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Abstract Context: The term reactivity is popular in two areas of research: programming languages and
distributed systems. On one hand, reactive programming is a paradigm which provides programmers with
the means to declaratively write event-driven applications. On the other hand, reactive distributed systems
handle client requests in a timely fashion regardless of load or failures.

Inquiry: Reactive programming languages and frameworks tailored to the implementation of distributed
systems have previously been proposed. However, we argue that these approaches are ill fit to implement
reactive distributed systems.

Approach:We analyse state of the art runtimes for distributed reactive programming and identify two key
issues with regards to reactive distributed systems. They rely on single, central points of coordination and/or
assume a lack of partial failures in the systems they support.

Knowledge: Based on our analysis we propose a novel runtime for distributed reactive programming
languages and frameworks. This runtime supports reactive distributed systems by design.

Grounding: We implement a proof of concept framework for reactive distributed systems in JavaScript
which builds atop our runtime. Using this framework we implement a case study application which highlights
the applicability of our approach. Moreover, we benchmark our runtime against a similar approach in order
to showcase its runtime properties and we prove its correctness.

Importance: This work aims to bridge the gap between two kinds of reactivity: reactive distributed sys-
tems and distributed reactive programming. Current distributed reactive programming approaches do not
support reactive distributed systems. Our runtime is the first to bridge this reactivity gap: it allows for reac-
tive distributed systems to be implemented using distributed reactive programming.
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1 Introduction

The term reactive has been used to describe properties of both programming languages
and systems. A programming language is reactive if it provides the constructs for
programmers to declaratively implement event-driven applications. On the other hand,
a system is reactive if it can respond to inputs in a timely fashion. For single-threaded
non-distributed programs these definitions largely overlap. However, we observe that
when moving to a distributed setting these definitions are different. We argue that the
mismatch between these definitions has led to a situation where distributed reactive
programming languages are ill fit to implement reactive distributed systems.

Reactive Distributed systems Reactivity in terms of distributed systems relates to a
set of design principles which aid programmers in developing responsive systems [5,
6, 16]. In other words, systems which respond to their clients’ requests in a "timely
fashion" regardless of load or partial failures in the system. Microservices [18] are an
example of such systems. The following three requirements are crucial to the reactivity
of a distributed system [5, 6, 16]:
Resilience Failures are isolated to the concerned distributed component. This allows

component failure to minimally impact the system as a whole. Client requests are
still partially handled by the remaining components. Moreover, isolated failures
facilitate the recovery of failed components.

Elasticity The resources attributed to a particular component are dynamically in-
creased or decreased depending on the load. Decentralised designs are favoured
over centralised ones in order to replicate components as workload increases. This
allows the system to handle client requests at the same pace regardless of variations
in load.

Asynchrony Communication between components happens through asynchronous
messaging. This decouples the components in time and space, which facilitates
concurrency and distribution respectively.

Reactive Programming Languages Reactivity in terms of programming languages
relates to the reactive programming (RP) paradigm [2]. In a nutshell, this paradigm
allows programmers to elegantly write event-driven applications without resorting
to callbacks or the observer-pattern (which are known to negatively impact code
quality and program comprehension [28]). It does so by representing time-varying
values (e.g. mouse position, system time, etc.) as first-class citizens called signals.
Programmers declaratively combine signals using signal combinators, otherwise known
as lifted functions. The language runtime tracks dependencies between signals in
the form of a dependency graph. A propagation algorithm ensures that changes to
a signal propagate through this graph, thereby updating the application. Using RP,
one can implement each individual component of a distributed system (e.g. a single
microservice).
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The Distributed Reactivity Mismatch Distributed reactive programming (DRP) [8, 12,
27] extends the reactive programming paradigm to distributed systems: programmers
declaratively specify dependencies between signals residing on distributed nodes in
a network, which form a distributed dependency graph. In theory, this would allow
programmers to declaratively implement the flow of data across components in a
distributed system (e.g. how microservices coordinate with each other). However,
current propagation algorithms for DRP are unfit to propagate changes in reactive
distributed systems. Concretely, these algorithms use a central coordinator to propa-
gate changes through the distributed dependency graph. They are therefore unable
to meet the elasticity requirement (i.e. the centralised coordinator forms a bottleneck
which negatively impacts scalability). Moreover, these algorithms are unable to han-
dle partial failures in the distributed dependency graph. Instead, failures are total
and affect the entire system. They are therefore also unable to meet the resilience
requirement. To summarise: programmers cannot use current distributed reactive
programming languages to implement reactive distributed systems.
This paper presents a novel propagation algorithm for DRP languages called QPROP.

