInExtension(c, s, ē1) if it is defined

selecthrc(c, s, tail(ē)) otherwise

1:16



G. Polito, S. Ducasse, L. Fabresse, C. Teruel

The function selecthrc first looks if the first scope of ē defines a method in the provided
c or in class c inherits from thanks to the function lookupInExtension. If no method
is found, it continues recursively with the remaining scopes if there is some. The
function lookupInExtension searches for the first method defined in the hierarchy of a
given class in a given extension. It is defined as follow:

lookupInExtension(c, s, e) =



















method(c, s, e) if it is defined

lookupInExtension else if superclass(c) is defined

(superclass(c), s, ē)

is undefined otherwise

With hierarchy-first method selection, an extension method imported in a subclass
can be overridden by extension methods imported by superclasses, if the extensions
in the superclasses have higher priority.

5 Comparison and Discussion

This section extends the comparison criterion with import granularities. Then, we
provide a comparison of existing solutions to expose the concepts. We include in
this comparison solutions for statically-typed languages to show how our conceptual
decomposition captures also their semantics. We present an analysis of the studied
approaches.

5.1 Declaration of Dependencies

Once extension methods are local to their users it is mandatory for the users to declare
which extension methods they bring into scope. Hence, all the existing solutions here
solve the problem of hidden dependencies. These dependencies are usually declared
with some form of import statements. Such an import statement between a user
(the importer) and a set of extension methods (the importee) requires answering two
questions: “What is imported?" and “Where is it imported?".

Importee granularity. How can a developer declare which extension methods should
be imported? Many different granularities can be considered. Importing extension
methods one by one is tedious: the solutions presented here offer means to group
related extension methods together. One possible grouping is at the class-extension
level (used by Classboxes for example) i.e., extension methods are grouped by the
class they extend. This kind of grouping is simple but cannot specify a set of related
methods in different classes (such as the asParser methods presented in section 2.1).
Also, with classboxes and method shelters this class-centric grouping cannot specify
different sets of methods for the same class. Being able to make different groups
for the same class can be useful: one group for a public API while another group
is not meant to be exposed because it is for implementation purpose only. Another
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possible grouping is the extension group (used by Method Shelters, Refinements and
Categories) where extension methods are grouped under a named extension and can
affect different classes.

Importer granularity. To which extent/scope is visible an extension? With Classboxes
for example, a class extension is imported and visible for all methods in the importing
Classbox. With Groovy Categories, extension methods are active during the execution
of an importing block. With Ruby Refinements, imported extension methods are visible
in the importing class and all its subclasses.

5.2 Comparison of Solutions

We summarize in table 1 a comparison of existing scoped extension methods solutions
according to the following criteria previously discussed: the importee granularity,
the importer granularity, the extension activation strategy and the method selection
strategy.
We observe in the table that solutions for dynamically-typed languages (Matriona

and Classboxes on Squeak, Method Shelters and Categories on Groovy) use mainly
local rebinding solutions. On the other hand, solutions for statically-typed languages
(MultiJava and Expanders on Java, PRM Refinements) use lexical activations. The one
exception is Ruby Refinements that uses lexical activations on a dynamically-typed
language.

Table 1 Comparison of the different approaches to scoped extension methods

Importee Importer Extension Method
granularity granularity activation strategy selection strategy

Classboxes one class extension package bottom-up extensions-first
[2, 3, 4] per class local rebinding

per package

Method one extension package controlled extensions-first
Shelters [1] per package bottom-up

local rebinding

Groovy many extensions block of code top-down extensions-first
Categories [9] per package local rebinding

Matriona [15] many extensions package controlled extensions-first
per package top-down

local rebinding

Ruby many extensions class and lexical extensions-first
Refinements per package its subclasses

MultiJava [6] many extensions package lexical hierarchy-first
per package

Expanders [16] many extensions package lexical hierarchy-first
per package

PRM [7] many extensions package lexical hierarchy-first
per package
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5.3 Discussion

As one of the authors of local-rebinding [3, 4], and after several years gathering
more experience on the topic, we believe that local-rebinding brings more problems
than solutions. Accidental contextual overriding asides, local-rebinding violates object
encapsulation since the same object can behave differently depending on the caller’s
code. Lexical activation of extension does not have this problem. Indeed, we consider
that lexically-activated extension methods do not cause accidental overrides but just
normal intentional overrides because developers know beforehand which extensions
are active in a scope and how they may override each other. Therefore they have a
simpler and more predictable behavior that allows for local reasoning of a program.
The design space of scoped method extensions is wider than one can expect. For

instance, the active extension strategy is not the only design choice. A language
designer should also thing about method-selection, import granularity, security and so
on. For example, we determined that while local-rebinding improves code adaptability
it causes too much encapsulation problems. Despite lexical extension methods cannot
modify the behavior of an object in a contextual manner like local-rebinding, they are
easier to reason about.
The import relationship granularity has consequences on expressivity and segrega-

tion of extension methods in meaningful groups. From the importee perspective, we
saw that being able to define extensions i.e., named groups of extension methods is
the best solution. Extension groups are more powerful than class extensions because:

an extension can specify a set of related methods in different classes (such as the
asParser methods presented in section 2.1),
different extensions can specify different sets of methods for the same class,
and the previous class-based grouping can be realized with extensions whose
methods all belong to the same class.

