
Semantic Query Integration With Reason

Philipp Seifera, Martin Leinbergerb, Ralf Lämmela, and Steffen Staabb,c
a Software Languages Team, University of Koblenz-Landau, Germany
b Institute for Web Science and Technologies, University of Koblenz-Landau, Germany
c Web and Internet Science Research Group, University of Southampton, England

Abstract Graph-based data models allow for flexible data representation. In particular, semantic data based
on RDF and OWL fuels use cases ranging from general knowledge graphs to domain specific knowledge in
various technological or scientific domains. The flexibility of such approaches, however, makes programming
with semantic data tedious and error-prone. In particular the logics-based data descriptions employed by
OWL are problematic for existing error-detecting techniques, such as type systems. In this paper, we present
DOTSpa, an advanced integration of semantic data into programming. We embed description logics, the
logical foundations of OWL, into the type checking process of a statically typed programming language and
provide typed data access through an embedding of the query language SPARQL. In addition, we demonstrate
a concrete implementation of the approach, by extending the Scala programming language. We qualitatively
compare programs using our approach to equivalent programs using a state-of-the-art library, in terms of how
both frameworks aid users in the handling of typical failure scenarios.

ACM CCS 2012
Theory of computation→ Type structures;
Software and its engineering→ Syntax; Semantics; Compilers;

Keywords DSL implementation, compiler extension, type checking, language integration

The Art, Science, and Engineering of Programming

Submitted October 1, 2018

Published February 1, 2019

doi 10.22152/programming-journal.org/2019/3/13

© Philipp Seifer, Martin Leinberger, Ralf Lämmel, and Steffen Staab
This work is licensed under a “CC BY 4.0” license.
In The Art, Science, and Engineering of Programming, vol. 3, no. 3, 2019, article 13; 28 pages.

https://doi.org/10.22152/programming-journal.org/2019/3/13
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Semantic Query Integration With Reason

1 Introduction

Graph-based data models allow for flexible data representation. In particular, semantic
data models like RDF [55] may contain schematic information as part of the data or
in separate files. Such schematic information is called an ontology. Of special interest
is the W3C standard OWL [25], which allows for using highly expressive logic-based
data descriptions. This flexibility and expressive power of RDF and OWL fuels many
applications, ranging from general knowledge graphs such as Wikidata [54] to complex
domain specific ontologies, e.g., the SNOMED CT [8] medical vocabulary.

While the flexibility and expressive power of OWL make it attractive, programming
with OWL is tedious and error-prone. A major reason is the lack of typed integration
in programming languages, leaving the burden of correct typing on the programmer.
This lack of integration is comparable to data access and integration of other data
models, such as access to and types for relational [6] or object oriented databases [37,
56], XML [4, 26], as well as general data access approaches such as LINQ [5, 34];
each data model comes with its specific challenges. As an example of these challenges,
consider the following axioms inspired by the Lehigh University Benchmark [23]:

1 // Schematic information
2 Person u Organization v ⊥
3 Employee v
4 Person u ∃worksFor.Organization
5 Professor v Employee
6 Chair v Professor
7 ∃headOf.Department u Person ≡ Chair
8 ResearchAssistant v
9 Person u ∃worksFor.ResearchGroup

10 Department v Organization
11 ResearchGroup v Organization
12 ∃worksFor.> v Person
13 ∃subOrganizationOf.> v Organization
14 > v ∀headOf.Department
15 // Data (assertional axioms)
16 alice : Chair
17 (bob, softlang) : worksFor
18 softlang : ResearchGroup

Figure 1 Example axioms describing a university setting.

Schematic information consists of concepts, such as Person, and roles, such as worksFor,
that are combined to more complex concept expressions via connectors like inter-
section (u) or existential (∃) and universal (∀) quantification. Concepts themselves
are related to each other via subsumption (v) or equivalence (≡) statements. In this
manner, line 2 ensures that a Person can never be an Organization and vice versa.
Lines 3–4 state that Employees are Persons working for some kind of Organization. Line
5 introduces Professors, which are Employees. A special kind of a Professor is a Chair
(6) which is a person who is the head of a department (7). A ResearchAssistant is a
person that works for a ResearchGroup (8–9). Both Departments and ResearchGroups
are special kinds of Organizations (10,11). To express that working for something
implies being a Person and being a sub-organization implies being an Organization,
domain specifications are employed (12,13). The range specification (14) ensures, that
all objects to which a headOf relation points are Departments. The data introduces
three objects: alice, who is a Chair, and bob who works for the ResearchGroup softlang.
This example highlights some of the problems that occur when trying to do type

checking on a program that works on OWL. For one, a mixture of nominal (Person) and

13:2

Philipp Seifer, Martin Leinberger, Ralf Lämmel, and Steffen Staab

structural types (∃worksFor.Organization) is used. Second, some inferable information
is left implicit, such as the fact that a ResearchAssistant is a special kind of Employee.

Mapping approaches such as [27] do not cope well with these problems. In previous
work [30], we proposed a custom type system dubbed λDL to remedy the situation.
λDL used concept expressions such as ∃worksFor.ResearchGroup or Employee as types.
The process of type checking then relies on an ontology reasoner. This allows for
the definition of functions, e.g., a function accepting an Employee such as (λx :
Employee), as well as proving that a ResearchAssistant is a subtype of Employee
through the reasoner. Besides the possibility of finding wrong applications of this
function at compile time, this also serves as documentation, which is guaranteed to
be consistent [42] with both the program code as well as the ontology.
A practical integration of OWL into programming, however, must extend general

purpose programming languages. Those have rich type systems, where even small
changes may be cross-cutting among many features. In addition, expressive queries as
a means to access data are needed. In particular, a typed integration of SPARQL [43],
a W3C querying standard for semantic data, is desirable.

In this paper, we describe a general approach for a deep integration of OWL and a
subset of SPARQL into a typed programming language as well as a concrete imple-
mentation, ScaSpa, as an extension of Scala. The subset of SPARQL we consider is
built on [28] in order to focus on SPARQL constructs that are decidable when used
with OWL. In summary, the main contributions of the paper are as follows:
1. We devise an advanced approach for the integration of semantic data into program-

ming. This includes on-demand type integration (we rely only on concepts used in
the program) based on the theoretical foundations provided by λDL, as well as a
deep integration of concept expressions and SPARQL queries. This allows for the
detection of three kinds of common errors, that occur when working with OWL.

2. We provide a concrete implementation of this approach by extension of the Scala
language, including type erasure, integration of an existing reasoner and triple
store, while maintaining separate compilability.

However, two important issues are not addressed by the paper. For one, we currently
do not provide any form of code completion or general design support dedicated to
SPARQL and DL concept expressions. Second, we do not conduct user studies to verify
that our approach reduces complexity in practice. Both issues call for future work.

Road Map In Section 2, we introduce description logics and SPARQL. In Section 3, we
show an essential part of the integration by inferring query types from SPARQL queries.
Section 4 describes the essence of integrating DL and SPARQL with typed functional
object oriented programming, by extending the syntax and semantics of a formal
calculus. In Section 5, we discuss several issues regarding the practical integration of
description logics and SPARQL, while Section 6 gives an overview of the architecture
and implementation of ScaSpa. In Section 7, we perform a qualitative comparison
between our approach and a state-of-the-art library. We focus on how both approaches
aid users in dealing with common failure scenarios. This is followed by a discussion
of related work in Section 8 and a short summary in Section 9.

13:3

Semantic Query Integration With Reason

2 Background

We focus on semantic data formalized in the Web Ontology Language (OWL). Formal
theories about OWL are grounded in research on description logics (DL)1. Description
logics are a family of logical languages used in knowledge representation. They are
sub-languages of first-order logic, most of which have been carefully defined to allow
for decidable or even PTIME decision procedures.

Description Logics A DL knowledge base K typically comprises two sets of logical
axioms: The T-Box (terminological or schematic data) and the A-Box (assertional
data). Such axioms are built using the atomic elements defined in the signature of K .
The signature provides a set of atomic concept names (e.g., Person or ResearchGroup),
a set of atomic role names (e.g., worksFor) and atomic object names (e.g., bob or
softlang).

A role expression is either an atomic relation (R) or its inverse (R−). Atomic concept
names, role expressions and individual objects can be used to built complex concept ex-
pressions C using connectives. The available connectives depend on the specific dialect
of the description logic. Common connectives include conjunction (u), negation (¬),
existential quantification (∃) and enumeration of objects for concept creation. Other
connectives (disjunction, universal quantification, …) may be derived from these.
Semantically, a concept is a set of objects. T-Box axioms are constructed from a pair of
concept expressions using either the subsumption connective (v) or the equivalence
connective (≡), essentially describing subsumption or equivalences between the vari-
ous sets of objects. For example, the axiom Employeev Personu∃worksFor.Organization
describes that all objects contained in the set Employee must also be contained in both
the Person set, as well as the set of objects for which the role worksFor to an Organiza-
tion exists. Assertional axioms on the other hand are either concept assertions or role
assertions. A concept assertion a : C claims membership of an object a in a concept ex-
pression C (e.g., softlang : ResearchGroup meaning that the softlang object is contained
in the ResearchGroup set). A role assertion (a, b) : R (e.g., (bob, softlang) : worksFor)
connects objects via role expressions.