QPROP allows for the development of distributed reactive systems within the reactive
programming paradigm. Such distributed systems cannot guarantee strong consistency.
QPROP provides eventual consistency instead: when the system stops updating all
nodes in the network eventually have a consistent view on the system’s state. This
paper provides the following contributions:

The specification of a novel elastic, resilient and asynchronous propagation algo-
rithm called QPROP.
An implementation of a use case using a microservice framework in JavaScript
build atop QPROP.
A set of benchmark results, showing that QPROP outperforms state of the art DRP
algorithms.
A series of proofs demonstrating QPROP’s correctness.
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2 Current Reactive Languages and their Lack of Reactivity

This section discusses the shortcomings of current distributed reactive programming
approaches. To this end we use a motivating example which stems from our coop-
eration with Emixis, a fleet management company, in the context of an industrial
collaboration. Emixis’ core business is to equip their customers’ fleet of vehicles with
tracking beacons and to provide software to analyse the data (e.g. GPS coordinates,
current speed, etc.) uploaded by the beacons to a central server. The server is im-
plemented using a microservice architecture, as shown in Figure 1. Concretely, these
microservices have the following tasks:
Data Access service Vehicles compress their sensory data before uploading it to the

server. The data access service decompresses the uploaded data and subsequently
persists the decompressed data.

Geo service The vehicle data contains raw GPS coordinates. It is the geo service’s task
to reverse geo code these coordinates into human-readable addresses.

Driving service Parts of the vehicle data (e.g. speed, g-forces, etc.) are used to calculate
eco-driving statistics by the driving service. Moreover, the service uses a vehicle’s
speed and its reverse geo-coded address in order to detect speed limit violations by
the driver.

Con�g Service Emixis’ customers are able to configure certain aspects of their dash-
board (e.g. icons used to represent vehicles, etc.). Customers specify their configu-
rations by posting them to the config service.

Dashboard service The reverse geo-coded addresses, driving statistics and customer
configurations are combined by the dashboard service into a single view. This view
is sent to the owner of the fleet of vehicles.

Using non-distributed reactive programming (e.g. [9, 21]) we can implement the
individual microservices in our example. For instance, the data access service is im-
plemented as follows. Vehicle data is represented as a signal, each time this signal
changes the data is decompressed and persisted. We therefore use two lifted functions:
one which decompresses the vehicle’s data and one which persists the decompressed
data. Figure 2 depicts the dependency graph constructed by the reactive runtime for
the data access service. The runtime’s propagation algorithm traverses the dependency
graph in topological order as soon as a source signal changes. The algorithm updates
each signal using its predecessors’ values during this traversal. In our example, when-
ever the vehicle data signal changes, the algorithm updates the decompress signal
with the new vehicle data. Subsequently, it updates the persist signal with the new
decompressed data.

2.1 Distributed Propagation Algorithms and their Impact on Reactivity

Distributed reactive programming [8, 20, 27] applies the concepts of reactive program-
ming to distributed systems. In other words, programmers are able to apply lifted
functions on signals which reside on physically distributed machines. For example,
using DRP the geo service applies a lifted reverse geo coding function on the data
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access service’s decompress signal. Whenever the decompress signal changes (i.e. as
a result of a change in a vehicle’s data), the reverse geo coding function is invoked
automatically (we say that the geo service updates whenever the decompress signal
changes).
As explained in the previous section each microservice contains a dependency graph

which represents its internal logic. However, using DRP the services themselves also
form a distributed dependency graph. For example, Figure 1 shows the distributed
dependency graph for our fleet management application. Whenever a vehicle’s data
changes, this updates the data access service which propagates the decompressed
data to the geo and driving services. Subsequently, both services update before they
propagate their new values further downstream to the dashboard service.
The topology of a dependency graph can dynamically change during the execution

of a reactive program. These dynamic graph changes are used to implement a number
of features in reactive programming languages and frameworks such as conditional
propagation [9] and higher-order reactive values [19]. In the context of distributed
reactive programming, a dynamic dependency graph is essential to allow components
to connect to a running system (e.g. adding a microservice to our fleet management
application while it is already online). We distinguish between two kinds of dynamic
changes: involuntary temporal changes and intentional topological changes. The
former occurs whenever a distributed component temporarily leaves the network (e.g.
due to a disconnection). The latter occurs whenever a new distributed component
joins the network or when an existing component chooses to leave the network.
As is the case for non-distributed dependency graphs, a propagation algorithm must

