Description Languages for Consistency Management Scenarios
Based on Examples from the Industry Automation Domain

Anthony Anjorin?, Enes Yigitbas?, Erhan Leblebici®, Andy Schiirr®, Marius
Lauder®, and Martin Witte?

a Paderborn University, Germany

b Technische Universitat Darmstadt, Germany

¢ Continental Automotive GmbH, Germany

d Siemens AG, Germany

Abstract To cope with the increasing complexity of developing and maintaining modern (software) systems,
multiple abstractions (models) of the same system can be established and used to allow different domain ex-
perts to collaborate and contribute their respective expertise. This divide-and-conquer, model-based approach
requires, however, support for a concurrent engineering process, i.e., providing a means of checking, restoring,
and ensuring the consistency of all involved and concurrently maintained models. The task of providing such
support is often referred to as consistency management.

Although there exist various approaches to consistency management and numerous (industrial) case stud-
ies described in the literature on bidirectional transformations (bx), there is currently no uniform description
of diverse but related industrial applications of model synchronisation and other forms of consistency man-
agement. This makes it challenging to detect similarities and differences related to requirements, constraints,
applied techniques and tools. It is thus difficult to compare and transfer knowledge gained from (successful)
projects to other bx approaches or even other bx tools for the same general approach.

In this paper, therefore, we propose a description language for envisioned scenarios in the problem domain
of consistency management, as well as a complementary description language for solution strategies in terms
of method fragments and method patterns in the solution domain of Model-Driven Engineering (MDE). Our
work is inspired by previous research in the bx and MDE communities, and is also based on our collective
experience from over ten years of investigating a series of application scenarios in the industry automation
section together with Siemens AG as an industrial partner.

We use our proposed description languages to discuss a series of application scenarios that are diverse but
all require varying forms of support for consistency management. By using a common notation and focusing
only on aspects directly related to consistency management, we are able to abstract from project-specific
details and uniformly describe how consistency management is required and can be currently supported in
the industry automation sector. Based on this formal and macroscopic view of the projects, we provide a
systematic discussion of our experience and results applying Triple Graph Grammars (TGGs) as a concrete bx
approach in the industry automation domain.

ACM CCS 2012
= Software and its engineering - System description languages; Domain specific languages; Visual
languages;
Keywords Consistency Management, Bidirectional Model Transformations, Method Engineering, Industry

Automation

The Art, Science, and Engineering of Programming

Submitted November 29, 2017
Published March 29, 2018
Dol 10.22152/programming-journal.org/2018/2/7

® © A. Anjorin, E. Yigitbas, E. Leblebici, A. Schiirr, M. Lauder, M. Witte
@ This work is licensed under a “CC BY 4.0” license.

In The Art, Science, and Engineering of Programming, vol. 2, no. 3, 2018, article 7; 32 pages.



https://doi.org/10.22152/programming-journal.org/2018/2/7
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Description Languages for Consistency Management Scenarios

EJ Introduction and Motivation

The development and maintenance of increasingly complex software systems often
requires a suitable decomposition of the system into multiple abstractions (models),
which can be concurrently maintained by experts in their respective domains. Such a
concurrent engineering process can be well supported by model-based approaches
and techniques, especially approaches to ensure that the consistency of all related
models, representing views of the same system, can be maintained via suitable change
propagation and synchronisation. Numerous, diverse approaches to consistency ma-
nagement exist and are currently being actively researched and compared in the
bidirectional transformations (bx) community [8, 36]. Involved communities in bx
include databases (view-update problem, schema evolution), software engineering
(model synchronisation, conformance checking), and programming language devel-
opment (bidirectionalisation, coupled transformations).

Especially in a Model-Driven Engineering (MDE) context, Triple Graph Grammars
(TGGs) [35] have often been used for consistency maintenance in various industrial
applications [4, 17, 18, 34]. While this is certainly encouraging, it is currently challeng-
ing to detect similarities and fundamental differences in the ways TGGs have been
applied to handle consistency management. The situation is even more critical for case
studies using other bx approaches. This lack of a uniform, high-level but still precise
description of application scenarios prevents the reuse and transfer of developed
strategies and lessons learnt in these diverse projects to new projects. Having a priori
knowledge about how to apply bx technology is indeed crucial, as an a posteriori
refactoring of, e.g., unidirectional model transformations to utilise a bx language, is
typically infeasible in practice. This situation effectively hinders the application and
impact of bx technology in practice.

Depicted in figure 1, our first contribution (presented in section 2), is to suggest a
description language that can be used to provide a macroscopic view on projects with
varying requirements for consistency management in the problem domain. Inspired
by and extending Stevens’ work on describing networks of bx [37] we propose to
define a transformation context specifying model types and consistency relations, and
a transformation schema representing a basic pattern that all networks of models must
adhere to. Based on this, it is then possible to describe typical resolution paths for
the application scenario that specify how consistency is to be restored. Using this
solution independent and technology agnostic description language, we present four
different application scenarios of consistency management in the industry automation
domain, investigated over the span of almost ten years in an ongoing cooperation
together with Siemens AG as our industrial partner. The first project (completed),
Concurrent Model-Driven Automation Engineering (CMDAE) [30, 341, is in the domain
of automation engineering, the second project (also completed), Concurrent Manufac-
turing Engineering (CME) [2], in the domain of manufacturing engineering, the third
(ongoing as of 2017), A Graph-Grammar-Based Approach to Bidirectional Traceability of
Related Models (GraTraM), in the domain of computer-aided engineering. The fourth
project is a project proposal based on research in the quality assurance domain [38].

7:2



A. Anjorin, E. Yigitbas, E. Leblebici, A. Schiirr, M. Lauder, M. Witte

Problem Domain Solution Domain

@

! b— )

Transformation Context I Os *Qv O
Mg Mp| Mg—t— My
Situation-Specific 5 i% +; ' 5 ‘A s
i 5| 0T
Transformation Schema Method for CMDAE e M S[v- ; T
My——Mr Mi—d—1r,

Resolution Paths

--x
Method Fragments |52y ‘..,.ffd%

Solution Strategies

MM},

p—
T Method Patterns
Application Scenarios

Method Base

M Figure1 Overview of the rest of the paper

Our second contribution (presented in section 3), is to propose a complementary
description language for method fragments and method patterns used to realise MDE-
based solution strategies. Our approach to describing solution strategies is based on
method engineering, which is a discipline concerned with the systematic development
and adaptation of methods [5]. A method is a description of how to systematically
perform an endeavour and comprises a process together with relevant artefacts, roles,
tools, and relationships between these elements on varying levels of granularity [19].
The main idea we apply (see figure 1), is to enable a modular construction of methods
for consistency management scenarios by supplying a method base consisting of
reusable atomic building blocks (method fragments), and construction guidelines on
how to combine and assemble these fragments (method patterns) [19].

By providing a uniform description of all these diverse projects in the problem and
solution domains, we are able to provide a discussion of project results in section 4
and identify current limitations and the primary potential of our applied TGG-based
approach; by abstracting from project and tool-specific (technical) details we believe
our contribution is comprehensible and accessible to other (bx) researchers, promoting
a comparison and transfer of knowledge and insights to other approaches and domains.

In the rest of the paper, we give an overview of related work in section 5, and
conclude in section 6 with a brief outlook on future work.

[EJ Describing Consistency Management Scenarios in the Problem Domain

In the following, we present our first project in section 2.1 and introduce our description
language at the same time. This ensures that all formal definitions are directly followed
by illustrative examples from the application scenario. Sections 2.2, 2.3, and 2.4 then
present all other projects using the same description language. To keep this paper
focussed, we are only able to provide a simplified view in each case, omitting many
details and complexities discussed in the referenced literature for each project.

7:3



Description Languages for Consistency Management Scenarios

21 Concurrent Model-Driven Automation Engineering (CMDAE)

We commenced our research cooperation with Siemens AG by investigating how model-
driven techniques can support the engineering of complex plants and machinery in
the domain of automation engineering and manufacturing engineering (collectively
referred to as the domain of industry automation in this paper).

The development of complex automation systems cuts across multiple engineering
domains and requires the concurrent usage of different engineering tools. As the data
exchange between such tools is often based on separate documents and meetings, a
seamless integration of engineering models is required to increase the efficiency and
effectiveness of the development process.

The case study investigated in the CMDAE research project was the development
and maintenance of an automated storage and retrieval machine as part of a high-bay
warehouse system [30, 34]. In this case study in the domain of automation engi-
neering, the complete system specification is decomposed into three types of models:
(i) Location Oriented Structure (LOS) models, representing the physical composition
of a specific plant, (ii) Hardware Configuration (HC) models describing the logical
interconnections between these components, and (iii) Software Models (SM), the
actual programming of automation devices in a language called Statement List.

The LOS is specified in IEC standard 81346. According to this standard, a plant is
decomposed into different components, which may contain each other or be physically
wired via ports. This information can be modelled using an engineering tool such as
Comos ET!

To model hardware centric information in the HC, the tool Simatic Step7? can be
used, which also supports the development of Programmable Logic Controllers (PLCs).
The HC contains abstract information regarding for example the type of a processor
or communication module, while neglecting physical details such as the actual size or
weight. Furthermore, these modules may communicate via logical connections, which
do not necessarily reflect the actual physical wirings in the LOS.

The LOS, HC, and SM are mutually dependent on each other. For example, a change
of an automation device in the HC due to performance requirements must be reflected
in the bill of materials (a list of the raw materials and quantities of each required
to manufacture an end product) of the electrical cabinet in the LOS. Analogously, a
change of the device terminals in the LOS for optimised cabinet layout requires a
change of the input/output signals used in control functions in the SM.

To formalise such a synchronisation scenario comprising multiple (types of) models
and different consistency relations between them, we shall be using graphs and
“arrows” between graphs based on the following standard definition (cf. e.g., [12]).