Methods, classes and packages are all valuable importers granularities and a solution
should support all of them. However, this requires the language to support grouping
of methods. The imports taken into account for a regular method would be the
imports declared at the method-level plus the imports declared at the class-level, plus
the imports declared at the package-level. This includes the associated trade-off of
increasing the language complexity.
Finally, whereas we called some overrides as “accidental", they can also be malicious,

e.g., voluntarily corrupting a class behavior to gain access to protected operations or
break fundamental invariants. This is why the design of scoped extension methods and
method selection strategy are crucial because they have a strong impact on accidental
overrides as we will see in the next section.
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6 Our Formal Framework In Action: Example of an Analysis to Minimize
Accidental Overrides

As discussed in previous sections, extension methods are useful but accidental over-
rides are insidious, hard to detect and may be frequent when several packages are
involved in a program. For example, in Pharo 3,³ 4.7% of all methods are extension
methods, 16.7% of all classes and traits are extended, 48.1% of all packages define an
extension method and 31.7% of all packages define a class or a trait that is extended by
another package. These numbers illustrate that in such a practical context, extension
methods pose a high risk of accidental overrides limited thanks to coding conventions.
In this section we show how we can use our defined formal framework to propose

a metric to estimate the risk of accidental overrides for the two method selection
strategies: extension-first and hierarchy-first. We define our metric and use it to
determine which strategy provides the least risk. The objective of this section is not to
provide bullet-proof metric but to show how our formal framework can be used for
this purpose. Language designers are free to not follow this metric.

Accidental Overriding Space (AOS). We call accidental override space (AOS) the set of
all possible locations where a method could accidentally override another method for
a given message. For example, let us consider an arbitrary message mess = (crcv , s, ē)
with signature s sent to an instance of crcv with the sequence of active extensions ē.
Let meth=method(cde f , s, ei) be the method this message dispatches to. This method
is declared in the extension ei, the i-th extension of ē (possibly global if it is a regular
method) for the class cde f (i.e., crcv or one of its superclasses). Now let us consider the
addition of an arbitrary method new=method(cnew, s, e j) with the same signature s in
extension e j. We want to model the set of method locations where this new method
would cause an accidental override, i.e., the set of method locations that would cause
mess to dispatch to new instead of meth. Since the method new has the same signature
as meth, a method location only consists of a class and an extension. If new overrides
meth and are defined in the same extension ei, this override is intentional, so we only
consider locations where j 6= i.

AOS of Extension-First Strategy (AOSext). For extension-first method selection, new
accidentally overrides meth if: (1) new is defined for a subclass of cde f in an extension
e j in ē where j 6= i, or (2) new is defined for cde f in an extension e j where j < i. If we
note superclass−1+(c) all the subclasses of a class c (transitive closure of the inverse of
superclass), we have:

AOSext(mess, meth) = {(cnew, s, e j) |
(cnew ∈ superclass−1+(cde f )∧ i 6= j)∨ (cnew = cde f ∧ i < j)}

The size of AOSext(mess, meth) is given by:

|AOSext(mess, meth)|= |superclass−1+(cde f )| × (|ē| − 1) + (i − 1)

3 build #860, which contains 4115 classes/traits and 74648 methods
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AOS of Hierarchy-First Strategy (AOShrc). For hierarchy-first method selection, new
accidentally overrides meth if new is defined for any class in cde f hierarchy in an
extension e j in ē where j < i. If we note superclass+(c) all the superclasses of a class c,
we have:

AOShrc(mess, meth) = {(cnew, s, e j) |
cnew ∈ (superclass−1+(cde f )∪ cde f ∪ superclass+(cde f ))∧ i < j}

The size of AOShrc,meth(mess) is given by:

|AOShrc(mess, meth)|= (|superclass−1+(cde f )|+ |superclass+(cde f )|+ 1)× (i − 1)

Comparison of |AOSext| and |AOShrc|. We can now compare the AOS of each method
selection strategy. We ask ourself when the hierarchy-first strategy is better than the
extension-first strategy i.e., when |AOShrc(mess, meth)| ≤ |AOSext(mess, meth)|.