perform a traversal in topological order of the distributed dependency graph to update
all signals. To showcase the importance of this traversal order, consider the following
hypothetical scenario. A vehicle sends its updated data to the data access service,
which subsequently decompresses and persists this data. Assume that the geo and
the dashboard services update before the driving service. The operator looking at the
rendered dashboard might witness a faulty speed limit violation because the vehicle’s
position in the dashboard was updated before its driving statistics. This phenomenon
is called a glitch [9]. A common strategy employed by non-distributed reactive pro-
gramming languages to avoid glitches is to topologically sort the dependency graph
before propagating values through it [9, 21].
However, this non-distributed strategy does not trivially scale towards reactive

distributed systems. A single central coordinator would be required to explicitly sort
the distributed dependency graph and to determine when each node may update.
This approach is not resilient because the central coordinator constitutes a single
point of failure in our system. Moreover, this central coordinator forms a performance
bottleneck which goes against the elasticity requirement.
We distinguish two kinds of distributed reactive languages and frameworks: those

which produce reactive but glitched distributed systems [8, 30] and those which pro-
duce glitch-free but unreactive distributed systems [3, 12]. An example of the former
is AmbientTalk/R [8], which extends the actor-based AmbientTalk language with con-
structs for reactive programming. It targets peer-to-peer applications and is therefore
decentralised by design. As a result it produces elastic systems, given that resources
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attributed to specific actors can grow and shrink. Moreover, actors can fail without
hampering the system as a whole. Lastly, propagation of change in AmbientTalk/R
happens asynchronously. Distributed systems implemented in AmbientTalk/R are
reactive: they are elastic, resilient and asynchronous. However, AmbientTalk/R cannot
guarantee glitch freedom and can therefore not support systems such as our fleet
management application.
Distributed REScala and its SID-UP propagation algorithm [12] is the most promi-

nent example of frameworks which produce glitch-free but unreactive distributed
systems. First, SID-UP is unable to deal with failures of parts of the distributed net-
work. As a consequence, failure of a single microservice would stop the propagation of
change throughout the entire system. Systems implemented using distributed REScala
are therefore not resilient. Second, SID-UP only guarantees glitch freedom if the
source signals in an application do not update concurrently. If this is not the case a
central entity is needed to coordinate access to the source signals. This coordinator
only allows a value to propagate through the dependency graph once the previous
value has completely traversed the graph. In other words, Distributed REScala can only
support microservice systems where a single service handles all incoming requests
sequentially. Systems implemented using distributed REScala are therefore not elastic.
We discuss other approaches and frameworks in Section 8.
In this paper we present two propagation algorithms: QPROP and QPROPd. Both

algorithms ensure glitch freedom while meeting the requirements of reactive dis-
tributed systems. They differ in the kinds of dynamic graph changes they support.
QPROP only supports temporal changes while QPROPd supports both temporal and
topological changes.
Strongly consistent, non-reactive algorithms ensure that each update to a source

signal results in all of the source’s successors to update once. In contrast, QPROP and
QPROPd are eventually consistent and allow for multiple concurrent updates to source
signals to propagate through the distributed dependency graph. As a consequence,
a signal in the dependency graph might only update once as a result of two source
signals concurrently updating. However, once source signals stop updating QPROP
and QPROPd guarantee the consistency of all signals in the distributed dependency
graph.
We first discuss the implementation of our fleet management application before

detailing QPROP in Section 4 and QPROPd in Section 5.

3 A Fully-Reactive Implementation of a Distributed Reactive System

To showcase the applicability of our approach we implement a part 1 of the fleet man-
agement application using Spiders.js [23]. This web-based actor framework written in
TypeScript, a typed superset of JavaScript, provides built-in reactive programming

1 The entire implementation can be found at https://github.com/myter/ReactiveSpiders/tree/
master (last accessed 2018-12-01).
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constructs. It allows us to implement the internal logic of each individual service as
well as the system’s overall logic within the reactive programming paradigm.

3.1 Internal Service Reactivity

Listing 1 and Listing 2 provide the implementation of the data access service.

Listing 1 Defining the fleet data signal
1 class FleetData extends Signal{
2 currentLat : number
3 currentLong : number
4 currentSpeed : number
5
6 @mutator
7 actualise(lat,long,speed){
8 this.currentLat = lat
9 this.currentLong = long
10 this.currentSpeed = speed
11 }
12 }

Listing 2 The data access service’s internal
logic

1 class DataAccessService extends MicroService{
2 start(){
3 let dataSignal = this.newSignal(FleetData)
4 let decompressed this.fMap(decompress,

,→ dataSignal)
5 this.publish(decompressed)
6 this.fMap(persist,decompressed)
7 socket.on('message',(data) => {
8 dataSignal.actualise(data.lat,data.long,