T http://w3.siemens.com/mcms/plant-engineering-software/en/Pages/Default.aspx?&L=1 (ac-
cessed 23.03.2018)

2 http:/ /w3.siemens.com/mcms/simatic-controller-software/en/step7/pages/default.aspx (ac-
cessed 23.03.2018)

7:4


http://w3.siemens.com/mcms/plant-engineering-software/en/Pages/Default.aspx?&L=1
http://w3.siemens.com/mcms/simatic-controller-software/en/step7/pages/default.aspx

A. Anjorin, E. Yigitbas, E. Leblebici, A. Schiirr, M. Lauder, M. Witte

Definition 1 (Graphs and Graph Morphisms)

A graph G = (E, V,src, trg) consists of a finite set E of edges, a finite set V of nodes, and
two total functions src : E — V and trg : E — V that assign every edge its source and
target nodes, respectively. Given graphs G = (E, V,src,trg) and G' = (E',V’,src’,trg’), a
(partial) graph morphism f : G — G’ is a structure preserving pair of (partial) functions
(fg : E > Efy : V> V), ie., fg;src’ = src; fy, and fg;trg = trg; fy, where ; is a
composition operator such that (f;g)(x) := g(f(x)) for functions f,g with suitable
(co-)domains. Given graph morphisms f = (fg, fv),& = (g5, &v), ; IS a composition
operator for graph morphisms such that f; g := (fg; €5, fv; &v)-

A graph monomorphism is a graph morphism f = (fg, fy/) with injective functions fz, fy .

A transformation context is used to capture the types of models involved and the
consistency relations between them. While this can be a hypergraph in general [37],
our definition is simplified for the binary case as this suffices for all our projects:

Definition 2 (Binary Transformation Context)
A binary transformation context C is a graph whose nodes represent model types, and
whose edges represent binary consistency relations between model types.

Figure 2 depicts two diagrams: above a formal graph diagram with graphs as objects
and graph morphisms as arrows, and below a diagram that introduces a suitable visual
concrete syntax for our description language and exemplifies all defined concepts with
the concrete CMDAE application scenario. In the graph diagram, monomorphisms
such as s are depicted as “harpoon” arrows. Let us concentrate for the moment on the
transformation context C, which is depicted for the CMDAE application scenario to the
far left of the diagram in concrete syntax. Note that there are dashed arrows connecting
all abstract concepts (in this particular case C) to their concrete counterparts below.

|Qé$éN§AL

y b | \."A v
HCMerge @ @
HCToSM '

M Figure2 Transformation context C with schema S, and a concrete network N with an
authoritative sub-network A for the CMDAE application scenario.

Electrical
Engineer

Automation
Engineer

Software
Engineer

7:5



Description Languages for Consistency Management Scenarios

The CMDAE transformation context consists of the three model types already dis-
cussed previously (LOS, HC, SM) depicted as circles with labels. In addition, consistency
relations LOSToHC, and HCToSM are used to pair consistent LOS and HC, and HC and
SM models, respectively. Finally, two consistency relations LOSMerge and HCMerge are
used to capture a notion of consistency between LOS and HC models of the same type.
Note that while the edges in a transformation context are formally directed with a
“source” and “target” model type, this is only used in practice to be able to sometimes
refer to a “forward” and “backward” direction. We thus represent consistency relations
as undirected labelled edges in our concrete syntax. As an additional (informal) ex-
tension to transformation contexts, we suggest to depict the different roles involved as
horizontal swimlanes in the concrete syntax, containing all model types and models
primarily maintained by the designated role: for the CMDAE transformation context,
three different roles Electrical Engineer, Automation Engineer and Software Engineer
are involved in the application scenario.

For a given transformation context C, we find it helpful to provide a transformation
schema S used to fix a general “shape” or pattern that captures all possible concrete
models and relations to other models. This is formalised with the following definition:

Definition 3 (Transformation Schema)
A transformation schema for a given transformation context C is a graph S together with
a graph morphism ¢ : S — C.

Figure 2 depicts in the middle the schema for the CMDAE application scenario,
connected to S in the formal graph diagram above. To denote the types of all models,
i.e., the mapping to the underlying context C, UML-like labels of the form : Type are
used e.g., : LOS as a model of type LOS. As the type (the corresponding consistency
relation in the context) of all edges can be discerned uniquely in all diagrams, no
explicit label is used. In the CMDAE scenario, the schema can be interpreted as the
electrical and automation engineer each working with two branches: a master branch
with LOS and HC models, and a temporary branch via which change requests can be
made from other domains before being merged into the master branch. To discuss
this further, we need the concept of a transformation network that captures a snapshot
of all models and relations between models:

Definition 4 (Consistent Transformation Network)

A transformation network for a given transformation schema S is a graph N together
with a graph monomorphism s : N — S. For a network N, an authoritative sub-network
is a graph A with graph monomorphism a : A— N containing models that are not to
be changed in the current network. An edge e in a transform network N = (E, V, src, trg)
is consistent if its source and target models src(e), trg(e) are consistent with respect to
the corresponding consistency relation R = sg; cy(e) from the underlying transformation
context. A transformation network N is consistent if all its edges are consistent.

An exemplary transformation network for the CMDAE scenario (connected to N and
A in the formal graph diagram) is depicted to the far right of figure 2. Every network
must “comply” with its schema (s : N — S must exist) and is consequently “typed”

7:6



A. Anjorin, E. Yigitbas, E. Leblebici, A. Schiirr, M. Lauder, M. Witte

according to the underlying context via ¢ : S — C and s;c : N — C. In this example,
the HC is consistent with the SM but not with the LOS. Inconsistency between two
models is indicated with a bold, dashed, red edge connecting the inconsistent models
in the network. All other normal edges in the network are consistent. Models in
the authoritative subnetwork are distinguished from other models by using a black
background fill. In this example, the HC model in the network has a black fill and is
thus in the authoritative sub-network (constituting A in the formal graph diagram).
This means that it is not to be changed when restoring consistency in this network.

With our next and final definition, we can finally discuss typical synchronisation
workflows that are to be supported in the CMDAE scenario.

Definition 5 (Consistent Resolution Path)

A resolution path p is a sequence of partial graph morphisms py;p,;...;Px such that
p; : N,_; — N, all N; are transformation networks with a common schema S, and all p;
are type preserving, i.e., p;;S; = S;i_1-

A resolution path of length k is consistent if the final network N is consistent.

Figure 3 depicts a typical resolution path for the CMDAE scenario. The sequence of
networks is ordered from left to right, with white vertical lines between individual
networks. Going from network N;_; to N;, the underlying partial graph morphism p; is
indicated visually using “version” numbers in the top-right corner of each node. Every
model m in N;_; for which there exists a model m’ of the same type and with the same
version number in N, is “preserved” by p;, i.e., p; is defined for m and p;(m) = m’. All
other models in N;_; are “deleted” from the network, while all other models in N;
that are not in the range of p; are newly “created”. Note that all authoritative models
in N;_; must be preserved in N; (but do not have to remain authoritative).

The workflow depicted in figure 3 starts with a trivial (empty) network N;, which
is assumed to be (trivially) consistent. The electrical engineer then commences the
workflow by designing an initial version of the LOS, which can be optimised in several
iterations until it is finally released in version 1 comprising the second network N,.
In N, the LOS is marked as being authoritative to make sure that it is not changed
in the next step. Based on the initially created LOS, the automation engineer derives
an authoritative HC that is consistent with the LOS in N3. The process flows forward
to the software engineer, who also derives an SM that is consistent with the current

@1 @1
1

HC

Electrical
Engineer

Automation
Engineer

Software
Engineer

Ny Ny N3

B Figure3 A consistent resolution path for the CMDAE application scenario

7:7



Description Languages for Consistency Management Scenarios

HC in N,. The software engineer, however, is not satisfied with this version and
decides to make certain adjustments resulting in a version 2 of the SM in N5, which
is now inconsistent with the HC. In this network, however, both the HC and SM
are authoritative, indicating a certain hierarchy between the HC and SM: instead of
simply enforcing corresponding changes in the HC on the master branch, the software
engineer is forced to “open a temporary branch” for the automation engineer by
proposing a HC in version 2 (consistent with the SM but not with the master HC),
representing the desired changes in the domain of the automation engineer.

The automation engineer now has to decide in N; how best to merge these changes
and derive a consolidated HC in version 3, which is in general inconsistent with both
the LOS and SM. To restore consistency in the network, the automation engineer is
free to update the SM directly but, as the LOS is authoritative in N,, must similarly
open a temporary branch to the electrical engineer requesting a merge in Ng.

For this workflow, we now assume an optimistic setting where (i) the electrical
engineer simply accepts all changes proposed by the automation engineer, and (ii) the
software engineer is satisfied with all updates made by her colleagues. The network Ny
is thus in a consistent state.

2.2 Concurrent Manufacturing Engineering (CME)

In a second project CME [2], we investigated applying MDE technology to the domain of
manufacturing engineering. Similar to projects in the automation engineering domain,
manufacturing engineering projects are multi-disciplinary and require substantial
coordination and information exchange among different engineering specialists, all
concurrently using their own established tools, models and platforms.

O

Figure 4 depicts the transformation con-

text and corresponding schema for the CME
application scenario showing the different
model types and roles involved: The task
of the product designer is to design a Com-
puter Aided Design (CAD) model providing a
geometric representation of the product to
be manufactured with a primary focus on
aesthetics and functionality. The CAD model
serves as requirements for a manufacturing
engineer, who creates (and later updates) a M Figure4 Transformation context and
corresponding Computer Aided Manufactur- schema for the CME project
ing (CAM) model specifying a sequence of
basic manufacturing operations that must be executed to transition from given raw
material to the end-product as required by the CAD model. As the CAD model might
not be optimal for the manufacturing process, the manufacturing engineer and prod-
uct designer typically work closely together, exchanging information and discussing
possible CAM-friendly adjustments to the CAD model and their consequences.

The CAM model serves as input to a CAM tool that calculates and generates a
corresponding tool path model TP, representing the exact movement of the tool tip of

Designer

Engineer

Machine Manufacturing  Product

Operator

7:8



A. Anjorin, E. Yigitbas, E. Leblebici, A. Schiirr, M. Lauder, M. Witte

the involved manufacturing machine(s). Using this generated tool path model, the
manufacturing engineer can execute the CAM model in a CAM simulator to further
investigate and analyse the manufacturing process. Insights from the simulation are
used in this step to further adjust and optimise the CAM model.