Being a subset of first-order predicate logic, DL relies on a Tarski-style interpretation
based semantics. Axioms contained in either the T-Box or A-Box ofK constitute known
facts that must be true. An interpretation in which all facts are true is called a model.
This may introduce anonymous objects. Consider alice, who is a Chair. Being a Chair
requires being the head of a department. However, no department is given for alice.
This is no inconsistency, but rather incomplete knowledge. An anonymous object is
used in the models of K to represent this department.
An axiom A can be inferred from a knowledge base, written K |= A, if it is true

in every model. For example, K |= ResearchAssistant v Employee for the K given in

1 In practice, OWL is often serialized using RDF. The strict subject-predicate-object triple style
of representation introduces some syntactic differences compared to the abstract syntax
introduced in this paper.

13:4

Philipp Seifer, Martin Leinberger, Ralf Lämmel, and Steffen Staab

Figure 1. Importantly, DL relies on an open world assumption. An axiom is true, if it is
true in all models. It is false, if it is false in all models. If some models exist in which
an axiom is true and some where it is false, then we cannot say whether the axiom is
true or false for K . Also, DL does not employ a unique name assumption. Different
object names are considered syntactic elements that may semantically refer to the
same thing, unless explicitly stated otherwise.

SPARQL in a DL Context SPARQL [43] is a graph-matching language built around
query patterns. SPARQL supports various entailment regimes, including OWL en-
tailment [20]. While our implementation uses the official SPARQL syntax, in the
theoretical parts of the paper we rely on an algebraic formalization for simplicity. We
follow [28] in our definitions to focus on constructs that are decidable when used
in a DL context. In particular, we restrict ourselves to queries to the A-Box. We also
only consider queries returning solution mappings, as opposed to simple boolean ASK
queries.

A query pattern is an axiom in which at least one object is replaced with a variable.
We indicate variables through the meta-variables x , x1, x2. Therefore, a query pattern
pattern is defined as follows:

pattern ::= x : C | (a, x) : R | (x , b) : R | (x1, x2) : R

A SPARQL query q is then either a query pattern or the connection of two queries via
intersection, union, minus or optional:

q ::= pattern (query pattern)
| q1 . q2 (intersection)
| q1 UNION q2 (union)
| q1 MINUS q2 (minus)
| q1 OPTIONAL q2 (optional)

Formally, a possible solution to a query q is a mapping µ from (a subset of) variables
used in the query onto objects used in K . We write S µK ¹qº to indicate that µ is a
solution to q, given the knowledge base K . This function is defined as follows:

S µK ¹x : Cº =

¨

K |= a : C if µ(x) = a

false if x 6∈ d(µ)

S µK ¹(a, x) : Rº =

¨

K |= (a, b) : R if µ(x) = b

false if x 6∈ d(µ)
Likewise for (x , b) : R and (x1, x2) : R

S µK ¹q1 . q2º = S µK ¹q1º∧S
µ
K ¹q2º

S µK ¹q1 UNION q2º = S µK ¹q1º∨S
µ
K ¹q2º

S µK ¹q1 MINUS q2º = S µK ¹q1º∧¬S
µ
K ¹q2º

S µK ¹q1 OPTIONAL q2º =

¨

S µK ¹q1 . q2º if (v(q2)\v(q1))∩ d(µ) 6= ;
S µK ¹q1º otherwise

where v(q), d(µ) are the variables occurring in the query, or the mappings domain,
respectively. The answer to a query q for a knowledge base K is ¹qºK = {µ |S

µ
K ¹qº},

the set of all solution mappings µ for which K entails the query.

13:5

Semantic Query Integration With Reason

3 Type Inference for SPARQL Queries

(x : C) : φ with φ(x) = C ((x , a) : R) : φ with φ(x) = ∃R.{a}

((a, x) : R) : φ with φ(x) = ∃R−.{a}

((x1, x2) : R) : φ with φ(x1) = ∃R.x2 and φ(x2) = ∃R−.x1

q1 : φ1 q2 : φ2

q1 . q2 : φ1 �φ2

q1 : φ1 q2 : φ2

q1 UNION q2 : φ1 ⊕φ2

q1 : φ1 q2 : φ2

q1 OPTIONAL q2 : φ1 ⊕ (φ1 �φ2)

q1 : φ1 q2 : φ2

q1 MINUS q2 : φ1

where for (o,so) ∈ {(�,u), (⊕,t)}
φ1 o φ2 = {(x ,φ1(x) so φ2(x)) | x ∈ dom(φ1), x ∈ dom(φ2)}
∪ {(x ,φ1(x)) | x ∈ dom(φ1), x 6∈ dom(φ2)}
∪ {(x ,φ2(x)) | x 6∈ dom(φ1), x ∈ dom(φ2)}

Figure 2 Rules for concept inference on queries.

In order to provide a typed integration of SPARQL queries into programming, type
inference on queries is needed. From a semantics’ point of view, a concept expression
is a set of values. Queries evaluate to sets of mappings that map variables to values.
We therefore infer one concept expression per variable of a SPARQL query. The set
defined through the concept expression must at least contain all possible values that a
variable can be mapped to after the query has been evaluated. We define the type of a
query to be a function φ mapping each variable in the query to a concept expression.

We use a static analysis of the query through a typing relation q : φ. Query patterns
constitute the basic cases of this analysis. In case of a x : C pattern, all possible
mappings for x are members of concept C . Likewise, for (a, x) : R and (x , a) : R, all
possible mappings must belong to ∃R−.{a} and ∃R.{a} respectively. We use {a} to
denote a so called nominal concept–a concept created by enumerating all its objects.
A special case is (x1, x2) : R. As the concrete concept for x1 is dependent on the
concept for x2 and vice versa, we introduce concept references ∃R.x for each of
the two variables. These references get resolved after the query has been analyzed.
Conjunction, disjunction and OPTIONAL in queries are transformed into conjunctions
or disjunctions of DL concept expressions in cases where variables are contained in
both parts of the query (see the definitions of ⊕ and � in Figure 2, where dom denotes
the domain). For MINUS queries we have to overestimate the types by disregarding
all constraints of the right-hand side: The MINUS operator in SPARQL evaluates both
operands, before removing all left-hand side solutions incompatible with the right-
hand side. Therefore, the overestimation is sound (but a superset of the precise type).
This could not be expressed more accurately using concept negation, however, since
this notion of negation differs from SPARQL. The complete rules are shown in Figure 2.

13:6

Philipp Seifer, Martin Leinberger, Ralf Lämmel, and Steffen Staab

As a last step, concept references are resolved. A concept reference ∃R.x is substi-
tuted with the respective concept in φ, yielding ∃R.φ(x). This is repeated until all
concept references are eliminated, except possible self references. These cases take
the form φ(x1) = ∃R.x1 or similar. As we need to replace the reference in a way that
captures all possible values, we replace it with the > concept, yielding φ(x1) = ∃R.>.
As > represents the concept containing all objects, this may be a very loose, but sound
overestimation.

Example Consider the query ((?y, ?x) : worksFor . ?x : ResearchGroup), select-
ing tuples of ys working for xs that are research groups. As a first step, the
concept expressions for all patterns are inferred, resulting in the constraint sets
{y : ∃worksFor.x , x : ∃worksFor−.y} and {x : ResearchGroup} for the left and right
hand side, respectively. Application of the � operator yields {y : ∃worksFor.x , x :
∃worksFor−.y u ResearchGroup}. Resolution of concept references by substitution re-
sults in {y : ∃worksFor.(∃worksFor−.yuResearchGroup), x : ∃worksFor−.(∃worksFor.x)u
ResearchGroup}. Finally, after substitution of self references with >, the following con-
cept expressions are inferred:

x: ∃worksFor−.(∃worksFor.>)u ResearchGroup

y: ∃worksFor.(∃worksFor−.>u ResearchGroup)

4 Syntax and Semantics of DOTSpa

In previous work [30], we introduced description logics based types to a simply typed
lambda calculus. Here we present syntax and semantics of DOTSpa as extensions to
an unspecified formalism. We therefore abstract from specific details, in order to keep
DOTSpa as general as possible. In the context of the ScaSpa implementation, however,
these definitions can be understood as extensions to the dependent object types
calculus (DOT [2]), the theoretical foundation of Scala. In fact, the syntax is a direct
extension of the calculus, while the reduction, type assignment and subtyping rules
are generalized from the object based nature of DOT. More generally, our approach
could easily be transferred to most statically typed, object oriented or functional
programming languages, such as F#, C# or Java. Essentially, DOTSpa only requires
terms and types, that can be extended with its definitions.

Syntax The syntax extension defined by DOTSpa is given in Figure 3. It extends the
rules for values, terms and types. Simple values include literals for internationalized
resource identifiers (IRI) which, consistent with SPARQL, are used to refer to A-Box
instances. Terms are extended by adding the various terms defined by DOTSpa:
SPARQL queries and their strictly validated variant, role projections and type case
expressions. Strict SPARQL queries use a different validation mechanism than non-
strict queries, but are otherwise identical. Role projections query along a single role,
providing an easy shorthand notation for this common operation. Type cases are
branching expressions, which select one of their branches based on subtyping: They

13:7

Semantic Query Integration With Reason

x , y, z (variable)
i (IRI)
v ::=… (value)
| iri i (literal IRI)

s, t, u ::=… (term)
| sparql q (query)
| strictsparql q (strictly validated query)
| t.R (role projection)
| t match { case case _ => t } (type case)

case ::= (case expression)
case x : C => t (type case)

S, T, U ::=… (type)
| C (concept expression type)

R ::= (role expression)
i (atomic role)
| R− (inverse role)

C , D ::= (concept expression)
{i} (nominal concept)
| i (atomic concept)
| > (top)
| ⊥ (bottom)
| ¬C (negation)
| C u D (intersection)
| C t D (union)
| ∃R.C (existential quantification)
| ∀R.C (universal quantification)

α,β ::= (pattern element)
?x (SPARQL variable)
| t (term)

pattern ::= (query patter)
α : C (concept assertion)
| (i,α) : R (from-lit role)
| (α, i) : R (to-lit role)
| (α,β) : R (role assertion)

q, r ::= (query expression)
pattern (query pattern)
| q . r (intersection)
| q UNION r (union)
| q MINUS r (minus)
| q OPTIONAL r (optional)

Figure 3 Syntax extensions defined by DOTSpa.