,→ data.speed)
9 })
10 }
11 }
12 let monitor = new ServiceMonitor()
13 monitor.registerService(DataService)
14 //Install other services
15 monitor.deploy()

The service is implemented by extending the built-in MicroService class. All instances
of MicroService are guaranteed to run under their own Node.js instance. A service’s
start method is called as soon as the service is instantiated. The DataAccessService
accepts data packets sent by vehicles equipped with Emixis’ beacons over UDP sockets.
These packets are compressed by the vehicles, the service therefore decompresses
them. Subsequently the decompressed data is persisted to avoid data loss. This cycle
of decompressing and persisting needs to be performed each time a vehicle sends new
data.
The implementation of the DataAccessService is structured according to the three

main features of reactive programming. First, it represents time varying values as first
class values called signals. In our example we represent the data sent by vehicles using
instances of the FleetData signal class (see Listing 1 and line 3 in Listing 2). Second,
the service derives new signals from existing ones using signal combinators. Spiders.js
provides the fMap construct which has the following type signature:
(a→ b)→ Signal a→ Signal b

In other words, fMap lifts a function to be applied over signals. A lifted function is auto-
matically re-evaluated as soon as one of its arguments changes. The DataAccessService
lifts and applies two functions. The first function (i.e. decompress) decompresses the
incoming data and is applied to the instance of FleetData (see line 4). The second
function (i.e. persist) persists decompressed data, and is therefore applied to the
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signal which results from the previous lifted function application (see line 6). Lastly,
changes to signals automatically propagate through the reactive application thereby
re-evaluating lifted functions. Each time a vehicle sends new data the service triggers
this propagation of change. It does so by invoking the data signal’s annotated actualise
method (see line 8). The mutator annotation informs Spiders.js that all invocations
of the annotated method change the signal’s state and should therefore trigger a
propagation of change.
Spiders.js provides a service factory, called the service monitor, which instantiates

services. This factory provides two main methods: registerService and deploy. The
former registers a service class to be deployed (see line 13) while the later deploys all
registered services (see line 15)

3.2 External Service Reactivity

In Spiders.js a lifted function can be applied over locally or remotely created signals
(i.e. signals created by different microservices in the network). The semantics of lifted
function application are the same regardless of the locality of its arguments: as soon
as one of the arguments changes the lifted function is re-evaluated. Services publish
and subscribe to signals using Spiders.js’ topic-based publish-subscribe system. In a
nutshell, each service is uniquely identified using a topic. Listing 3 contains the topic
definitions for our example.

Listing 3 Defining the service topics
1 var DataTopic = new Topic("DataAccess")
2 var GeoTopic = new Topic("Geo")
3 var DrivingTopic = new Topic("Driving")
4 var Con�gTopic = new Topic("Con�g")
5 var DashboardTopic = new Topic("Dashboard")

These topics are used to invoke the service monitor’s registerService method, which
has the following type signature:.

Class→ topic→ [topic]→ nill

The method’s parameters are the class definition of a service, its identifying topic and
an array of topics to which the service subscribes. Listing 4 shows how this is applied
to our example application.

Listing 4 Registering the services
1 let monitor = new ServiceMonitor()
2 monitor.registerService(DataAccessService,DataTopic,[])
3 monitor.registerService(GeoService,GeoTopic,[DataTopic])
4 monitor.registerService(DrivingService,DrivingTopic,[DataTopic,GeoTopic])
5 monitor.registerService(Con�gService,Con�gTopic,[])
6 monitor.registerService(DashboardService,DashboardTopic,[GeoTopic,DrivingTopic,Con�gTopic])
7 monitor.deploy()

The implementations of the individual services are oblivious to specific topics.
Instead, services publish a signal using the publish method. On line 5 in Listing 2
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the data access service publishes the decompressed signal. Moreover, references to
subscribed signals are provided through a services’ start method. As an example
consider Listing 5, which provides the implementation of the geo service. Its start
method provides a reference to the signal published by the data access service. This
reference is used as argument to a lifted function which reverse geo codes coordinates
(see line 3). Subsequently, the address signal is published and is subscribed to by the
driving and dashboard services.

Listing 5 Geo service implementation
1 class GeoService extends MicroService{
2 start(dataSignal){
3 let address = this.fMap(reverseGeoCode,dataSignal)
4 this.publish(address)
5 }
6 }

As our small example application showcases, distributed reactive programming
allows programmers to coordinate multiple microservices. However, current DRP
propagation algorithms are unable to uphold the reactivity requirements of modern
microservice systems.