In a final step, the TP model is passed on to a post processor, a code generator
that produces a Computerised Numerical Control (CNC) model, i.e., a program (code)
that can be executed to drive CNC machines that perform the actual manufacturing
process. In contrast to the CAM and TP models, the generated code is typically machine
(family) specific as the exact kinematics (geometry of motion) of the machines is
exploited to produce highly optimised code.

As a final role, a machine operator supervises the manufacturing process and can
decide to intervene and correct or further optimise the CNC code. As an example,
the machine operator could be more familiar with the exact manufacturing machine
at hand and might realise that certain operations can be further accelerated. As the
CNC development environment is, however, not yet fully integrated in typical CAM
tools, such changes are often made directly to the generated CNC code and have to
be later translated into corresponding adjustments to the CAM model. Investigating
and supporting this final round-trip between adjusted CNC and CAM models was the
main focus of the CME research project. For this application scenario, the schema
comprises exactly one model of each type. Direct consistency relations are defined
between CAD/CAM, CAM/TP, as well as TP/CNC models.

Figure 5 depicts an exemplary resolution path for the CME application scenario.
The path starts with a consistent network N; comprising all models in version 1. The
main scenario investigated in the CME project starts in N, with a change made by the
machine operator to the CNC model. To avoid losing such changes when re-generating
the CNC code, the new CNC model in version 2 is marked as being authoritative.
It is in general inconsistent with the existing TP model. In N5 the manufacturing
engineer updates the TP model and can inspect any inconsistencies between the
updated TP in version 2 and the CAM model. The manufacturing engineer decides
exactly how to update the CAM model, perhaps accepting some implied changes and
rejecting others. In N, the manufacturing engineer is satisfied with the new version 2
of the CAM model and has re-generated a consistent TP model. Both CAM and TP

5 1 1
S c

° .2

°g

s

=)

=

1 @6
2 0

O c

& S

- O

gc

mLIJ

=

Machine
Operator

N3 Ny

M Figures5 A typical resolution path for the CME application scenario

7:9



Description Languages for Consistency Management Scenarios

are now inconsistent with the CAD and CNC models. In N5 the product designer and
manufacturing engineer have decided together how to transition to consistent states
of both CAD and CAM models now in version 2 and 3, respectively. The CAM model is
made authoritative to indicate that only the TP and CNC models are to be changed
to restore consistency with the CAM model. In Ny the TP is re-generated and from
that a new version 3 of the CNC model is derived. The path is now consistent and we
assume that all important changes made to the CNC code have been reviewed and
integrated in all other models.

2.3 Graph Grammar-Based Traceability Management (GraTraM)

In a third ongoing research project (GraTraM)? we are currently investigating consis-
tency management tasks in the domain of Computer-Aided Engineering (CAE).

As depicted in figure 6, the involved models
in this domain are CAD models, providing a

. - g a C S
physical description of a system (for example e Saom
. erge

an excavator in a current case study), and i
simulation models (Si), used to assess the ¢ - CADToSi <
behaviour of mechanical, hydraulic, and elec- § 2

. . . o]
trical components of the same system. Similar £ &

to models in the domains of automation and
manufacturing engineering, CAE models are Figure 6 Transformation context and
maintained by different domain experts with schema for the GraTraM ap-
different engineering tools: CAD models with plication scenario
NX* used by CAD engineers, and simulation
models with Amesim® used by simulation engineers. The consistency relations in this
domain are between CAD and simulation models, as well as between different CAD
models representing a similar “merge” as in the CMDAE application scenario.
Consistency management tasks in this application scenario typically involve geomet-
ric data and material properties of individual components. The shared information
between CAD and simulation models, however, constitutes only a small subpart of
these models. In practice, therefore, simulation models are typically not (partially)
derived automatically from CAD models (or vice-versa). As depicted in figure 7, there-
fore, a typical GraTraM resolution path starts with first versions of both models that
have been concurrently and largely independently developed (as opposed to a forward
engineering step used to derive an initial version of one of the models). Both engineers
have the primary task of specifying their own models at the beginning of the process
and existing solutions are often re-used at this stage. In order to execute a simulation,
both models must agree on geometric data and material properties of the system.

3 Planned project end is February 2018.

4 http:/ /www.plm.automation.siemens.com/en/products/nx/ (accessed 23.03.2018)

5 http:/ /www.plm.automation.siemens.com/en/products/lms/imagine-lab/amesim/ (accessed
23.03.2018)

7:10


http://www.plm.automation.siemens.com/en/products/nx/
http://www.plm.automation.siemens.com/en/products/lms/imagine-lab/amesim/

A. Anjorin, E. Yigitbas, E. Leblebici, A. Schiirr, M. Lauder, M. Witte

- 1 1 1 1 1 3 3
3 2
£
o2 -
L
) ] ] )
) ] ] )
8_ ! ] ] [}
-}—Eg 1 1 2 3 3 3 4
=
5 5 :
-c%ﬁ e ° °
N N3 Ny

Ny

M Figure7 A typical resolution path for the GraTraM application scenario

As depicted in N,, the CAD model is authoritative for this step meaning that the
simulation model must be adjusted to be consistent with the current CAD model.
After restoring consistency and ensuring that the two models agree on their shared
information in N5, a simulation can now be performed. Based on simulation results, the
simulation engineer now decides in N, to perform some optimisations by adjusting the
simulation model until satisfactory results are produced. This leads to inconsistencies
with the CAD model, which cannot be directly manipulated to restore consistency
(both models are authoritative in N,). The changes to the simulation model must,
therefore, be reflected in a consistent CAD model (now in version 2) and passed to the
CAD engineer, who decides how to incorporate and “merge” these changes into the
previous master CAD model resulting in a version 3 of the CAD model in Ng. The CAD
engineer can now restore consistency in N, by manipulating the simulation model.

2.4 Model-Based Transformation Testing (MBTT)

Our final project is concerned with the automated testing of a complex code generator
(the System Under Test: SUT) used to transform CAM models to CNC code (as
required for the CAD-CAM-CNC manufacturing engineering process chain discussed
in section 2.2 for the CME project). This application scenario is thus in the intersection
of the manufacturing engineering and quality assurance domains. The transformation
context and schema for this scenario are depicted in figure 8. Relevant for this scenario
is checking for the consistency of specified CAM and generated CNC models.

One might expect testing in this context to be a straightforward process of estab-
lishing an expected version of the CNC code and comparing this to the generated CNC
code from each test run. The challenge here, however, is that the code generation
process is highly non-deterministic. The reason for this is that the final result of a
manufacturing (sub) process as specified by the CAM model has some degrees of
freedom regarding the exact order in which atomic steps are to be executed by a CNC
machine. As an example, consider drilling a countersunk hole for a screw, i.e., a hole
with a recess for accommodating flathead screws to ensure that they are flush with
the surface. The code to accomplish this task can instruct the drilling machine to first
of all drill the recess, then the actual hole, or vice-versa. As long as the manufacturing
task specified in the CAM model is accomplished, the generated code is “correct” and
is expected to pass all tests. In a CAM model of realistic complexity, numerous such

7:11



Description Languages for Consistency Management Scenarios

C
N3 (pass)
)
Nl N2

N3 (fail)

CAMToCNC[<T

Test Engineer
Test Engineer

S
(=)
=)

B Figure 8 MBTT context, schema, and resolution paths as test outcomes

non-deterministic choices are combined, leading to a fairly large solution space of
correct CNC programs; this makes testing such a code generator relatively challenging.

The testing process can be viewed as checking for possible (consistent) resolution
paths as depicted in figure 8. A test engineer has the initial task of specifying CAM
models as test input data in N;. The next task in N, is to generate CNC code as
test output data using the post-processor (the SUT). A verdict is then determined
using a suitable test oracle that decides if the CAM and CNC models are consistent or
not. These two possibilities are depicted in figure 8 as N5(pass), i.e., the models are
consistent and the test case passes, and Ns(fail), i.e., the models are inconsistent and
the test case fails. Note that there are no authoritative models in this resolution path
as the goal is only to determine if the two models are consistent or not, and not to
restore consistency.

[} Describing Consistency Management Scenarios in the Solution Domain

All application scenarios we have discussed so far have in common that they are
inherently multi-disciplinary, requiring substantial cross-domain collaboration and
data exchange between different tools and platforms. Multiple steps are required to
(re-)establish the consistency of multiple models. While this can be achieved manually,
some support for automation would be advantageous in all scenarios.

Even with a uniform, high-level and simplified description for the scenarios as we
propose in section 2 in the problem domain, it is still non-trivial to establish corre-
spondingly high-level and reusable solution strategies due to non-standard terminology,
diagrams, and other methods of representation used in the solution domain. We argue
that this is equally important as scenario-specific and often technical details can
easily obfuscate steps in the process that could be addressed by applying the same
techniques and technology.

The objective of this section is, therefore, to establish a common method base
that can be used to provide a uniform description of high-level solution strategies

7:12



A. Anjorin, E. Yigitbas, E. Leblebici, A. Schiirr, M. Lauder, M. Witte

for application scenarios. Such a method base consisting of reusable fragments and
patterns can help to transfer experience and even implemented tools between projects.
As our chosen solution domain is MDE, we propose to define a description modelling
language for the solution domain in typical MDE style: Figure 9 depicts a metamodel
to the left specifying the structure (abstract syntax) of valid models and some basic
constraints that must not be violated. A proposed visual notation (concrete syntax)
for the description language is depicted below the metamodel. According to Engels
et al. [13], a software engineering method is used to systematise an endeavour by
specifying the activities to perform, artefacts to create, roles to involve, tools to use,
and relationships between all these concepts. A method fragment is a reusable atomic
building block of a method [22] and can represent any constituent of the method,
such as a tool to use or a role to involve. We propose in this paper to focus on just
activities (Activity) and artefacts (Artefact).