13:8

Philipp Seifer, Martin Leinberger, Ralf Lämmel, and Steffen Staab

(RED-ROLE)
t.R→ strictsparql (t, ?x) : R

(RED-QUERY)
sparql q→ σ(¹qº ∗K)

(RED-STRICT-QUERY)
strictsparql q→ σ(¹qº ∗K)

(RED-DEFAULT)
v match {case _ => t} → t

(RED-MATCH)
t → t ′

t match {case} → t ′ match {case}

(RED-CASE-S)
K |= {i} v C

i match {
case x : C => t
. . .
case _ => u
}

→ [x 7→ i] t

(RED-CASE-F)
K 6|= {i} v C

i match {
case x : C => t
case y : D => s
. . .
case _ => u
}

→

i match {
case y : D => s
. . .
case _ => u
}

Figure 4 Extended reduction rules.

consist of a term on which cases are matched, the default case as well as zero or more
additional cases, restricted with a concept expression.
Types can now be expressed by concept expressions to form concept expression

types, using common DL syntax. Additionally, nominal and atomic concepts as well as
atomic roles are expressed by IRIs. The remaining rules specify our simplified SPARQL
queries (as introduced in Section 2). In this version, however, queries might also
contain arbitrary terms in addition to SPARQL variables. This allows the embedding
of terms from the language context within a query.

Semantics Figure 4 sketches the reduction rules for DOTSpa. In the same manner
as for the syntax extension, we specify only rules unique to DOTSpa while omitting
rules for simple term reduction.
Role projections (RED-ROLE) are evaluated to equivalent query expressions. An

equivalent query for a role projection is the query taking one argument (the term
from which the role is selected) and selecting for the particular role. For both strict
(RED-STRICT-QUERY) and non-strict (RED-QUERY) queries, the knowledge base
(in practice, this would commonly be represented by a SPARQL triple store) has to
be consulted to obtain the solution sequence ¹qºK . For brevity we omit reduction
rules for terms embedded in queries. Instead, we assume that terms are reduced
via the normal reduction rules by ¹qº ∗K , which is otherwise based on the previously
defined ¹qºK (Section 2). The query is then mapped to an implementation specific
representation via σ. In terms of evaluation, there is no difference between strict and
non-strict queries.

13:9

Semantic Query Integration With Reason

(T-IRI)
Γ ` iri i : { i }

(<:-CONCEPT)
K |= C v D

Γ ` C <: D

(T-CASE)
Γ ` tn : Tn Γ , x i : Ci ` t i : Ti for i = 1, . . . , n− 1

Γ ` i match {
case x1 : C1 => t1

. . .
case xn−1 : Cn−1 => tn−1

case _ => tn

}

→ lub(T1, . . . , Tn)

(T-STRICT-QUERY)
q : φ ∀x ∈ vars(q) :K |= φ(x) 6≡ ⊥
∀t ∈ terms(q) : Γ ` t : C ∧K |= C v φ(t)

Γ ` strictsparql q : σT (φ where ∀t ∈ terms(q) : φ(t) is replaced by C)

(T-QUERY)
q : φ ∀x ∈ vars(q) :K |= φ(x) 6≡ ⊥

∀t ∈ terms(q) : Γ ` t : C ∧K |= φ(t)u C 6≡ ⊥

Γ ` sparql q : σT (φ)

(T-ROLE)
((t, ?x) : R) : φ ∀x ∈ vars(q) :K |= φ(x) 6≡ ⊥ Γ ` t : C ∧K |= C v φ(t)

Γ ` t.R : σT ([φ(?t) 7→ C] φ)

Figure 5 Extended type assignment and subtyping rules.

After reducing the matched-on term of type cases (RED-MATCH), the different cases
are tried in order: If the value is an IRI and has the respective concept expression type
(RED-CASE-S), relying on judgments from the knowledge base, the match evaluates
to the respective term with substituted variable. If the matched value does not have
the concept expression type (RED-CASE-F), the case is removed. For the single default
case, the match expression evaluates to the default expressions term (RED-DEFAULT).

The type assignment and subtyping rules unique to DOTSpa are given in Figure 5.
In order to assign the type of match expressions, the least upper bound (lub) of
the types of all its branches is used (T-CASE). The lub of concept expression types
is defined as the union of concepts (lub(C , D) := C t D). This definition extends
recursively to any arity. IRI values have a nominal concept type, based on the IRI itself
(T-IRI). There exists a single subtyping rule for concept expression types: Two concept
expression types are in the <: relation, if the respective concepts can be shown to be
in a subsumptive relationship in context of the knowledge base (<:-CONCEPT).

13:10

Philipp Seifer, Martin Leinberger, Ralf Lämmel, and Steffen Staab

In order to type queries (T-QUERY) and (T-STRICT-QUERY), the concept expressions
for all variables that occur in a query have to be inferred. Since queries may also
contain arbitrary terms, but the algorithm for inference in Section 3 can only deal with
SPARQL variables, we map these terms to fresh SPARQL variables before typing the
query. Then themappingφ can be built according to the inference algorithm. In a slight
abuse of notation, we use terms and the fresh variables they map to interchangeably.
We also define vars(q) and terms(q) to refer to all variables and terms occurring
in q, respectively. In order to validate a query, all concept expressions inferred for
occurring variables x must be satisfiable (i.e., not equivalent to ⊥). Otherwise, the
query can be rejected as always empty. The second validation step varies for the strict
and non-strict variants: For strict queries (T-STRICT-QUERY) the concept expression
types C of the query-embedded terms t must be subsumed by the inferred types φ(t)
for the matching, freshly introduced SPARQL variables. In the final type, the inferred
types are then replaced by the (more specific) concept types C . For non-strict queries
(T-QUERY) it suffices, that the intersection of C and φ(t) is satisfiable as well. The final
result type is obtained by a function σT , taking the concept expression types as input.
The precise type (much like the values constructed by σ) is not specified for DOTSpa
and depends on the implementation. The approach for role projections (T-ROLE) is
the same as for strict queries with one argument. This case strongly resembles the
behavior of objects and member access. For example, the projection t.worksFor on a
term t is evaluated to the query (strictsparql (t, ?x) : worksFor), meaning it must
be proven at compile time that the worksFor role exists for the type of t.

Example Consider again the query (sparql (t, ?x) : worksFor . ?x : ResearchGroup)
where t is now a term with concept expression type Employee. Since this is a non-strict
query, validation demands that it is not possible to infer, from the respective knowledge
base (Figure 1), that employees may not work for research groups:

∃worksFor.ResearchGroupu Employee 6≡ ⊥ (T-QUERY)

The non-strict validation approach therefore rejects all queries, where arguments and
inferred constraints are known to be disjoint. If, instead of an Employee, the argument
to this query would have been an Organization, the query would have been rejected
since only a Person can work for something and Person and Organization are disjoint.
Under strict query validation, it must be possible to prove subsumption between

the queries arguments and the inferred constraints:

Employeev worksFor.ResearchGroup (T-STRICT-QUERY)

The above query is therefore not valid under strict validation, since not all employees
work for research groups. If the argument was of type ResearchAssistant instead,
the query would be valid, since ResearchAssistant v worksFor.ResearchGroup is true.
In this case, the arguments constraints would be substituted by ResearchAssistant,
simplifying the type for ?x to ∃worksFor−.ReasearchAssistant u ResearchGroup. For
common ontologies, this second approach can be too strict a requirement. Therefore,
the choice of the validation approach is highly dependent on the respective ontology.

13:11

Semantic Query Integration With Reason

5 Instantiating the DOTSpa Framework

DOTSpa is a general language extension framework for introducing querying and a
type system for semantic data into programming.We provide a specific implementation
called ScaSpa, which implements the DOTSpa approach in the functional programming
language Scala. The integration of concept expressions and SPARQL into practical
programming technologies, such as the Scala language, introduces several issues.
From a practical point of view, the T-Box and A-Box of a knowledge base are often
separated. For the T-Box, we rely on ontology reasoners, which are optimized for fast
T-Box reasoning. Data however is best stored in a triple store. Both ontology reasoner
and triple store are part of ScaSpa in terms of the underlying language integration
and architecture.

Merging of Three Languages DL concept expressions as well as the SPARQL query
language must be syntactically integrated into the host language Scala. We therefore
face similar issues as identified by [16, 29, 46], in particular with respect to scoping
and the interaction between the languages, such as unquoting of Scala variables in
SPARQL queries.

Knowledge Base Integration into Static Type Checking DL concept expressions create a
new form of types that come with their own set of rules in terms of subtyping, creating
an amalgamated type system. The behavior of this new form of types is defined through
an ontology reasoner, which must be integrated into the type checking process of
Scala, so it can provide judgments to the type checker. This is comparable to the
integration of Coq into ML [18].

Runtime Checks Objects in a knowledge base do not have a principal type [42] except
for the concept that consists only of the object itself. Additionally, knowledge is
assumed to be incomplete. Our approach is similar to type-based filters, for example
as in LINQ [34] or a type dispatch [19]. However, in our case, such filters or type
dispatches require a translation into an equivalent query answered by the triple store.