AOS Comparison in the Pharo Language. To compare the two metrics defined above,
we must have an idea of the average number of subclasses and superclasses a class
has. This section shows how this metric is concretized in the case of Pharo. A more
general language-independent approach follows after this analysis.
In Pharo the average number of subclasses of a class is 8.82 and the average number

of superclasses of a class is 3.83. With these numbers our inequality reduces to
1.43i − 0.43 ≤ |ē|. In the table below, the first row shows |ē| ranging from 1 to 10.
Remember that i can range from 1 to |ē|. For each value of |ē|, the second row shows
the maximum value of i that still satisfies the inequation above. This table shows that
hierarchy-first strategy (second row) has less risk to cause accidental overrides than
extension-first strategy (first row).

|ē| 1 2 3 4 5 6 7 8 9 10
i ≤ 1 1 2 3 3 4 5 5 6 7

For example, when 5 extensions are active (|ē|= 5), the hierarchy-first strategy has
less risk to cause an accidental override than extension-first strategy whenever meth
belongs to one of the first 3 active extensions (i <= 3). Following the table, we observe
that for this example in 67% of total cases hierarchy-first strategy has less accidental
method override risks. . Extension-first strategy performs better when meth belongs
to the last extensions i.e., the ones that have smaller priority. But it also means that
using extension-first strategy, accidental overrides can happen for extension with a
lower priority. So, hierarchy-first strategy has also the advantage that an accidental
method override can only happen for extension with a higher priority. All of these
reasons show that the hierarchy-first strategy is better to limit accidental overrides.

Generalization. The above analysis relies on average number of subclasses and su-
perclasses of a given class. The following question then arises: Does hierarchy-first
strategy always provide a smaller risk of accidental overrides than extension-first
strategy? If we make these two numbers varying from 1 to 10 and compute all results,
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it appears that: hierarchy-first performs better when the average number of subclasses
is greater than the average number of superclasses (and extension-first on the opposite
way). And this assertion is usually true because object-oriented hierarchies are built
by extension i.e., subclassing.

Conclusion. This analysis shows that generally, the hierarchy-first strategy minimizes
the risk of “accidental" overrides in comparison the extension-first strategy.

7 Related Work

We have already shown and analyzed in previous sections existing solutions for scoping
extension methods. In this section, we compare this work with respect to the problem
of conflicts and other module related formalizations.

Module Taxonomy. Bergel, Ducasse and Nierstrasz present a module taxonomy in
their work “Analyzing Module Diversity” [2]. They present a simple module calculus
consisting of a small set of operators over environments and modules. Using these
operators, they are then able to specify a set of module combinators that capture the
semantics of Java packages, C# namespaces, Ruby modules, selector namespaces,
gbeta classes, classboxes, MZScheme units, andMixJuicemodules. The article develops
a simple taxonomy of module systems. Even if the paper covers Classboxes and selector
namespaces, it does not specifically focus on method extensions and does not cover
some of the more recent languages supporting class extensions such as Groovy and
Method Shelters. In addition, their semantics does not capture the fine grained aspects
of the local rebinding lookup stack traversal.

Accidental overrides. Simple changes can have unexpected effects due to implicit
contracts between a class and its subclasses. This well-known problem, coined as the
fragile base class problem [11], is due to the fact that current languages do not support
well extension contracts: Just changing the calling structure of a method without
changing its external behavior may have unexpected effects in presence of subclasses.
C# is the one of the rare languages that offers a way to control unintended name
capture (called accidental overrides in this paper). C# allows the programmer to
qualify a method with the keyword new (rather than override) to declare that while
the newly defined method has the same name as the one in its superclasses, it is used
for a different concept than in the superclasses. As such, all calls in the superclass
hierarchy that would invoke a method with the same name will not consider the new
method.

8 Conclusion

Globally-visible extension methods can lead to conflicts: accidental overrides and
overwrites. These conflicts pose class encapsulation problems that can lead to subtle
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bugs or be exploited by malicious parties. In this article, we analyzed multiple solutions
that propose to scope extension methods in dynamically-typed languages: Classboxes,
Ruby Refinements, Method Shelters, and Groovy Categories.
We defined scoped extension mechanisms as a combination of a active extension

strategy and a method selection strategy. An active extension strategy defines what
extension methods are available in a given context. We identified lexical activation as
well as two flavours of local-rebinding activations that were partially described in the
literature. A method selection strategy defines how a method is selected when there
are multiple active extensions defining methods with the same signature. Method
selection strategies can give precedence to the class hierarchy (hierarchy-first) or to
the extensions (extensions-first).
We then used these formal semantics to characterize other solutions such as Mul-

tiJava, Expanders and Matriona. We show that the semantics of scoped extension
methods has a big impact on accidental overrides, and concluded that the combination
of lexical extension methods with the hierarchy-first method selection strategy gives
the best results to minimize them.
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