Our proposed metamodel is thus a small subset taken from the metamodel suggested
by Engels et al. [13] and could be extended as required to cover roles, tools, disciplines,
domains, etc. As method fragments correspond in our context to atomic executable
components that can be directly derived from a bx (in the following a TGG, a set of
constraints, or a program in some other bx language) we introduce some additional
subtypes of activities and artefacts. We focus on three different activities: consistency
checking (CC), model generation (GEN), and synchronisation (SYNC). An activity
can have input (in) and has output (out) artefacts. All activities are represented in
the concrete syntax as black fat arrows with a corresponding label. Correspondences
(Corrs) are artefacts representing a connection between a source (src) and a target (trg)
model (Model), which are also artefacts. As in the problem domain, source and target
can be viewed as arbitrary domain labels and enable a discourse about a “forward”
or “backward” direction. Correspondences are denoted by horizontal double headed
arrows. The concept of a delta (Delta) specialises correspondences and represents
connections between models in the same domain, in this case typically changes applied
to derive the target model from the source model. Deltas are denoted by vertical single
headed arrows. Models can be empty as it is often useful to distinguish the special

M2

g inQ. Model :Model
€ :Corr
& Activity | out1.* | Artefact empty = true empty = true
g 1‘ src A src
£ i out
2 :Delta :Batch :Delta
| src 1.1 \l, trg \llomput i, trg
Consistency Model L Model

Check Generation Synchr 1 | emply < bool trg 1.1 Corr Delta :Model :Corr :Model
« : : Vi : : fe—)
o} . N . . .
< . . .
> . .
@ : :
Q
99 & IR B
2
o
} 0 —v .

empty = true MS MT

B Figure9 Description language for solution domain

7:13



Description Languages for Consistency Management Scenarios

case of creating an artefact from scratch. Models are generally denoted with an “M”
possibly with a subscript to indicate domains, while empty models are denoted by the
empty set symbol ). We choose to denote the trivial “empty” correspondence between
empty models explicitly as a horizontal double headed arrow to indicate that a pair
of empty models is indeed consistent. This does not have to be the case in general.
An exemplary instance of this metamodel, a method fragment, is depicted to the
right of figure 9 in abstract syntax above and concrete syntax below. In concrete
syntax, input and output artefacts are connected to the activity via dotted arrows.

3.1 Method Fragments for Consistency Management

Using this description language for method fragments, we can now present the eight
method fragments that we have identified and used for establishing consistency
management solutions in the industry automation domain and in other projects.
The fragments are depicted in figure 10 organised in three top-level groups. Note
that each fragment operates on concrete models, and their implementations are to
be derived from a consistency description between two meta-models. Providing the
consistency description itself, of course, relies on domain-specific knowledge capturing
concepts and their intra-model as well as inter-model relationships, while realising
these fragments requires bx expertise.

The top-left group GEN contains two fragments for generation: initial model gener-
ation to the left, and incremental model generation to the right. These two fragments
imply that it is possible to derive a model generator from a bx that is able to generate
consistent models from scratch as well as incrementally extend a consistent pair of
models connected by correspondences (a consistent triple in the following).

The left-bottom group CC contains two fragments for consistency checking: to
the left an initial check given two models, and to the right the incremental case for
changes to previously consistent models. Note that the output of the consistency
check is the correspondence between the two final models. For inconsistent input, we
suggest that this check not only report that the input is inconsistent, but also identify

S
[cc]
g 0 M My || 0 0 Mg———Mr
55, a 5T 55 év . 5T (SS # 5T (55 W 5T
MY v Mg+—*—Mr Mg—*—M

B Figure 10 Method fragments for consistency management

7:14



A. Anjorin, E. Yigitbas, E. Leblebici, A. Schiirr, M. Lauder, M. Witte

a consistent subpart of the input that is consistent and for which correspondences can
be created. We refer the interested reader to Leblebici et al. [32] for further details.

The third top-level group SYNC to the right of figure 10 contains a subgroup for
forward synchronisation, and one for backward synchronisation. As for GEN and CC,
each subgroup distinguishes an initial case for creating a new target/source model
from scratch, and an incremental case for applying suitable changes to an existing
target/source model.

The method fragments described so far are atomic steps that can be combined as
necessary. In the next section we shall now combine them to present some high-level
solution strategies as method patterns.

3.2 Method Patterns for Consistency Management

A method pattern provides construction guidelines for a method by specifying which
method fragments to use and how to assemble them [20]. In this paper, we present
every method pattern with an Intent, the concern or problem that it addresses, and a
Strategy, the methodological solution it follows [20].

Our method patterns represent solution strategies that we have applied in multiple
projects and examples, including the four scenarios discussed in this paper. Two
patterns discussed in the following section concern the start of a synchronisation
scenario, while a third pattern concerns how a bx can be used to test an independent
implementation [26, 38].

3.24 Initial Method Patterns: DirectedStart and ColdStart
Starting a consistency management process in general, and a synchronisation process
in particular, is challenging. This is because the various tools pose different assumptions
and requirements that must be fulfilled at the start of the process.

For model synchronisation, one

of the assumptions is that we are [Directeastart] [Cotastart]
either (i) using the initial method ——0 P——0
fragment and can establish an ini- ey ot
. . . B . Yy .
tial correspondence while creating s % ..707 | | 05 or
the output model from scratch, or K
(ii) using the incremental fragment Ms i Mr Mg ; - Mr
and already have a previous corre- 5! #ﬁ .. 5! 5 #ﬁ- .. 5!
spondence that serves as input for | S| "™ T |7S[F---. T
SYNC. The latter case is not ve 3 3
case W RO VEY L MM | | MM},

helpful when trying to initiate the : :
synchronisation process. Depicted | ¢//|-" T 1 nl 1"
. . . . 55 ~---’75T 55 ~-.-’75T
in figure 11 to the right, our first . .
method pattern DirectedStart rep- " ¥ " " ¥ "

i Mg M+ Mg M+
resents the easier case, when the

application scenario allows start-
ing with a “forward engineering”
step, where one model Mg is cre-

M Figure 11 Initial method patterns

7:15




Description Languages for Consistency Management Scenarios

ated and then forward synchronised to produce the other model M; from scratch,
producing an initial correspondence between these two models in this step. After
establishing a consistent triple in this manner, changes made to one model can then be
propagated to the other model using the incremental fragments for forward/backward
synchronisation as depicted in figure 11.

The intent of DirectedStart is thus starting a synchronisation process, while its
strategy is exploiting the fact that it is easy to establish an initial correspondence
while creating the output model from scratch. This can also be typically accomplished
in a scalable manner.

A second “initial” method pattern that also represents a strategy for starting a
synchronisation process is ColdStart. As depicted in figure 11 to the right, the method
pattern ColdStart represents the case when an application scenario forces a start
with two existing (and possibly independently developed) models Mg and M and no
correspondence between them yet. To be able to run SYNC, therefore, a correspondence
must first be established using the initial CC fragment. While this can be handled [32],
the situation is more challenging than DirectedStart due to a potentially very large
solution space. Scalability is hard to achieve and a manual implementation (without
a solver of some kind) is difficult. Realising early enough that a ColdStart is absolutely
necessary for an application scenario is thus important.

The intent of ColdStart is the same as for DirectedStart, i.e., kickstarting a synchroni-
sation process, but its strategy is to establish a correspondence between two unrelated
models in an attempt to extend them to a consistent triple, with which incremental
SYNC fragments can then be executed.

3.2.2 Method Pattern for Quality Assurance: GenerateAndCheck

For scalability reasons or due to other practical and technical (application-specific)
requirements or constraints, a transformation or bx sometimes has to be implemented
in a language that might not be particularly suitable for doing this.

In such cases, a high-level implementation with formal guarantees or improved
readability (and thus trustworthiness) can still be used as an oracle for testing the
low-level implementation [26, 38]. This idea is represented by the method pattern
GenerateAndCheck depicted in figure 12.

To test the System Under Test (SUT), a test generator providing test input data and
a test oracle deciding if the SUT behaves as expected are required. The initial and
incremental GEN fragments can be used to create and extend consistent triples to be
used as test input data for the SUT. To test a forward/backward transformation, the
generated source/target model is passed to the SUT to create its output target/source
model. The model created by the SUT can be tested by checking for correctness using
initial and incremental CC, i.e., checking if the generated input model and the output
model produced by the SUT are consistent. Note that as there might be multiple
consistent My for test input Mg, simply checking that M = M;U7 is typically naive,
which is why GenerateAndCheck proposes to use the CC fragment for this.

The intent of GenerateAndCheck is to systematically test a bx implemented in a low-
level, legacy, or otherwise unsuitable language. The employed strategy is to combine
GEN and CC fragments as test generator and oracle, respectively.

7:16



A. Anjorin, E. Yigitbas, E. Leblebici, A. Schiirr, M. Lauder, M. Witte

0 0 ) 0
58"y T o 5o et
.9 : -

M Y My Y M : My
5§§E’T@5§W s
%5 SR B S

M Figure 12 Method pattern for model-based transformation testing

Discussion

In the following, we discuss several points based on applying our proposed fragments
and patterns to the application scenarios presented in section 2: (i) What could be
automated in the project, what not, and why not? (ii) What is the initial cost of using
a bx language? (iii) How could primary resolution processes be started? (iv) Was a
bx language such as TGGs really helpful and what are general indications for this?
And finally, (v) How formal and on which level of abstraction should consistency
management description languages be?

41 What can be currently automated (with or without a bx language)?

The languages we propose in this paper are currently descriptive rather than prescrip-
tive. Our aim is to document past projects and implemented solutions in a high-level
but still precise manner and thereby foster reuse of solution ideas (patterns) in future
projects. Many actively developed bx tools [24, 27] support and focus on automating
SYNC fragments, typically requiring one direction and automatically providing the
other direction. Some bx tools [17, 26, 31], typically TGG-based, require a GEN frag-
ment and automatically provide SYNC and in some cases even CC fragments. Other
bx tools [6, 33] require a constraint-based definition of consistency and (ignoring
scalability issues) are often able to provide all fragments. Using our languages, it is
not yet possible to automatically transform a description of a scenario in the problem
domain to a possible description in the solution domain. We also do not yet support
generating a chain of consistency management actions from our patterns.

We now discuss the level of automation we were actually able to achieve for our
industry automation scenarios: For the CMDAE scenario, we were able to specify the
consistency relations LOSToHC and HCToSM to a certain extent (limited by the time
available for the projects) using TGGs [30, 34]. Both initial and incremental forward

7:17



Description Languages for Consistency Management Scenarios

and backward SYNC fragments were useful for the projects. The consistency relations
LOSMerge and HCMerge, both representing a merge of models of the same type, were
considered out-of-scope and could only be performed manually.