6 Architecture and Implementation of ScaSpa

ScaSpa is a strict extension of Scala. In particular, the type checking process is ex-
tended, so that an ontology reasoner can be used for dealing with concept expressions.
As this process necessarily relies on typing information, preprocessing in the form of
simple desugaring of extended constructs into standard Scala (e.g., by using macros)
is not sufficient. Instead, we rely on the extension interface of the Scala compiler.
Figure 6 gives an overview of the integration. While we focus on Scala, its primary
components can also be understood as a general architecture for transferring DOTSpa
into practice.

13:12

Philipp Seifer, Martin Leinberger, Ralf Lämmel, and Steffen Staab

Figure 6 Architectural model of ScaSpa.
Nodes are compilation stages (rectangle), summarized stages (shaded rectangle),
artifacts (arrow) and external components (parallelogram). Arrows are dataflow
(filled heads) and dependency (unfilled heads).

Listing 1 Syntax (using back-quotes) and internal representation of concept expression
types as static annotations on the base type DLType.

1 def empl: `:Person u ∃:worksFor.:Organization`
2 // ... transformed to ...
3 def empl: DLType @dl(":Person u ∃:worksFor.:Organization")

Parser We use a staged parsing approach. Initially, DL concept expressions and
SPARQL queries are essentially parsed as strings (through the Scala backquote and
StringContext features). Syntactic validity of concept expressions and SPARQL queries
is ignored at this stage. Instead, the Scala parser creates a standard AST. Later stages
recover these constructs through AST traversals: In the DL parser stage, syntactic
validity and satisfiability of concept expressions is checked, before erasing them to a
base type. The concrete concept expression lives on through a static annotation on
this type (see Listing 1). Such static annotations also persist in the (metadata of) the
generated byte code, preserving incremental and separate compilability. The concept
expressions themselves use standard DL syntax, with the addition that concepts
are represented by IRIs. As in SPARQL, prefix aliases can be defined and used. Our
examples use the default prefix ':' for the Lehigh University Benchmark ontology.

Parsing of SPARQL queries, which might contain unquoted Scala expressions, works
similarly–the queries are checked for syntactic validity and type annotations are added
(see Listing 2). Internally, such a query is represented by the StringContext class,
which in turn exploits Scala’s built-in syntax transformation for prefixed strings. The
same feature also handles the insertion of context arguments using '$'. For queries,

13:13

Semantic Query Integration With Reason

Listing 2 SPARQL query syntax relies on the transformation of prefixed Strings (sparql"")
to instances of StringContext.

1 def orgs = sparql"SELECT ?x WHERE { $empl :worksFor ?x }"
2 // ... transformed to ...
3 def orgs =
4 StringContext("SELECT ?x WHERE {", ":worksFor ?x }")
5 .sparql(empl) : List[(DLType, DLType)]
6 // Concrete type annotations are inferred at a later stage

the parser attaches the general DLType, while the specific concept expressions are
inferred later, as they might depend on the types of query arguments.

Syntax Transformations As a next step, role projections (using member access no-
tation) and type cases are simplified to queries. For role projections, this reduction
was already defined in Section 4. Due to the separation of the T-Box and A-Box in
reasoner (compile time) and triple store (runtime), runtime subtyping has to be
resolved using the triple store. To this end, runtime checks are transformed into an
actual instance-of test using the base type and a SPARQL ASK query–a special form
of SPARQL query that evaluates to either true or false. The only limitation of this
approach is an over-approximation of results due to the differing notions of negation
existing between description logics and SPARQL. This was previously observed for the
type inference of MINUS queries.

Typer After parsing and performing the syntax transformations, the AST contains
only valid Scala, including the base type DLType with static annotations for concept
expression types. This allows the standard Scala typer to do local type inference as
well as type checking based on DLType. Since there are no more extended constructs,
the typed AST is produced in a normal manner. Additional type checker rules for
concept expressions and SPARQL queries are implemented in a phase after the Scala
typer, relying on the propagation of the base type. The ontology reasoner (ScaSpa uses
HermiT [35]) and the actual ontology containing the data descriptions are used during
this phase. As OWL includes a namespace feature to distinguish concept expressions,
namespace management is also taken care of by the ontology reasoner.
In order to perform type checking and inference according to the rules defined

in Section 4, the typed AST is traversed again. During this traversal, the ScaSpa
typer performs type checks on, and propagates, the static annotations where the
base type was inferred by the Scala typer. A notable difference between the DOTSpa
formalization and ScaSpa is that the latter uses a T-Box only mode by default. In
T-Box only mode, nominal types are instead estimated using > (e.g., in literal IRIs) if
no explicit annotation is provided. This preserves the separation of T-Box and A-Box.
A-Box reasoning can be enabled as well, though the A-Box has to be supplied to the
reasoner in this case.

13:14

Philipp Seifer, Martin Leinberger, Ralf Lämmel, and Steffen Staab

Listing 3 Least upper bound for concept expression types is the union of concepts.
1 def makeList(prof: `:Professor`, resa: `:ResearchAssistant`) =
2 // inferred type : List[:Professor t :ResearchAssistant]
3 List(prof, resa)

Listing 4 Concrete ScaSpa implementation of the σ and σT functions as List of n-tuples.
1 def employment: List[(`:Person`, `:Organization`)] =
2 sparql"""
3 SELECT ?p ?c WHERE {
4 ?p :worksFor ?c
5 }
6 """

In addition to the specified typing rules, some further constructs of Scala have to be
considered. This includes most importantly type parameters and related features. In
order to infer concrete types for type parameters, the least upper bound is sometimes
required. This is, for example, the case when inferring the type of if-expressions or
methods, for which the same type parameter occurs multiple times (Listing 3). Scala
also allows for the explicit definition of variances (invariant, covariant, contravariant)
for type parameters, as well as upper and lower bounds. All these features can be
directly mapped to the (<:-CONCEPT) rule as defined in Section 4.

Finally, DOTSpa requires implementations to provide a representation for queries,
namely theσ andσT functions. In ScaSpa we use simple lists of tuples as demonstrated
by the example query in Listing 4.

The AST produced by the ScaSpa typer represents a normal Scala program. Trans-
formation into byte code is therefore a standard procedure. To evaluate queries at
runtime, arguments are converted to strings and spliced into the queries. In addition
to arguments of concept expression types, ScaSpa supports a limited set of Scala
types, which are mapped to appropriate XSD data types (e.g., String is mapped to
xsd:string). Therefore it is necessary to take special care and escape these argu-
ments, so that query injections can be avoided. Since queries take only arguments
of known types, no syntactical errors can be introduced at runtime. The assembled
queries are then handed to a triple store for evaluation. We employ the Stardog [53]
triple store in ScaSpa.

Limitations Ad hoc polymorphism in the form of method overloading and implicit
parameters (used by Scala’s notion of type classes), are implemented by compiler
internals not exposed through the compiler extension interface. Since all concept ex-
pression types are internally represented by the same base type, neither the resolution
of overloaded methods nor the implicit search can handle them. Workarounds, such
as custom dispatch at runtime or patching the compiler directly, might be possible
solutions for this limitation, but remain as future work.

13:15

Semantic Query Integration With Reason

7 Comparison with a State-of-the-Art Framework

The primary goal of ScaSpa is to increase type safety and reduce the overall complexity
of working with semantic data, by providing an advanced integration in Scala. Here
we compare ScaSpa with banana-rdf [3], a state-of-the-art Scala library for working
with semantic data. The library provides a common interface for its own Scala based
back-end (Plantain), as well as support for working with popular Java libraries such
as Jena [11]. In order to compare ScaSpa and banana-rdf, we identify the following
possible failure scenarios that users have to consider when working with SPARQL
queries to a concrete knowledge base:

E-SAT Query satisfiability. Queries can be unsatisfiable, meaning that there is no
possible database instance that can answer the query. If a query is parameterized
(e.g., if arguments are spliced into the query), they must be considered as well, to
ensure the query remains satisfiable for all possible arguments. Since unsatisfiable
queries are always empty, they are meaningless to compute and easily confused
with satisfiable queries, that happen to be empty (see also E-EMPTY).

E-EMPTY Empty queries. Queries might be empty, even when satisfiable. This occurs,
whenever some A-Box data is not explicitly known or simply doesn’t exist (e.g.,
an organization is allowed to have sub-organization, but a particular one might
not have any). Empty query results do not constitute an error by themselves, but
access to them has to consider the possibility of failure.

E-SUB Concept subtyping. Usage of values in a context (T-Box concept), that is not in-
tended by the programmer, e.g., when applying functions to arguments or returning
results from functions.

E-ACCESS Property access. Access on properties (via role projections) that are not
known to exist for a concept.

E-SYNTAX Query syntax. Queries can be syntactically invalid, leading to rejection by
the triple store and subsequently runtime errors, if not detected at compile time.