Supporting such merge operations to restore con-

sistency is challenging as it involves supporting both ,ﬁl

a conflict detection and a conflict resolution process.

This can be represented as the model fragment INT MS ; MT

depicted in figure 13, generalising all other model Do lé’T

fragments. Deriving a scalable and “well-behaved” INT ) Sl i

automatically from a bx is an open research question YW

and a current focus of the bx community. U /
For the CME scenario, the consistency relation TP- B AN 5T

ToCNC was the sole focus of the project [2] as all other | () fS’ < g

consistency relations were already well-supported and

integrated in a typical CAM/CAD tool. An observation Mé‘ Y M,}

is that such tools do not automate, e.g., the relation
CAMTOTP or CADToCAM, but instead support con- W Figure13 Method fragment
sistency restoration by providing, e.g., a visual diff INT for supporting
of inconsistencies. Indeed it is questionable whether model integration
such tasks could ever be (fully) automated as they

involve design decisions; in this case a compromise between aesthetics and pragmatics
of manufacturing. For the GraTram scenario, the CADToSi consistency relation was
investigated and specified using TGGs. Similar to the merge relations in CMDAE and
CME, the CADMerge relation is manually checked and maintained; it is again arguable
whether such a design process could ever be automated meaningfully.® Finally, the
primary goal in the MBTT scenario was to automate consistency checking for the
CAMToCNC relation.

To summarise, our observation is that synchronisation and consistency checking
tasks can be automated if there is no conflict detection and resolution involved. This
is, for example, the case when changes to only one of the models are to be propagated
to all other models. Supporting conflict resolution is the focus of current research
and, based on our projects, we believe that this must involve user interaction in cases
where the conflicts imply design decisions that probably cannot be fully automated.

4.2 What is the (initial) cost of using a bx language?

As with any new (programming) language, an initial cost for using a bx language
such as TGGs is certainly the effort required to learn the language and become
productive in it. For TGGs this requires rule-based thinking in terms of graph patterns,
and an acceptance/appreciation of an inherently visual formalism. Our experience
in the industry automation domain indicates a promising acceptance from domain
experts with experience using UML and other MDE technology, but this can be (very)

® Possibly by applying machine learning algorithms which was out-of-scope for the project.

7:18



A. Anjorin, E. Yigitbas, E. Leblebici, A. Schiirr, M. Lauder, M. Witte

different in other domains where other bx approaches might be more successful.
With reasonable effort we believe domain experts can read and understand TGGs;
specifying TGGs probably requires substantially more training effort.

An integration with the existing tool chain is a very important requirement in the
domain of industry automation as all tools and formats are fairly established and in
many cases already standardised. This implies that tool adapters must be implemented
to extract and inject the required data from the relevant tools.

In the case of the CMDAE scenario, we were able to use an XML-based exchange
format for LOS, and text (code) for SM. We had to implement a (highly simplified)
parser for SM, however, as we were unable to reuse the existing parser in the actual
system. For the CME scenario a textual exchange format for TP could be used and
CNC is already present as code. We had to again implement a (naive) parser for a set
of CNC examples as it was again out-of-scope to invoke and integrate standard parsers
that were unfortunately tightly coupled with their tool environments. Implementing
such a parser is difficult as CNC code can be (in general) interwoven with parts in
assembler. For the GraTraM scenario establishing a tool adapter for the CAD tool
was especially challenging. To keep the focus on the actual consistency relation, an
extra XML-based format was established and used for the project to demonstrate the
general feasibility of the approach (without actually exporting this format from the
CAD tool). The MBTT scenario requires a CAM tool adapter and a parser for CNC.

In general, it is certainly complex if not impossible to incrementally update infor-
mation inside of most established tools without having to resort to a typically textual
export/import format. Such an exchange format and the corresponding support for it
is often buggy or incomplete, can be very inefficient, or even incur unwanted informa-
tion loss if extra tool-specific information such as accurate time stamps or IDs are not
exported/imported.

Finally, consistency management tasks in general, and synchronisation tasks in
particular work best if explicit change information in form of deltas is available and
is as precise and detailed as possible [11]. In CMDAE (and in many other projects)
this was not the case, however, implying that non-trivial logic must be implemented
for every metamodel to be able to compare models (before and after a change), and
compute the best possible delta (which is often not unique). The problem is simply
that most tools (at least in the industry automation domain) do not provide access to
such explicit change information. Note that using “state-based” bx approaches, i.e.,
providing fragments such as SYNC that take models as input and produce models as
output (instead of deltas), does not help here; the delta calculation is still required
and is just implemented (and hidden) as part of the bx [11]7

7 This can have some advantages as a clean separation sometimes adds additional complexity
as opposed to flexibly (e.g., recursively) mixing update propagation with change detection.

7:19



Description Languages for Consistency Management Scenarios

4.3 How do I start?

In the CMDAE scenario, the method pattern DirectedStart could be applied as there
was a clear forward engineering process as described in section 2.1 and depicted
in figure 3. Subsequent synchronisation steps could also be well supported with incre-
mental SYNC fragments as all consistency relations are binary [37] and resolution
paths are fairly straightforward. This is probably because consistency management
must be performed manually today and thus cannot be arbitrarily complex. It would,
however, be interesting to transition from descriptive to more prescriptive resolution
networks and attempt to change and optimise the resolution process. Although this
is not shown explicitly in figure 5, starting the synchronisation process in the CME
project was challenging due to the requirement that the existing CNC code generator
be used unchanged. This means that the initial CNC model and TP models were
created by the existing tools without a means of establishing a correspondence in the
process. Consequently, the method pattern ColdStart had to be used to establish this
correspondence as required for the rest of the process. For the GraTram scenario, the
method pattern ColdStart was clearly required as both models are developed indepen-
dently and are sometimes partially reused, i.e., exist already. For the MBTT scenario,
both models are created by different systems (SUT vs. bx) so the method fragments
initial GEN and initial CC are required according to the pattern GenerateAndCheck.

In general, determining how to start the resolution process is often a crucial point
(hence our method patterns) and can decide if an implemented solution is feasible in
practice or not.

4.4 Do I need a bx language?

For the CMDAE scenario the required initial SYNC fragments can certainly be imple-
mented in a standard programming language. The incremental SYNC fragments could
also be implemented but are a bit more challenging in this respect as information loss
must be avoided, i.e., the existing source/target model must be carefully updated
in such a way that the resulting models are consistent but without unnecessarily
discarding any information. Besides the implementation effort, the project was very
iterative with constant changes to the TGG rules. This implies that a model-driven
approach is certainly advantageous to avoid having to constantly update a comparably
low-level implementation. At least for the CMDAE scenario, a promising approach
might be to transition from a TGG to an implementation in a perhaps more scalable
or otherwise preferred programming language as a final step in the project. Note that
the TGG can still be used for testing purposes even after this transition [38].

For the CME scenario, scalability was an important issue due to the potentially large
size of generated CNC code. Once a correspondence has been established, however, this
could actually be an argument for an incremental approach that can guarantee efficient
incremental updates. Starting efficiently, however, remains a challenge. Implementing
the initial CC fragment for CME manually with a standard programming language is
non-trivial due to the complex and non-unique correspondence between a single TP
and possibly numerous consistent CNC programs.

7:20



A. Anjorin, E. Yigitbas, E. Leblebici, A. Schiirr, M. Lauder, M. Witte

In the GraTram scenario, the semantic overlap of simulation and CAD models is
rather small compared to the remaining parts of these models. Our experience is
that this makes the method fragments initial CC and incremental SYNC particularly
appealing and elegant. An iterative development of the TGG is possible where one
starts with just a few TGG rules and then increases the overlap as the understanding
for the consistency relation grows. Similar to CME, the initial correspondence between
simulation and CAD models is more an optimisation problem than a straightforward
calculation [32]. While incremental SYNC can be implemented manually, it can again
be difficult to carefully update existing models.

As discussed for CME, handling large CNC programs in the MBTT scenario could
pose a scalability challenge. This might, however, not be so crucial for testing purposes
and it might be feasible to use derived and solver-based initial CC fragments [32]. It
would be challenging to implement initial CC without a bx language as the generated
code is not at all unique. Multiple variation points lead to an explosion of the solution
space and this is indeed the basic motivation for applying bx technology in this context.

To summarise, some method fragments are fairly straightforward to implement
(initial SYNC), while others are more complex (all incremental variants and initial
CC). Based on typical resolution paths for the scenario, this can already be used to
decide if using a dedicated bx language such as TGGs is necessary or not. Other
practical issues that affect this decision include scalability, integration in an existing
tool chain that might demand a certain programming language, and how stable the
current understanding of the consistency relation is. It is also important to note that
a bx language can be used solely for quality assurance of certain perhaps especially
crucial aspects of an implementation.

4.5 How formal, and on what level of abstraction should description languages be?

It is worth discussing whether description languages such as the two we have presented
and used in this paper have to be at all formal. While intuitive diagrams might be
sufficient as documentation, we have opted for simple but formal languages to enable
future automated analyses of the project descriptions.

In the problem domain, for example, optimal resolution paths can be determined
and suggested based on domain-specific objective functions. Transformation contexts
can also be inspected and used to generate tests for confluence, i.e., if the final
consistent transformation network depends on the specific resolution path chosen
to restore consistency. Finally, an analysis could also be used to decide if a given
decomposition of a consistency relation into multiple (binary) consistency relations is
problematic or not (cf. Stevens’ discussion [37] of this for more details). To automate
(program) such tasks, a certain level of formality is necessary.

Similarly, the solution-domain description language could be used as a generic
orchestration language, to be transformed to an executable program by using a
collection of implemented fragments developed with or without a bx tool. To enable
such an automated transformation, a certain level of formality is again required.

Concerning the chosen level of abstraction, our primary goal with the description
language in the problem domain was to abstract from project-specific details to

7:21



Description Languages for Consistency Management Scenarios

enable a comparison of all projects and an identification of common patterns. To
accomplish this, we adopted Stevens’ approach [37] of focussing solely on models
and consistency relations between models. In the solution domain, our goal was to
abstract from specific bx approaches (such as TGGs) by focussing solely on fragments
and patterns describing how to combine the fragments. We believe that our goals have
been achieved as demonstrated by this paper: we have been able to identify common
fragments and patterns used across all projects, and our fragments and patterns can
be implemented (with more or less effort) with any reasonably expressive bx tool, or
of course in a general purpose programming language.

An important aspect that is still missing from the languages concerns details of
available or required tooling. While this is a rather technical point, it is important if
not crucial in practical scenarios. We are, for example, currently unable to capture in
the project description of CME that an existing CNC code generator had to be used,
even though this had an impact on applicable patterns (ColdStart vs. DirectedStart).
We leave a consideration of such extensions to future work.

H Related Work

In this section, we review prior work on megamodelling, method engineering, and
patterns for (bidirectional) model transformations. Furthermore we reflect on existing
(industrial) projects where bx methods and technologies were applied.

Our description language for the problem domain is inspired by Stevens’ work
on describing networks of bx [37]. Stevens considers the study of the resolution of
networks of bx as a contributing technology for megamodelling [3] and discusses the
task of consistency restoration of a network of connected models. In this paper we
adapt and extend Stevens’ description language by (i) introducing the concept of a
transformation schema to control the general shape of valid networks, and (ii) adding
swim lanes in the visual notation to indicate domains and improve readability. We
also demonstrate that the language and notation can be used to describe projects of
realistic complexity.

Our description language for the solution domain comes from the research area
of method engineering [5]. The main purpose of a method is to guide a complex
software engineering task, such as the development of a software system, its transfor-
mation/migration, or in our case the consistency management of involved abstractions
of the same system. A method supports and describes this task by specifying the ac-
tivities to enact, artefacts to generate, tools to use or roles to involve [13]. A specific
manifestation of method engineering is Situational Method Engineering (SME) which
encompasses all aspects of creating a method for a specific situation [22]. Approaches
that follow the SME paradigm consider the situational context in which a method
will be applied during the development of the method, so that it can be adapted
to the context and is then called situation-specific. In the context of SME, reusable,
atomic building blocks of a method, e.g., a single activity, artefact, role or tool, are
called method fragments. To increase the efficiency of method development, method
patterns can be used to provide additional guidance concerning how to combine

7:22



A. Anjorin, E. Yigitbas, E. Leblebici, A. Schiirr, M. Lauder, M. Witte

method fragments. A pattern in general is associated with a reoccurring problem in
a certain context [1], for which it describes the core of a solution. Method patterns
transfer this idea to the field of method engineering [16].

The active research area of megamodelling (we refer to Héartel et al. [21] for a recent
survey of megamodelling approaches) provides other viable alternatives to Stevens’
networks of bx [37], and Engels’ method engineering approach [13]. We discuss a
few of these megamodelling languages in the following.

Megal. [15] is a megamodelling language that could be used as a basis for both our
problem and solution domain description languages. An advantage of Megal is that it
would be easy to check for wellformedness and formalise rigorously with adequate
tool support, e.g., the connection between our two languages, or a transformation of
problem domain to solution domain descriptions. Megal is, however, also more general
and does not support any direct concepts for consistency management. Lammel has
applied Megal to the domain of coupled transformations (cx) to realise LAL [28], a
megamodelling language particularly suitable for describing consistency management
scenarios. Lammel has identified various basic cx patterns such as state-based or delta-
based strategies, and formalised these patterns in LAL. As a basis for our languages,
LAL would enable a more rigorous handling of compatibility conditions between
fragments, enabling, e.g., automated testing of implemented fragments to ensure
that they do not contradict each other. While LAL would be a more suitable basis for
our languages than Megal, it still has quite a broad scope and does not distinguish
between problem or solutions domains, or between fragments and patterns. For our
work a suitable concrete syntax (swim lanes, story board representation of resolution
paths) is also very important. Compiling our proposed languages to LAL programs is,
however, not ruled out by our current choice of basing our languages on Stevens’ work
[37] and method engineering [13], and we leave this together with an exploration of
potential benefits, to future work.

There has been considerable work on classifying and formalising both bx problems
and solutions. A three-dimensional taxonomy for model synchronisation scenarios is
presented by Diskin et al. [10] covering different scenario types with respective require-
ments and properties. Further results in a similar direction are provided by Hidaka et
al. [25], classifying bx approaches using a feature model, Eramo et al. [14], illustrating
a set of relevant properties pertaining to bidirectional model transformations, and
Lano et al. [29] proposing patterns for specifying bidirectional transformations with
their tool UML-RSDS. Finally, Diskin et al. [9] formalise synchronisation operations
by providing a suitable algebraic framework. Compared to these results, our paper
covers both the problem domain and an important solution domain for consistency
management. We take a broader view on consistency management, focussing not only
on synchronisation but covering also model generation and consistency checking. Our
contribution in this paper is to propose languages for describing scenarios and solution
strategies in a tool-independent manner, leaving a formalisation of desired/guaranteed
properties or compatibility conditions between fragments to future work.

Concerning our example scenarios from industry automation; bx approaches have
been applied in various other industrial domains: Hermann et al. [23] report on using
TGGs to translate satellite procedures, Blouin et al. [4] demonstrate an incremental

7:23



Description Languages for Consistency Management Scenarios

synchronisation layer between textual and graphical editors, Giese et al. [17] present
a synchronisation solution for SysML and AUTOSAR models, while Cunha et al. [7]
propose a bidirectional transformation approach for model-driven spreadsheets. Using
our description languages, such projects could provide their results, solution strategies,
and lessons learnt in a uniform and comparable manner; this would enable the
identification and reuse of further method patterns for consistency management.

K3 conclusion and Future Work

In this paper, we have proposed description languages for consistency management
scenarios both in the problem domain and in an MDE solution domain. We demon-
strated the benefit of our languages by describing a series of projects we investigated
in the industry automation domain together with our industrial partner Siemens AG.
Table 1 provides a tabular summary of the discussion in section 4.

Our description languages, especially in the solution domain, are heavily influenced
by our MDE and TGG outlook and experience. For instance, our method fragments
and method patterns are uniformly delta-based, taking “arrows” as input and output
instead of models. We believe this provides for conceptual clarity as it generalises
the state-based case and separates delta discovery from update propagation. In this
respect and in many others, our suggestions are not meant as a perfect version but
rather as a good start for a community discussion and consensus on general description
languages for bx. Just as we have adapted and extended Stevens’ suggestions for the
problem domain, we welcome further collaboration and discussion from other diverse
perspectives on bx.

In the research projects described in this paper, we mostly concentrated on what
was relevant and interesting from a research point of view. For instance, implementing
complete and industrial strength parsers and model diffs for delta discovery was clearly
out of scope. We believe, however, that such practical challenges can be addressed. In
particular, a crucial point is to utilise suitable abstractions provided by engineering
tools and avoid operating directly on engineering data represented at lower levels

M Table1 Consistency Management Projects in the Industry Automation Domain

Project Involved Roles Domain Primary Challenge Patterns

CMDAE  Electrical Engineer, Automation Engi- Engineering of mutually Directed-

Automation Engineer, neering dependent models Start
Software Engineer

CME Product Designer, Man- Manufacturing En- Integration of an exist- ColdStart
ufacturing Engineer, gineering ing CNC code generator

Machine Operator
GraTram CAD Engineer, Simula- Computer Aided Starting with indepen- ColdStart

tion Engineer Engineering dently developed models
MBTT Test Engineer Quality Assurance Testing a non-determi- Generate-
in Manufacturing nistic code generator AndCheck
Engineering

7:24



A. Anjorin, E. Yigitbas, E. Leblebici, A. Schiirr, M. Lauder, M. Witte

of abstraction. From a tooling point of view, a further point is that engineering tools
should allow for an incremental manipulation of their contained data based on these
provided abstractions.

The resolution paths described in this paper are descriptive and not prescriptive.
This means that we aimed to support existing workflows typically by automating
certain steps. As Stevens [37] points out, the next step would be to think about
optimising resolution paths and even consistency relations. Indeed with appropriate
automation, some resolution paths that were previously infeasible to execute manually
might become attractive. Further research is required to identify and analyse various
desirable properties of networks of bx, and to provide corresponding optimisations.

Analogously, but in the solution domain, a further task is to identify, formalise, and
guarantee desirable properties of our method fragments. Method patterns should also
preserve (some of) these properties for their required composition of fragments.

Finally, we restricted our presentation of method patterns to the main patterns
that were repeatedly used for the research projects described in this paper. Further
(catalogues of) consistency management patterns include (i) different strategies for
handling concurrent changes in multiple domains [39], (ii) strategies for handling
traceability, mapping, change detection, and (resource) allocation scenarios involving a
synergistic combination of bx approaches (e.g., TGGs and constraints solvers [32]), and
(iii) strategies for coping with non-deterministic scenarios [2] requiring (a combination
of) user interaction and an optimisation phase.

References

[1] Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max Jacobson, In-
grid Fiksdahl-King, and Shlomo Angel. A Pattern Language - Towns, Buildings,
Construction. Oxford University Press, 1977. ISBN: 978-0-19-501919-3.

[2] Anthony Anjorin, Erhan Leblebici, Andy Schiirr, and Gabriele Taentzer. “A Static
Analysis of Non-Confluent Triple Graph Grammars for Efficient Model Trans-
formation”. In: Graph Transformation - yth International Conference, ICGT 2014,
Held as Part of STAF 2014, York, UK, July 22-24, 2014. Proceedings. Volume 8571.
LNCS. Springer, 2014, pages 130-145. DoI: 10.1007/978-3-319-09108-2_9.

[3] Jean Bézivin, Frédéric Jouault, and Patrick Valduriez. “On the Need for Meg-
amodels”. In: Proceedings of the OOPSLA/GPCE: Best Practices for Model-Driven
Software Development workshop, 19th Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications. 2004.