In this comparison, we observe how both frameworks aid a user in dealing with these
scenarios. As a running example, consider a management application for a university.
Such a program may necessitate a function researchGroups that, given an Organization,
lists all ResearchGroups that are its direct sub-organizations. This function can be
implemented using a simple SPARQL query, splicing in the given organization. Listing 5
shows both a possible implementation of this function using banana-rdf (1-11) and
ScaSpa (13-20).

banana-rdf approach The banana-rdf implementation of this scenario defines a
function researchGroups : Rdf#URI → Try[Rdf#Solutions], where the argument is
represented by a general type (URI), as is the result (Solutions). Both, when working
with the queries result as well as when calling the researchGroups function, type
safety regarding the concepts in the ontology is not ensured (not E-SUB). The SPARQL
query for this task is rather simple (lines 5-8) and takes one argument. It has to be
constructed as a String value and is parsed at runtime. As a result, syntax errors

13:16

Philipp Seifer, Martin Leinberger, Ralf Lämmel, and Steffen Staab

Listing 5 ScaSpa and banana-rdf implementations of the researchGroups function.
1 // banana-rdf
2 def researchGroups(org: Rdf#URI): Try[Rdf#Solutions] = for {
3 q <- parseSelect(
4 s"""
5 PREFIX : <http://swat.cse.lehigh.edu/onto/univ-bench.owl#>
6 SELECT ?org WHERE {
7 ?org a :ResearchGroup .
8 ?org :subOrganizationOf <$org>
9 }""")
10 r <- sparql.executeSelect(q)
11 } yield r
12
13 // ScaSpa
14 def researchGroups(org: `:Organization`): List[`:ResearchGroup`] =
15 sparql"""
16 SELECT ?rq WHERE {
17 ?rq a :ResearchGroup .
18 ?rq :subOrganizationOf $org.
19 }
20 """

will cause runtime failures and have to be dealt with accordingly (not E-SYNTAX).
We choose Try inside a for comprehension, since it is arguably more elegant than
try-catch expressions. Neither the spliced-in argument (org) nor the query itself
are checked for their satisfiability (not E-SAT): While the query can be empty for
organizations without any (known) sub-organizations (not E-EMPTY), this result
can therefore not be distinguished from queries which are in fact unsatisfiable to
begin with. Worse, since researchGroups can be applied to an arbitrary URI, such
a failure is not necessarily caused locally (or consistently) by an incorrect query. It
might instead only sometimes occur, depending on the specific URI supplied.

ScaSpa approach ScaSpa allows the definition of a function researchGroups :
Organization→ List[ResearchGroup], which contains the same, simple SPARQL query
with one argument used in the banana-rdf solution. Query validation ensures (at
compile time) that the query is both syntactically correct (E-SYNTAX) and satisfiable
(E-SAT). The types Organization and ResearchGroup directly represent the concept
expressions as defined by the axioms of the ontology (in this case the axioms of
Figure 1). This guarantees that the function can only be applied to values which
are a subtype of Organization as, given the functions specification, intended by the
developer (E-SUB). As an added benefit, the type annotations provide a form of
documentation, that is guaranteed to remain consistent with the implementation.
The type of this argument is considered when checking the queries satisfiability as
well. The function is guaranteed to return a list of ResearchGroups, which can only
be empty, if the A-Box happens to not include any sub-organizations of the given
organization, that are research groups (not E-EMPTY).

13:17

Semantic Query Integration With Reason

Listing 6 ScaSpa and banana-rdf implementations of the supervises function.
1 // banana-rdf
2 def supervises(chair: Rdf#URI): Try[Rdf#Solutions] = for {
3 q <- parseSelect(
4 s"""
5 PREFIX : <http://swat.cse.lehigh.edu/onto/univ-bench.owl#>
6 SELECT ?org WHERE {
7 <$chair> :headOf ?org
8 }""");
9 deps <- sparql.executeSelect(q);
10 depit <- Try(deps.iterator.next());
11 dep <- depit("?org");
12 uridep <- dep.as[Rdf#URI];
13 r <- researchGroups(uridep)
14 } yield r
15
16 // ScaSpa
17 def supervises(chair: `:Chair`): List[`:ResearchGroup`] = {
18 val deps = chair.`:headOf`
19 if (deps.nonEmpty) researchGroups(deps.head)
20 else Nil
21 }

As a second example, the management application is to be extended by adding a
function to determine all research groups subordinate to some Chair. In addition, we
may want to reuse the researchGroups function defined earlier. Listing 6 includes
implementations of this function, called supervises, using again banana-rdf (1-14)
and ScaSpa (16-21).

banana-rdf approach The banana-rdf implementation of supervises has the
same signature as the previously defined function researchGroups and is similarly
structured. It relies on a SPARQL query, which is again constructed and parsed at
runtime (not E-SYNTAX), not validated (not E-SAT) and then executed. As a next step,
the results are accessed: Since query execution returns a general solution mapping,
the organization has to be extracted and cast to the appropriate type, involving
multiple operations that can fail at runtime (not E-SUB). This includes handling the
possibility of an empty solution (not E-EMPTY). Finally researchGroups is called,
again without the possibility to perform type checks on either its argument or result
(not E-SUB), the latter of which is then returned.

ScaSpa approach Similar to the first example, ScaSpa allows for the definition of a
function with the precise signature supervises : Chair→ List[ResearchGroup]. Since
we first need to obtain the organization the given chair is head of, we query for the role
headOf on the argument chair, using role projection. If chairs were not known to be

13:18

Philipp Seifer, Martin Leinberger, Ralf Lämmel, and Steffen Staab

Table 1 Summary of the comparison between ScaSpa and banana-rdf.

ScaSpa banana-rdf

E-SAT compile time never
E-EMPTY runtime runtime
E-SUB compile time never
E-ACCESS compile time (does not apply2)
E-SYNTAX compile time runtime

heads of something, this projection would be rejected at compile time (E-ACCESS).
Since chairs are heads of departments, the variable deps has the inferred concept
expression type Department. Therefore (and because Department is a subtype of
Organization) we can simply call the previously defined function researchGroups to
obtain the research groups of the department our chair is the head of (E-SUB). Since
the particular department might not be explicitly known (i.e., an anonymous object),
we first have to check whether any departments were returned (not E-EMPTY). Finally,
the return type of researchGroups is a subtype of (in fact, equal to) the declared
return type of supervises (E-SUB).

Conclusion In both scenarios (E-SAT) and (E-SUB), errors are statically avoided
at compile time by the ScaSpa compiler. While banana-rdf provides some types
on the meta-level (such as Rdf#URI and Rdf#Solutions), it does not aid in the
detection of errors in the aforementioned dimensions at all. Access via role projections
(E-ACCESS) is also statically checked in ScaSpa, though banana-rdf does not include
a comparable feature. Syntax errors in SPARQL queries can be detected in both
frameworks. However, while ScaSpa rejects invalid SPARQL queries at compile time,
queries in banana-rdf are constructed and parsed exclusively at runtime, causing
runtime failures for malformed queries, which have to be explicitly handled by the user.
Finally, a user may have to deal with empty queries (E-EMPTY) in either framework.
However, in the case of ScaSpa, users can at least be certain that empty results do
not occur due to unsatisfiability of queries. In summary, ScaSpa enables the static
detection of three kinds of errors related to the usage of OWL (E-SAT, E-SUB and
E-ACCESS), as well as the detection of syntax errors (E-SYNTAX) in queries (Table 1).

2 Not a feature of banana-rdf.

13:19

Semantic Query Integration With Reason

8 Related Work

DOTSpa and the ScaSpa implementation are generally related to two larger areas:
The language integration of semantic data and technologies, as well as language
extension in general.

RDF and Ontology Integration The problem of accessing and integrating RDF data
in programming languages has been recognized as a challenge in various works.
Examples for untyped frameworks include banana-rdf [3], the OWL API [24], Jena [11]
and RDF4J [44]. Such frameworks generally provide abstractions on the meta-level,
for example in Jena with Java classes such OntClass to represent OWL or RDFS
classes. While this reflection-like approach might be suitable for developing ontology
based tools, it is lacking when working with concrete ontologies [21]. In particular,
any correctness of the program related to the data is left completely in the hand of
the programmer.

Approaches that create mappings between ontologies and, for example, the object
model of object oriented languages, can offer at least some form of verification. Existing
mapping frameworks include ActiveRDF [38], Alibaba [52], Owl2Java [27], Jastor [51],
RDFReactor [45], OntologyBeanGenerator [1], Àgogo [41] and LITEQ [31]. However,
mapping approaches come with their own set of limitations. OWL uses a mixture of
nominal and structural typing, and can contain implicit relations (such as the relation
between ResearchAssistant and Employee in Figure 1). For roles in particular, mapping
approaches struggle to represent ranges and domains meaningfully. Even in statically
typed, mapping-based frameworks, ranges are typically only dynamically checked or
use general types and rely on manual casting. The sheer number of potential types
can also lead to further problems, including significant runtime overheads. In essence,
mappings require the duplication (or approximation) of an ontology reasoner in the
target type system.
Some implementations with a deeper integration into programming languages

are available. Zhi# [39] extends the type system of C# for OWL and XSD types.
The main technical difference is that ScaSpa uses an ontology reasoner in the type
checker, allowing for the handling of inferred data. SWOBE [22] provides a typed
integration of SPARQL into Java through a precompilation phase–but is limited to
primitive data types, IRIs and a triple-based datatype. Additionally, some custom
languages exist, that use static type-checking for querying and light scripting to avoid
runtime errors [13, 14]. However, the types are again limited in these cases, as they
only consider explicitly given statements.

Language Extension Extending programming languages is a long standing topic
in various domains [16, 29, 46]. Numerous systems, such as TemplateHaskell [47],
Racket [17], SugarJ [16], LINQ [34] and Scala macros [10] provide syntactic extensions
based on AST transformations. With DOTSpa, we require an extended type checker,
so approaches relying solely on transformations of the AST are not suitable. Instead,
the conceptual framework proposed in [32] is closer to our approach. Other systems
for compiler extensions include Polyglot [36] and ExtendJ [15]. In order to stay within

13:20

Philipp Seifer, Martin Leinberger, Ralf Lämmel, and Steffen Staab

the standard Scala pipeline, rather than creating a new compiler, we rely on Scala
compiler extensions instead [48].