[4] Dominique Blouin, Alain Plantec, Pierre Dissaux, Frank Singhoff, and Jean-
Philippe Diguet. “Synchronization of Models of Rich Languages with Triple
Graph Grammars: An Experience Report”. In: Theory and Practice of Model
Transformations - 7th International Conference, ICMT 2014, Held as Part of
STAF 2014, York, UK, July 21-22, 2014. Proceedings. Edited by Davide Di Ruscio
and Daniel Varrd. Volume 8568. LNCS. Springer, 2014, pages 106—I2I. DOI:
10.1007/978-3-319-08789-4_8.

7:25


https://doi.org/10.1007/978-3-319-09108-2_9
https://doi.org/10.1007/978-3-319-08789-4_8

Description Languages for Consistency Management Scenarios

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

Sjaak Brinkkemper. “Method Engineering: Engineering of Information Systems
Development Methods and Tools”. In: Information and Software Technology
38.4 (1996), pages 275—280. DOI: 10.1016/0950-5849(95)01059-9.

Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso Pierantonio.
“JTL : A Bidirectional and Change Propagating Transformation Language”.
In: Software Language Engineering - Third International Conference, SLE 2010,
Eindhoven, The Netherlands, October 12-13, 2010, Revised Selected Papers. Edited
by Brian A. Malloy, Steffen Staab, and Mark van den Brand. Volume 6563.
LNCS. Springer, 2010, pages 183—202. DOI: 10.1007/978-3-642-19440-5_11.

Jacome Cunha, Jodo P. Fernandes, Jorge Mendes, Hugo Pacheco, and Jodo
Saraiva. “Bidirectional Transformation of Model-Driven Spreadsheets”. In: The-
ory and Practice of Model Transformations - 5th International Conference, ICMT
2012, Prague, Czech Republic, May 28-29, 2012. Proceedings. Edited by Zhenjiang
Hu and Juan de Lara. Volume 7307. LNCS. Springer, 2012, pages 105-120. DOI:
10.1007/978-3-642-30476-7_7.

Krzysztof Czarnecki, John Nathan Foster, Zhenjiang Hu, Ralf Lammel, Andy
Schiirr, and James Terwilliger. “Bidirectional Transformations: A Cross-Discipline
Perspective”. In: Theory and Practice of Model Transformations, Second Interna-
tional Conference, ICMT 2009, Zurich, Switzerland, June 29-30, 2009. Proceedings.
Edited by Richard F. Paige. Volume 5563. LNCS. Springer, 2009, pages 260—283.
Dort: 10.1007/978-3-642-02408-5_19.

Zinovy Diskin. “Algebraic Models for Bidirectional Model Synchronization”. In:
Model Driven Engineering Languages and Systems, 11th International Conference,
MOoDELS 2008, Toulouse, France, September 28 - October 3, 2008. Proceedings.
Edited by Krzysztof Czarnecki, Ileana Ober, Jean-Michel Bruel, Axel Uhl, and
Markus Volter. Volume 5301. LNCS. Springer, 2008, pages 21-36. DOI: 10.1007/
978-3-540-87875-9_2.

Zinovy Diskin, Hamid Gholizadeh, Arif Wider, and Krzysztof Czarnecki. “A
Three-dimensional Taxonomy for Bidirectional Model Synchronization”. In:
Journal of Systems and Software 111 (2016), pages 298—322. DOI: 10.1016/].jss.
2015.06.003.

Zinovy Diskin, Yingfei Xiong, Krzysztof Czarnecki, Hartmut Ehrig, Frank Her-
mann, and Fernando Orejas. “From State- to Delta-Based Bidirectional Model
Transformations: the Symmetric Case”. In: Model Driven Engineering Languages
and Systems, 14th International Conference, MODELS 2011, Wellington, New
Zealand, October 16-21, 2011. Proceedings. Edited by Jon Whittle, Tony Clark,
and Thomas Kiithne. Volume 6981. LNCS. Springer, 2011, pages 304—318. DOI:
10.1007/978-3-642-24485-8_22.

Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Funda-
mentals of Algebraic Graph Transformation. Edited by Wilfried Brauer, Grzegorz
Rozenberg, and Arto Salomaa. Monographs in Theoretical Computer Science.
An EATCS Series. Springer, 2006. ISBN: 3-540-31187-4. DOI: 10.1007/3-540-31188-
2.

7:26


https://doi.org/10.1016/0950-5849(95)01059-9
https://doi.org/10.1007/978-3-642-19440-5_11
https://doi.org/10.1007/978-3-642-30476-7_7
https://doi.org/10.1007/978-3-642-02408-5_19
https://doi.org/10.1007/978-3-540-87875-9_2
https://doi.org/10.1007/978-3-540-87875-9_2
https://doi.org/10.1016/j.jss.2015.06.003
https://doi.org/10.1016/j.jss.2015.06.003
https://doi.org/10.1007/978-3-642-24485-8_22
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

A. Anjorin, E. Yigitbas, E. Leblebici, A. Schiirr, M. Lauder, M. Witte

Gregor Engels and Stefan Sauer. “A Meta-Method for Defining Software Engi-
neering Methods”. In: Graph Transformations and Model-Driven Engineering -
Essays Dedicated to Manfred Nagl on the Occasion of his 65th Birthday. Edited
by Gregor Engels, Claus Lewerentz, Wilhelm Schéfer, Andy Schiirr, and Bern-
hard Westfechtel. Volume 5765. LNCS. Springer, 2010, pages 4I1-440. DOI:
10.1007/978-3-642-17322-6_18.

Romina Eramo, Romeo Marinelli, and Alfonso Pierantonio. “Towards a Tax-
onomy for Bidirectional Transformation”. In: Post-proceedings of the Seventh
Seminar on Advanced Techniques and Tools for Software Evolution, SATToSE 2014,
L’Aquila, Italy, 9-11 July 2014. Edited by Davide Di Ruscio and Vadim Zaytsev.
Volume 1354. CEUR Workshop Proceedings. CEUR-WS.org, 2014, pages 122—131.

Jean-Marie Favre, Ralf Lammel, and Andrei Varanovich. “Modeling the Linguis-
tic Architecture of Software Products”. In: Model Driven Engineering Languages
and Systems - 15th International Conference, MODELS 2012, Innsbruck, Austria,
September 30-October 5, 2012. Proceedings. Edited by Robert B France, Jiirgen
Kazmeier, Ruth Breu, and Colin Atkinson. Volume 7590. LNCS. Springer, 2012,
pages 151-167. DOI: 10.1007/978-3-642-33666-9_11.

Masud Fazal-Baqaie, Markus Luckey, and Gregor Engels. “Assembly-Based
Method Engineering with Method Patterns”. In: Software Engineering 2013 -
Workshopband (inkl. Doktorandensymposium), Fachtagung des GI-Fachbereichs
Softwaretechnik. Edited by Stefan Wagner and Horst Lichter. Volume 215. LNL
GI, 2013, pages 435—444.

Holger Giese, Stephan Hildebrandt, and Stefan Neumann. “Model Synchro-
nization at Work : Keeping SysML and AUTOSAR Models Consistent”. In: Graph
Transformations and Model-Driven Engineering - Essays Dedicated to Manfred
Nagl on the Occasion of his 65th Birthday. Edited by Gregor Engels, Claus Lew-
erentz, Wilhelm Schéfer, Andy Schiirr, and Bernhard Westfechtel. Volume 5765.
LNCS. Springer, 2010, pages 555-579. DOI: 10.1007/978-3-642-17322-6_24.

Susann Gottmann, Frank Hermann, Claudia Ermel, Thomas Engel, and Gian-
luigi Morelli. “Towards Bidirectional Engineering of Satellite Control Proce-
dures using Triple Graph Grammars”. In: Proceedings of the 7th Workshop on
Multi-Paradigm Modeling co-located with the 16th International Conference on
Model Driven Engineering Languages and Systems, MPM@MOoDELS 2013, Miami,
Florida, September 30, 2013. Edited by Christophe Jacquet, Daniel Balasubra-
manian, Edward Jones, and Tamas Mészaros. Volume 1112. CEUR Workshop
Proceedings. CEUR-WS.org, 2013, pages 67—76.

Marvin Grieger and Masud Fazal-baqaie. “Towards a Framework for the Modu-
lar Construction of Situation- Specific Software Transformation Methods”. In:
Softwaretechnik-Trends 35.2 (2015).

Marvin Grieger, Masud Fazal-baqaie, Gregor Engels, and Markus Klenke. “Concept-
Based Engineering of Situation-Specific Migration Methods”. In: Software Reuse:
Bridging with Social-Awareness - 15th International Conference, ICSR 2016, Limas-
sol, Cyprus, June 5-7, 2016, Proceedings. Edited by M. Georgia; Kapitsaki and

7:27


https://doi.org/10.1007/978-3-642-17322-6_18
https://doi.org/10.1007/978-3-642-33666-9_11
https://doi.org/10.1007/978-3-642-17322-6_24

Description Languages for Consistency Management Scenarios

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Eduardo Santana de Almeida. Volume 9679. LNCS. Springer, 2016, pages 199—
214. DOI: 10.1007/978-3-319-35122-3_14.

Johannes Hértel, Lukas Hartel, Ralf Limmel, Andrei Varanovich, and Marcel
Heinz. “Interconnected Linguistic Architecture”. In: Programming Journal 1.1
(2017), 3:1-3:27. DOI: 10.22152/programming-journal.org/2017/1/3.

Brian Henderson-Sellers, Jolita Ralyté, Par J. Agerfalk, and Matti Rossi. Sit-
uational Method Engineering. Springer, 2014. ISBN: 978-3-642-41466-4. DOI:
10.1007/978-3-642-41467-1.

Frank Hermann, Susann Gottmann, Nico Nachtigall, Hartmut Ehrig, Benjamin
Braatz, Gianluigi Morelli, Alain Pierre, Thomas Engel, and Claudia Ermel.
“Triple Graph Grammars in the Large for Translating Satellite Procedures”. In:
Theory and Practice of Model Transformations - 7th International Conference,
ICMT 2014, Held as Part of STAF 2014, York, UK, July 21-22, 2014. Proceedings.
Edited by Davide Di Ruscio and Ddniel Varrd. Volume 8568. LNCS. Springer,
2014, pages 122—-137. DOI: 10.1007/978-3-319-08789-4_9.