ScaSpa relies on an amalgamation of two type systems–one for the normal program-
ming language constructs and one for DL concept expressions. The idea of pluggable
type systems [9, 40] that allow for new type systems being layered on top of existing
ones has some similarities. Indeed, ScaSpa can be seen as an additional layer on
top of the Scala type system. However, the approach is different from ours, since we
integrate an ontology reasoner providing the type system judgements. Similarly, open
type systems such as provided by the JVM language Gosu [33] allow for the definition
of new base types, but do not involve the problem of reasoner integration.

Type providers [12, 31, 50] follow a goal similar to ScaSpa–bridging the gap between
programming language and information sources. Compared to more naive mapping
approaches, type providers are not directly limited by the size of the data source
(types can usually be created lazily, when needed) and do not necessarily cause a
runtime overhead, since provided types can be erased. Still, they are afflicted with
the other limitations the mapping approach has.
Another related direction in bridging programming language and information

source are type systems that are extended for particular kinds of data. Examples
include [6] for relational data, [37, 56] for object oriented databases and [5] for XML
data. Albeit not being language extensions, the regular expression types provided
by CDuce [4] and XDuce [26] are related to ScaSpa due to their unique form of
types. Refinement type systems, e.g., provided by F* [49], are somewhat closer
to ScaSpa, although typically focused on pre- and postconditions of functions. In
contrast, DL concept expressions are logical formulae over nominal and structural
type properties. Their defined types are subject to DL reasoning during type checking.
As such, ScaSpa is much closer to the integration of Coq in OCaml [18]. In particular
to the idea of using the theorem prover, or in our case the ontology reasoner, in the
type checking process.

9 Summary and Future Work

In this paper we presented DOTSpa, a deep integration of semantic data into practical
programming. This is achieved by providing DL concept expressions as a new form
of types and via the deep, typed integration of the SPARQL query language. Further,
we implement this approach as the ScaSpa extension for Scala. This implementation
is based on a staged parsing approach, type judgements provided by an ontology
reasoner to the type system, as well as type erasure. We also qualitatively compared
our approach with a state-of-the-art Scala library.
Our work can be extended in several directions. Strictly distinguishing between

the ontology reasoner at compile time and the triple store at runtime ensures a good
runtime performance of match-expressions on concept expressions. As mentioned
before, it introduces an overestimation when used in combination with negation. We
plan to investigate into performant ways of combining the ontology reasoner and
triple store for cases in which negation is involved. Another technical limitation we

13:21

Semantic Query Integration With Reason

already mentioned is ad hoc polymorphism. As we erase type information, standard
ad hoc polymorphism, such as the method overloading mechanisms provided by Scala,
do not work. We plan to investigate possible solutions to this.
As of now, ScaSpa does not provide any support for tooling beyond compilation.

Code completion and IDE support are of high interest to us. In particular, code
completion on DL concept expressions and SPARQL queries would be useful. Support
for tooling opens up another direction of future work: An evaluation using user studies,
in order to evaluate the impact of features provided by ScaSpa on real users.

Acknowledgements The authors gratefully acknowledge the financial support of
project LISeQ (LA 2672/1-1) by the German Research Foundation (DFG).

References

[1] Chris van Aart. OntologyBeanGenerator. https://protegewiki.stanford.edu/wiki/
OntologyBeanGenerator. Dec. 2007. (Visited on 2018-09-27).

[2] Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki.
“The Essence of Dependent Object Types”. In: A List of Successes That Can
Change the World - Essays Dedicated to Philip Wadler on the Occasion of His 60th
Birthday. Edited by Sam Lindley, Conor McBride, Philip W. Trinder, and Donald
Sannella. Volume 9600. Lecture Notes in Computer Science. Springer, 2016,
pages 249–272. isbn: 978-3-319-30935-4. doi: 10.1007/978-3-319-30936-1_14.

[3] banana-rdf. banana-rdf. https://github.com/banana-rdf/banana-rdf. (Visited
on 2018-09-27).

[4] Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. “CDuce: an XML-
centric general-purpose language”. In: SIGPLAN Notices 38.9 (2003), pages 51–
63. doi: 10.1145/944746.944711.

[5] Gavin M. Bierman, Erik Meijer, and Wolfram Schulte. “The Essence of Data
Access in Comega”. In: ECOOP 2005 - Object-Oriented Programming, 19th Euro-
pean Conference, Glasgow, UK, July 25-29, 2005, Proceedings. Edited by Andrew
P. Black. Volume 3586. Lecture Notes in Computer Science. Springer, 2005,
pages 287–311. isbn: 3-540-27992-X. doi: 10.1007/11531142_13.

[6] Gavin M. Bierman and Alisdair Stuart Wren. “First-Class Relationships in an
Object-Oriented Language”. In: ECOOP 2005 - Object-Oriented Programming,
19th European Conference, Glasgow, UK, July 25-29, 2005, Proceedings. Edited by
Andrew P. Black. Volume 3586. Lecture Notes in Computer Science. Springer,
2005, pages 262–286. isbn: 3-540-27992-X. doi: 10.1007/11531142_12.

[7] Andrew P. Black, editor. ECOOP 2005 - Object-Oriented Programming, 19th
European Conference, Glasgow, UK, July 25-29, 2005, Proceedings. Volume 3586.
Lecture Notes in Computer Science. Springer, 2005. isbn: 3-540-27992-X. doi:
10.1007/11531142.

13:22

https://protegewiki.stanford.edu/wiki/OntologyBeanGenerator
https://protegewiki.stanford.edu/wiki/OntologyBeanGenerator
https://doi.org/10.1007/978-3-319-30936-1_14
https://github.com/banana-rdf/banana-rdf
https://doi.org/10.1145/944746.944711
https://doi.org/10.1007/11531142_13
https://doi.org/10.1007/11531142_12
https://doi.org/10.1007/11531142

Philipp Seifer, Martin Leinberger, Ralf Lämmel, and Steffen Staab

[8] Olivier Bodenreider, Barry Smith, Anand Kumar, and Anita Burgun. “Inves-
tigating subsumption in SNOMED CT: An exploration into large description
logic-based biomedical terminologies”. In: Artificial Intelligence in Medicine 39.3
(2007), pages 183–195. doi: 10.1016/j.artmed.2006.12.003.

[9] Gilad Bracha. “Pluggable Type Systems”. In: OOPSLA Workshop on Revival of
Dynamic Languages. 2004.

[10] Eugene Burmako. “Scala macros: let our powers combine!: on how rich syntax
and static types work with metaprogramming”. In: Proceedings of the 4th
Workshop on Scala, SCALA@ECOOP 2013, Montpellier, France, July 2, 2013. ACM,
2013, 3:1–3:10. isbn: 978-1-4503-2064-1. doi: 10.1145/2489837.2489840.

[11] Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy Seaborne,
and Kevin Wilkinson. “Jena: implementing the semantic web recommenda-
tions”. In: Proceedings of the 13th international conference on World Wide Web -
Alternate Track Papers & Posters, WWW 2004, New York, NY, USA, May 17-20,
2004. Edited by Stuart I. Feldman, Mike Uretsky, Marc Najork, and Craig E. Wills.
ACM, 2004, pages 74–83. isbn: 1-58113-912-8. doi: 10.1145/1013367.1013381.

[12] David Raymond Christiansen. “Dependent type providers”. In: Proceedings of
the 9th ACM SIGPLAN workshop on Generic programming, WGP 2013, Boston,
Massachusetts, USA, September 28, 2013. Edited by Jacques Carette and Jeremiah
Willcock. ACM, 2013, pages 25–34. isbn: 978-1-4503-2389-5. doi: 10 . 1145/
2502488.2502495.

[13] Gabriel Ciobanu, Ross Horne, and Vladimiro Sassone. “Descriptive Types for
Linked Data Resources”. In: Perspectives of System Informatics - 9th Interna-
tional Ershov Informatics Conference, PSI 2014, St. Petersburg, Russia, June 24-27,
2014. Revised Selected Papers. Edited by Andrei Voronkov and Irina Virbitskaite.
Volume 8974. Lecture Notes in Computer Science. Springer, 2014, pages 1–25.
isbn: 978-3-662-46822-7. doi: 10.1007/978-3-662-46823-4_1.

[14] Gabriel Ciobanu, Ross Horne, and Vladimiro Sassone. “Minimal type inference
for Linked Data consumers”. In: Journal of Logical and Algebraic Methods in
Programming 84.4 (2015), pages 485–504. doi: 10.1016/j.jlamp.2014.12.005.

[15] Torbjörn Ekman and Görel Hedin. “The jastadd extensible java compiler”. In:
Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2007, October
21-25, 2007, Montreal, Quebec, Canada. Edited by Richard P. Gabriel, David F.
Bacon, Cristina Videira Lopes, and Guy L. Steele Jr. ACM, 2007, pages 1–18.
isbn: 978-1-59593-786-5. doi: 10.1145/1297027.1297029.

[16] Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Ostermann.
“SugarJ: library-based syntactic language extensibility”. In: Proceedings of the
26th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2011, part of SPLASH 2011, Portland, OR,
USA, October 22 - 27, 2011. Edited by Cristina Videira Lopes and Kathleen Fisher.
ACM, 2011, pages 391–406. isbn: 978-1-4503-0940-0. doi: 10.1145/2048066.
2048099.

13:23

https://doi.org/10.1016/j.artmed.2006.12.003
https://doi.org/10.1145/2489837.2489840
https://doi.org/10.1145/1013367.1013381
https://doi.org/10.1145/2502488.2502495
https://doi.org/10.1145/2502488.2502495
https://doi.org/10.1007/978-3-662-46823-4_1
https://doi.org/10.1016/j.jlamp.2014.12.005
https://doi.org/10.1145/1297027.1297029
https://doi.org/10.1145/2048066.2048099
https://doi.org/10.1145/2048066.2048099

Semantic Query Integration With Reason

[17] Matthew Flatt. “Creating languages in Racket”. In: Communications of the ACM
55.1 (2012), pages 48–56. doi: 10.1145/2063176.2063195.

[18] Seth Fogarty, Emir Pasalic, Jeremy G. Siek, and Walid Taha. “Concoqtion:
indexed types now!” In: Proceedings of the 2007 ACM SIGPLAN Workshop on Par-
tial Evaluation and Semantics-based Program Manipulation, 2007, Nice, France,
January 15-16, 2007. Edited by G. Ramalingam and Eelco Visser. ACM, 2007,
pages 112–121. isbn: 978-1-59593-620-2. doi: 10.1145/1244381.1244400.

[19] Neal Glew. “Type Dispatch for Named Hierarchical Types”. In: Proceedings of the
fourth ACM SIGPLAN International Conference on Functional Programming (ICFP
’99), Paris, France, September 27-29, 1999. Edited by Didier Rémy and Peter Lee.
ACM, 1999, pages 172–182. isbn: 1-58113-111-9. doi: 10.1145/317636.317797.

[20] Birte Glimm, Chimezie Ogbuji, Sandro Hawke, Ivan Herman, Bijan Persia, Axel
Polleres, and Andy Seaborne. SPARQL 1.1 Entailment Regimes. W3C Rec. https://
www.w3.org/TR/2013/REC-sparql11-entailment-20130321/#OWLRDFBSEntRegime.
Mar. 2013. (Visited on 2018-07-07).

[21] Neil M. Goldman. “Ontology-Oriented Programming: Static Typing for the
Inconsistent Programmer”. In: The Semantic Web - ISWC 2003, Second Interna-
tional Semantic Web Conference, Sanibel Island, FL, USA, October 20-23, 2003,
Proceedings. Edited by Dieter Fensel, Katia P. Sycara, and John Mylopoulos.
Volume 2870. Lecture Notes in Computer Science. Springer, 2003, pages 850–
865. isbn: 3-540-20362-1. doi: 10.1007/978-3-540-39718-2_54.

[22] Sven Groppe, Jana Neumann, and Volker Linnemann. “SWOBE - embedding the
semantic web languages RDF, SPARQL and SPARUL into java for guaranteeing
type safety, for checking the satisfiability of queries and for the determination
of query result types”. In: Proceedings of the 2009 ACM Symposium on Applied
Computing (SAC), Honolulu, Hawaii, USA, March 9-12, 2009. Edited by Sung Y.
Shin and Sascha Ossowski. ACM, 2009, pages 1239–1246. isbn: 978-1-60558-
166-8. doi: 10.1145/1529282.1529561.

[23] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. “LUBM: A benchmark for OWL
knowledge base systems”. In: Journal of Web Semantics 3.2-3 (2005), pages 158–
182. doi: 10.1016/j.websem.2005.06.005.

[24] Matthew Horridge and Sean Bechhofer. “The OWL API: A Java API for OWL
ontologies”. In: Semantic Web 2.1 (2011), pages 11–21. doi: 10.3233/SW-2011-0025.

[25] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. “From SHIQ
and RDF to OWL: the making of a Web Ontology Language”. In: Journal of Web
Semantics 1.1 (2003), pages 7–26. doi: 10.1016/j.websem.2003.07.001.

[26] Haruo Hosoya and Benjamin C. Pierce. “XDuce: A statically typed XML process-
ing language”. In: ACM Transactions on Internet Technology (TOIT) 3.2 (2003),
pages 117–148. doi: 10.1145/767193.767195.

13:24

https://doi.org/10.1145/2063176.2063195
https://doi.org/10.1145/1244381.1244400
https://doi.org/10.1145/317636.317797
https://www.w3.org/TR/2013/REC-sparql11-entailment-20130321/#OWLRDFBSEntRegime
https://www.w3.org/TR/2013/REC-sparql11-entailment-20130321/#OWLRDFBSEntRegime
https://doi.org/10.1007/978-3-540-39718-2_54
https://doi.org/10.1145/1529282.1529561
https://doi.org/10.1016/j.websem.2005.06.005
https://doi.org/10.3233/SW-2011-0025
https://doi.org/10.1016/j.websem.2003.07.001
https://doi.org/10.1145/767193.767195

Philipp Seifer, Martin Leinberger, Ralf Lämmel, and Steffen Staab

[27] Aditya Kalyanpur, Daniel Jiménez Pastor, Steve Battle, and Julian A. Pad-
get. “Automatic Mapping of OWL Ontologies into Java”. In: Proceedings of
the Sixteenth International Conference on Software Engineering & Knowledge
Engineering (SEKE’2004), Banff, Alberta, Canada, June 20-24, 2004. Edited by
Frank Maurer and Günther Ruhe. 2004, pages 98–103. isbn: 1-891706-14-4.

[28] Ilianna Kollia, Birte Glimm, and Ian Horrocks. “SPARQL Query Answering
over OWL Ontologies”. In: The Semantic Web: Research and Applications - 8th
Extended Semantic Web Conference, ESWC 2011, Heraklion, Crete, Greece, May 29-
June 2, 2011, Proceedings, Part I. Edited by Grigoris Antoniou, Marko Grobelnik,
Elena Paslaru Bontas Simperl, Bijan Parsia, Dimitris Plexousakis, Pieter De
Leenheer, and Jeff Z. Pan. Volume 6643. Lecture Notes in Computer Science.
Springer, 2011, pages 382–396. isbn: 978-3-642-21033-4. doi: 10.1007/978-3-642-
21034-1_26.

[29] Ralf Lämmel. Software Languages: Syntax, Semantics, and Metaprogramming.
Springer, 2018. isbn: 978-3-319-90798-7. doi: 10.1007/978-3-319-90800-7.

[30] Martin Leinberger, Ralf Lämmel, and Steffen Staab. “The Essence of Functional
Programming on Semantic Data”. In: Programming Languages and Systems
- 26th European Symposium on Programming, ESOP 2017, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2017,
Uppsala, Sweden, April 22-29, 2017, Proceedings. Edited by Hongseok Yang.
Volume 10201. Lecture Notes in Computer Science. Springer, 2017, pages 750–
776. isbn: 978-3-662-54433-4. doi: 10.1007/978-3-662-54434-1_28.

[31] Martin Leinberger, Stefan Scheglmann, Ralf Lämmel, Steffen Staab, Matthias
Thimm, and Evelyne Viegas. “Semantic Web Application Development with
LITEQ”. In: The Semantic Web - ISWC 2014 - 13th International Semantic Web
Conference, Riva del Garda, Italy, October 19-23, 2014. Proceedings, Part II. Edited
by Peter Mika, Tania Tudorache, Abraham Bernstein, Chris Welty, Craig A.
Knoblock, Denny Vrandecic, Paul T. Groth, Natasha F. Noy, Krzysztof Janowicz,
and Carole A. Goble. Volume 8797. Lecture Notes in Computer Science. Springer,
2014, pages 212–227. isbn: 978-3-319-11914-4. doi: 10.1007/978-3-319-11915-1_14.

[32] Florian Lorenzen and Sebastian Erdweg. “Sound type-dependent syntactic
language extension”. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg,
FL, USA, January 20 - 22, 2016. Edited by Rastislav Bodík and Rupak Majumdar.
ACM, 2016, pages 204–216. isbn: 978-1-4503-3549-2. doi: 10 .1145/2837614 .
2837644. url: http://dl.acm.org/citation.cfm?id=2837614.

[33] Scott McKinney. Gosu’s Secret Sauce: The Open Type System. http://guidewiredev
elopment.wordpress.com/2010/11/18/gosus-secret-sauce-the-open-type-system.
Nov. 2010. (Visited on 2018-04-07).

[34] Erik Meijer, Brian Beckman, and Gavin M. Bierman. “LINQ: reconciling object,
relations and XML in the .NET framework”. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, Chicago, Illinois, USA, June 27-

13:25

https://doi.org/10.1007/978-3-642-21034-1_26
https://doi.org/10.1007/978-3-642-21034-1_26
https://doi.org/10.1007/978-3-319-90800-7
https://doi.org/10.1007/978-3-662-54434-1_28
https://doi.org/10.1007/978-3-319-11915-1_14
https://doi.org/10.1145/2837614.2837644
https://doi.org/10.1145/2837614.2837644
http://dl.acm.org/citation.cfm?id=2837614
http://guidewiredevelopment.wordpress.com/2010/11/18/gosus-secret-sauce-the-open-type-system
http://guidewiredevelopment.wordpress.com/2010/11/18/gosus-secret-sauce-the-open-type-system

Semantic Query Integration With Reason

29, 2006. Edited by Surajit Chaudhuri, Vagelis Hristidis, and Neoklis Polyzotis.
ACM, 2006, page 706. isbn: 1-59593-256-9. doi: 10.1145/1142473.1142552.

[35] Boris Motik, Bernardo Cuenca Grau, and Ulrike Sattler. “Structured objects in
owl: representation and reasoning”. In: Proceedings of the 17th International
Conference on World Wide Web, WWW 2008, Beijing, China, April 21-25, 2008.
Edited by Jinpeng Huai, Robin Chen, Hsiao-Wuen Hon, Yunhao Liu, Wei-Ying
Ma, Andrew Tomkins, and Xiaodong Zhang. ACM, 2008, pages 555–564. isbn:
978-1-60558-085-2. doi: 10.1145/1367497.1367573.