Soichiro Hidaka, Zhenjiang Hu, Kazuhiro Inaba, Hiroyuki Kato, and Keisuke
Nakano. “GRoundTram: An Integrated Framework for Developing Well-Behaved
Bidirectional Model Transformations”. In: 26th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE 2011), Lawrence, KS, USA, Novem-
ber 6-10, 2011. Edited by Perry Alexander, Corina S. Pasarenau, and John G. Hosk-
ing. IEEE Computer Society, 2011, pages 480—483. DoI1: 10.1109/ASE.2011.6100104.

Soichiro Hidaka, Massimo Tisi, Jordi Cabot, and Zhenjiang Hu. “Feature-Based
Classification of Bidirectional Transformation Approaches”. In: Software and
System Modeling 15.3 (2016), pages 907—928. DOI: 10.1007/s10270-014-0450-0.

Stephan Hildebrandt, Leen Lambers, Holger Giese, Dominic Petrick, and Ingo
Richter. “Automatic Conformance Testing of Optimized Triple Graph Grammar
Implementations”. In: Applications of Graph Transformations with Industrial
Relevance - 4th International Symposium, AGTIVE 2011, Budapest, Hungary,
October 4-7, 2011, Revised Selected and Invited Papers. Edited by Andy Schiirr,
Déniel Varré, and Gergely Varrd. Volume 7233. LNCS. Springer, 2011, pages 238—
253. DOI: 10.1007/978-3-642-34176-2_20.

Hsiang-shang Ko, Tao Zan, and Zhenjiang Hu. “BiGUL: A Formally Verified Core
Language for Putback-Based Bidirectional Programming”. In: Proceedings of the
2016 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation,
PEPM 2016, St. Petersburg, FL, USA, January 20 - 22, 2016. Edited by Martin
Erwig and Tiark Rompf. ACM, 2016, pages 61—72. DOI: 10.1145/2847538.2847544.

Ralf Lammel. “Coupled Software Transformations Revisited”. In: Proceedings
of the 2016 ACM SIGPLAN International Conference on Software Language Engi-
neering, Amsterdam, The Netherlands, October 31 - November 1, 2016. Edited by
Tijs van der Storm, Emilie Balland, and Daniel Varr6. ACM, 2016, pages 239—252.
DOI: 10.1145/2997364.

7:28


https://doi.org/10.1007/978-3-319-35122-3_14
https://doi.org/10.22152/programming-journal.org/2017/1/3
https://doi.org/10.1007/978-3-642-41467-1
https://doi.org/10.1007/978-3-319-08789-4_9
https://doi.org/10.1109/ASE.2011.6100104
https://doi.org/10.1007/s10270-014-0450-0
https://doi.org/10.1007/978-3-642-34176-2_20
https://doi.org/10.1145/2847538.2847544
https://doi.org/10.1145/2997364

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

A. Anjorin, E. Yigitbas, E. Leblebici, A. Schiirr, M. Lauder, M. Witte

Kevin Charles Lano, Hessa Alfraihi, Sobhan Yassipour Tehrani, and Howard
Haughton. “Patterns for Specifying Bidirectional Transformations in UML-
RSDS”. In: The 1oth International Conference on Software Engineering Advances
(ICSEA 2015). IARIA XPS Press, 2015.

Marius Lauder. “Incremental Model Synchronization with Precedence-Driven
Triple Graph Grammars”. PhD thesis. Technische Universitdt Darmstadt, 2012.

Erhan Leblebici, Anthony Anjorin, and Andy Schiirr. “Developing eMoflon with
eMoflon”. In: Theory and Practice of Model Transformations - 7th International
Conference, ICMT 2014, Held as Part of STAF 2014, York, UK, July 21-22, 2014.
Proceedings. Volume 8568. LNCS. Springer, 2014, pages 138-145. DOI: 10.1007/
978-3-319-08789-4_10.

Erhan Leblebici, Anthony Anjorin, and Andy Schiirr. “Inter-model Consistency
Checking using Triple Graph Grammars and Linear Optimization Techniques”.
In: Fundamental Approaches to Software Engineering - 2oth International Con-
ference, FASE 2017, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings.
Edited by Marieke Huisman and Julia Rubin. Volume 10202. LNCS. Springer,
2017, pages 191-207. DOI: 10.1007/978-3-662-54494-5_11.

Nuno Macedo, Tiago Guimaraes, and Alcino Cunha. “Model Repair and Trans-
formation with Echo”. In: 2013 28th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2013, Silicon Valley, CA, USA, November
11-15, 2013. Edited by Ewen Denney, Tevfik Bultan, and Andreas Zeller. IEEE,
2013, pages 694—697. DOI: 10.1109/ASE.2013.6693135.

Sebastian Rose, Marius Lauder, Michael Schlereth, and Andy Schiirr. “A Multi-
dimensional Approach for Concurrent Model Driven Automation Engineering”.
In: Model-Driven Domain Analysis and Software Development: Architectures and
Functions. Edited by Janis Osis and Erika Asnina. IGI Publishing, 2011, pages 90—
113. DOI: 10.4018/978-1-61692-874-2.ch005.

Andy Schiirr. “Specification of Graph Translators with Triple Graph Grammars”.
In: Graph-Theoretic Concepts in Computer Science, 2oth International Workshop,
WG ’94, Herrsching, Germany, June 16-18, 1994, Proceedings. Edited by Ernst W.
Mayr, Gunther Schmidt, and Gottfried Tinhofer. Volume 903. LNCS. Springer,
1994, pages 151-163. DOI: 10.1007/3-540-59071-4_45.

Perdita Stevens. “A Landscape of Bidirectional Model Transformations”. In:
Generative and Transformational Techniques in Software Engineering II: Inter-
national Summer School, GTTSE 2007, Braga, Portugal, July 2-7, 2007. Revised
Papers. Edited by Ralf Lammel, Joost Visser, and Jodo Saraiva. Volume 5235.
LNCS. Springer, 2008, pages 408-424. DOI: 10.1007/978-3-540-88643-3_10.

Perdita Stevens. “Bidirectional Transformations in the Large”. In: 20th ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems,
MODELS 2017, Austin, TX, USA, September 17-22, 2017. IEEE Computer Society,
2017. DOI: 10.1109/MODELS.2017.8.

7:29


https://doi.org/10.1007/978-3-319-08789-4_10
https://doi.org/10.1007/978-3-319-08789-4_10
https://doi.org/10.1007/978-3-662-54494-5_11
https://doi.org/10.1109/ASE.2013.6693135
https://doi.org/10.4018/978-1-61692-874-2.ch005
https://doi.org/10.1007/3-540-59071-4_45
https://doi.org/10.1007/978-3-540-88643-3_10
https://doi.org/10.1109/MODELS.2017.8

Description Languages for Consistency Management Scenarios

[38]

[39]

Martin Wieber, Anthony Anjorin, and Andy Schiirr. “On the Usage of TGGs for
Automated Model Transformation Testing”. In: Theory and Practice of Model
Transformations - 7th International Conference, ICMT 2014, Held as Part of STAF
2014, York, UK, July 21-22, 2014. Proceedings. Edited by Davide Di Ruscio and
Déniel Varrd. Volume 8568. LNCS. Springer, 2014, pages 1-16. DOI: 10.1007/978-
3-319-08789-4_1.

Yingfei Xiong, Hui Song, Zhenjiang Hu, and Masato Takeichi. “Synchronizing
Concurrent Model Updates Based on Bidirectional Transformation”. In: Soft-
ware and Systems Modeling 12.1 (2013), pages 89-104. DOI: 10.1007/s10270-010-
0187-3.

7:30


https://doi.org/10.1007/978-3-319-08789-4_1
https://doi.org/10.1007/978-3-319-08789-4_1
https://doi.org/10.1007/s10270-010-0187-3
https://doi.org/10.1007/s10270-010-0187-3

A. Anjorin, E. Yigitbas, E. Leblebici, A. Schiirr, M. Lauder, M. Witte

About the authors

Anthony Anjorin is a junior professor for model-based software
development at Paderborn University. Contact him at anthony.
anjorin@upb.de.

Enes Yigitbas is a PhD student at Paderborn University. Contact
him at enes@mail.uni-paderborn.de.

Erhan Leblebici is a PhD student at Technische Universitiat Darm-
stadt. Contact him at erhan.leblebici@es.tu-darmstadt.de.

Andy Schiirr is a full professor at Technische Universitat Darm-
stadt. Contact him at andy.schuerr@es.tu-darmstadt.de.

Marius Lauder is head of embedded HMI-framework develop-
ment at the German car supplier Continental. Contact him at
marius.lauder@continental-corporation.com.

7:31


mailto:anthony.anjorin@upb.de
mailto:anthony.anjorin@upb.de
mailto:enes@mail.uni-paderborn.de
mailto:erhan.leblebici@es.tu-darmstadt.de
mailto:andy.schuerr@es.tu-darmstadt.de
mailto:marius.lauder@continental-corporation.com

Description Languages for Consistency Management Scenarios

Martin Witte is Senior Principal Expert for System Engineering
and Simulation at Siemens AG in Nuremberg. Contact him at

martin.witte@siemens.com.

7:32


mailto:martin.witte@siemens.com

	1 Introduction and Motivation
	2 Describing Consistency Management Scenarios in the Problem Domain
	2.1 Concurrent Model-Driven Automation Engineering (CMDAE)
	2.2 Concurrent Manufacturing Engineering (CME)
	2.3 Graph Grammar-Based Traceability Management (GraTraM)
	2.4 Model-Based Transformation Testing (MBTT)

	3 Describing Consistency Management Scenarios in the Solution Domain
	3.1 Method Fragments for Consistency Management
	3.2 Method Patterns for Consistency Management
	3.2.1 Initial Method Patterns: DirectedStart and ColdStart
	3.2.2 Method Pattern for Quality Assurance: GenerateAndCheck


	4 Discussion
	4.1 What can be currently automated (with or without a bx language)?
	4.2 What is the (initial) cost of using a bx language?
	4.3 How do I start?
	4.4 Do I need a bx language?
	4.5 How formal, and on what level of abstraction should description languages be?

	5 Related Work
	6 Conclusion and Future Work
	About the authors