[36] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. “Polyglot:
An Extensible Compiler Framework for Java”. In: Compiler Construction, 12th
International Conference, CC 2003, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003,
Proceedings. Edited by Görel Hedin. Volume 2622. Lecture Notes in Computer
Science. Springer, 2003, pages 138–152. isbn: 3-540-00904-3. doi: 10.1007/3-
540-36579-6_11.

[37] Atsushi Ohori, Peter Buneman, and Val Tannen. “Database Programming in
Machiavelli - a Polymorphic Language with Static Type Inference”. In: Pro-
ceedings of the 1989 ACM SIGMOD International Conference on Management of
Data, Portland, Oregon, USA, May 31 - June 2, 1989. 1989, pages 46–57. doi:
10.1145/67544.66931.

[38] Eyal Oren, Renaud Delbru, Sebastian Gerke, Armin Haller, and Stefan Decker.
“ActiveRDF: object-oriented semantic web programming”. In: Proceedings of the
16th International Conference on World Wide Web, WWW 2007, Banff, Alberta,
Canada, May 8-12, 2007. Edited by Carey L. Williamson, Mary Ellen Zurko,
Peter F. Patel-Schneider, and Prashant J. Shenoy. ACM, 2007, pages 817–824.
isbn: 978-1-59593-654-7. doi: 10.1145/1242572.1242682.

[39] Alexander Paar and Denny Vrandecic. “Zhi# - OWL Aware Compilation”. In:
The Semanic Web: Research and Applications - 8th Extended Semantic Web Con-
ference, ESWC 2011, Heraklion, Crete, Greece, May 29 - June 2, 2011, Proceedings,
Part II. Edited by Grigoris Antoniou, Marko Grobelnik, Elena Paslaru Bontas
Simperl, Bijan Parsia, Dimitris Plexousakis, Pieter De Leenheer, and Jeff Z. Pan.
Volume 6644. Lecture Notes in Computer Science. Springer, 2011, pages 315–329.
isbn: 978-3-642-21063-1. doi: 10.1007/978-3-642-21064-8_22.

[40] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H. Perkins, and
Michael D. Ernst. “Practical pluggable types for java”. In: Proceedings of the
ACM/SIGSOFT International Symposium on Software Testing and Analysis, ISSTA
2008, Seattle, WA, USA, July 20-24, 2008. Edited by Barbara G. Ryder and
Andreas Zeller. ACM, 2008, pages 201–212. isbn: 978-1-60558-050-0. doi: 10.
1145/1390630.1390656.

[41] Fernando Silva Parreiras, Carsten Saathoff, Tobias Walter, Thomas Franz, and
Steffen Staab. “APIs à gogo: Automatic Generation of Ontology APIs”. In:
Proceedings of the 3rd IEEE International Conference on Semantic Computing
(ICSC 2009), 14-16 September 2009, Berkeley, CA, USA. IEEE Computer Society,

13:26

https://doi.org/10.1145/1142473.1142552
https://doi.org/10.1145/1367497.1367573
https://doi.org/10.1007/3-540-36579-6_11
https://doi.org/10.1007/3-540-36579-6_11
https://doi.org/10.1145/67544.66931
https://doi.org/10.1145/1242572.1242682
https://doi.org/10.1007/978-3-642-21064-8_22
https://doi.org/10.1145/1390630.1390656
https://doi.org/10.1145/1390630.1390656

Philipp Seifer, Martin Leinberger, Ralf Lämmel, and Steffen Staab

2009, pages 342–348. isbn: 978-0-7695-3800-6. doi: 10.1109/ICSC.2009.90. url:
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5298511.

[42] Benjamin C. Pierce. Types and programming languages. MIT Press, 2002. isbn:
978-0-262-16209-8.

[43] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF.
W3C Rec. https://www.w3.org/TR/rdf-sparql-query/. Nov. 2013. (Visited on
2018-07-07).

[44] Eclipse RDF4J. RDF4J. http://rdf4j.org/. (Visited on 2018-09-27).

[45] RDFReactor. http://semanticweb.org/wiki/RDFReactor. (Visited on 2018-09-27).

[46] Lukas Renggli. “Dynamic Language Embedding”. PhD thesis. Institut für Infor-
matik und angewandte Mathematik, Universität Bern, 2010.

[47] Tim Sheard and Simon L. Peyton Jones. “Template meta-programming for
Haskell”. In: SIGPLAN Notices 37.12 (2002), pages 60–75. doi: 10.1145/636517.
636528.

[48] Lex Spoon and Seth Tisue. Scala Compiler Plugins. https://docs.scala-lang.org/
overviews/plugins/index.html. 2018. (Visited on 2018-04-07).

[49] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhar-
gavan, and Jean Yang. “Secure distributed programming with value-dependent
types”. In: Proceeding of the 16th ACM SIGPLAN international conference on
Functional Programming, ICFP 2011, Tokyo, Japan, September 19-21, 2011. Edited
by Manuel M. T. Chakravarty, Zhenjiang Hu, and Olivier Danvy. ACM, 2011,
pages 266–278. isbn: 978-1-4503-0865-6. doi: 10.1145/2034773.2034811.

[50] Don Syme, Keith Battocchi, Kenji Takeda, Donna Malayeri, Jomo Fisher, Jack
Hu, Tao Liu, Brian McNamara, Daniel Quirk, Matteo Taveggia, Wonseok Chae,
Uladzimir Matsveyeu, and Tomas Petricek. F#3.0 - Strongly-Typed Language
Support for Internet-Scale Information Sources. Technical report. Sept. 2012.

[51] Ben Szekely and Joe Betz. Jastor. http://jastor.sourceforge.net/. (Visited on
2018-09-27).

[52] Sesame Development Team. Alibaba. https://bitbucket.org/openrdf/alibaba.
(Visited on 2018-09-27).

[53] Stardog Union. Stardog. https://www.stardog.com. (Visited on 2018-09-27).

[54] Denny Vrandecic and Markus Krötzsch. “Wikidata: a free collaborative knowl-
edgebase”. In: Communications of the ACM 57.10 (2014), pages 78–85. doi:
10.1145/2629489.

[55] W3C. RDF 1.1 Concepts and Abstract Syntax. https://www.w3.org/TR/rdf11-
concepts/. Feb. 2014. (Visited on 2018-07-07).

[56] Limsoon Wong. “Kleisli, a Functional Query System”. In: Journal of Functional
Programming 10.1 (Jan. 2000), pages 19–56. doi: 10.1017/S0956796899003585.

13:27

https://doi.org/10.1109/ICSC.2009.90
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5298511
https://www.w3.org/TR/rdf-sparql-query/
http://rdf4j.org/
http://semanticweb.org/wiki/RDFReactor
https://doi.org/10.1145/636517.636528
https://doi.org/10.1145/636517.636528
https://docs.scala-lang.org/overviews/plugins/index.html
https://docs.scala-lang.org/overviews/plugins/index.html
https://doi.org/10.1145/2034773.2034811
http://jastor.sourceforge.net/
https://bitbucket.org/openrdf/alibaba
https://www.stardog.com
https://doi.org/10.1145/2629489
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
https://doi.org/10.1017/S0956796899003585

Semantic Query Integration With Reason

About the authors

Philipp Seifer is a PhD student at the University of Koblenz-
Landau. This work is in part based on his master’s thesis, with
which he graduated from the same university in 2018. He currently
conducts his research on the type-safe integration of semantic
query languages with programming languages. You can contact
him at pseifer@uni-koblenz.de.

Martin Leinberger is a PhD student at the Institute for Web Sci-
ence and Technologies at the University of Koblenz Landau. He
got his masters in 2013 at the same university, and is currently
conducting his research over the typed integration of semantic
web technologies into programming languages. You can contact
him at mleinberger@uni-koblenz.de.

Ralf Lämmel is Professor of Computer Science at the University of
Koblenz-Landau in Germany and Software Engineer at Facebook
in London. His research and teaching interests include software
language engineering, software reverse engineering, software re-
engineering, mining software repositories, functional program-
ming, grammar-based and model-based techniques, and, more
recently, megamodeling. He is author of the textbook “Software
Languages: Syntax, Semantics, and Metaprogramming” (Springer
2018). You can contact him at laemmel@uni-koblenz.de.

Steffen Staab is professor at Universität Koblenz-Landau, Ger-
many, and heads its Institute for Web Science and Technologies
(WeST). Steffen also holds a chair for Web and Computer Science
at University of Southampton, UK, and he is an associate member
of L3S research center at Leibniz Universität Hannover, Germany.
He is a fellow of the European Association of Artificial Intelligence
and has been awarded the Academy Prize of Rhineland-Palatinate.
His interests cover all aspects of semantics, as it concerns data,
text, modeling, programming, or user interaction. You can contact
him at staab@uni-koblenz.de.

13:28

mailto:pseifer@uni-koblenz.de
mailto:mleinberger@uni-koblenz.de
mailto:laemmel@uni-koblenz.de
mailto:staab@uni-koblenz.de

	1 Introduction
	2 Background
	3 Type Inference for SPARQL Queries
	4 Syntax and Semantics of DOTSpa
	5 Instantiating the DOTSpa Framework
	6 Architecture and Implementation of ScaSpa
	7 Comparison with a State-of-the-Art Framework
	8 Related Work
	9 Summary and Future Work
	About the authors