4 QPROP: A Propagation Algorithm for Reactive Distributed Systems

In this section we introduce a novel propagation algorithm for DRP called queued
propagation (QPROP). QPROP is able to guarantee glitch freedom of distributed
reactive applications while ensuring resilience, elasticity and asynchrony. Moreover,
QPROP guarantees monotonicity and eventual consistency. However, QPROP does
not guarantee progress and currently exhibits exponential computational complexity.
We refer the reader to Appendix F for proofs and discussions regarding QPROP’s
guarantees.
Before detailing our algorithmwe discuss key intuitions behind solving decentralised

glitch freedom.

4.1 Decentralised Glitch Freedom: An Intuition

The key intuition behind glitches is that they can only occur for certain topologies of
dependency graphs. Consider Figure 3(A), whenever A propagates a value both B and
C need to update before they propagate values to D. We say that D is susceptible to
glitches with regards to A. We refer the reader to Section 2.1 for a concrete example
of this update ordering. In contrast, in Figure 3(B) no node is susceptible to glitches:
C can update as soon as it receives a new value from either A or B (which are both
trivially free from glitches). For example, if C receives a new propagation value from
A it uses the previously received value from B to update itself.
In order to detect glitches, assume A in Figure 3(A) possesses a logical clock which

it increments each time it propagates a value to its successors. Moreover, A tags each
value it propagates with the current clock time. UD(valB, valC) denotes the updating
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Figure 3 A) A dependency graph susceptible to glitches. B) A dependency graph not
susceptible to glitches. C) A dependency graph susceptible to concurrent glitches.

of D using a value valB propagated by B and a value valC propagated by C. D must
adhere to the following constraint to avoid glitches, where TimeA(v) denotes A’s clock
time tagged to value v : UD(valB, valC) ⇐⇒ TimeA(valB) == TimeA(valC). Furthermore,
values can propagate concurrently through the distributed dependency graph. Con-
sider Figure 3(C), A and B might concurrently propagate new values. Given network
delays these values can be received by C, D and E at arbitrarily different points in
time. E’s constraint to avoid glitches is therefore the following:

UE(valC, valD) ⇐⇒ TimeA(valC) == TimeA(valD)∧ TimeB(valC) == TimeB(valD)

To summarise, the concurrent and asynchronous nature of distributed systems can
lead to glitches which would not occur in non-distributed systems.

4.2 QPROP

QPROP is divided into three phases. First, during the exploration phase each node uses
its neighbours to explore its position in the graph. Second, the barrier phase ensures
that the exploration phase has successfully finished before nodes start to propagate
values. Third, the propagation phase ensures the actual propagation of values. QPROP
assumes the following:

As is commonly the case in reactive programming, dependency graphs are finite
and acyclic [11, 12, 21]. Moreover, there are no intentional topological changes to
the graph after the exploration phase.
Nodes in the dependency graph are the unit of distribution (e.g. a microservice, a
process running on a server, etc.).
Propagation of values within a single node (i.e. through a non-distributed depen-
dency graph) is abstracted as an update function. We assume that this update
function provides glitch free propagation of values within nodes.
Nodes communicate with one another through an asynchronous communication
medium which ensures exactly once, in-order delivery of messages.
At the start of the application (i.e. before the exploration phase) each node has
references to its direct predecessors and successors in the graph. References uniquely
identify nodes (e.g. references are IP addresses).
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4.2.1 Notation
We represent a node n as a 9-tuple: n= (DP, DS, I, S, U, initVal, lastProp, self , clock). Each
element in the tuple contains the following information:
DP is the set of n’s direct predecessors.
DS is the set of n’s direct successors.
I is a dictionary of input sets which stores values propagated by n’s direct predecessors
(i.e. I’s keys are references to predecessors).

S is a dictionary where the keys are references to source nodes and the values are
sets of references to direct predecessor which are included in paths from the key
source node to n.

U is n’s update function, its arity equals DP’s cardinality. Once called with the values of
n’s predecessors this function returns a single value to be propagated downstream
by n.

initVal is n’s initial value (i.e. the value before its first update).
lastProp is n’s last propagated value.
self is a reference to n.
clock is a logical clock which n uses to timestamp propagation values.
Table 1 in Appendix A provides a summary of these elements, we advise readers to
keep it at hand while reading the rest of this section.
We describe our algorithm using pseudocode notation. Each node in the distributed

dependency graph runs the phases of the algorithm in sequence (i.e. first the explo-
ration phase, then the barrier phase and finally the propagation phase). During these
phases nodes coordinate through asynchronous messaging. We provide pseudocode
notation of message handlers to describe a node’s behaviour upon receiving a par-
ticular message. We denote sending an asynchronous message m with arguments
(arg1, ...,argn) to a node n using: n←m(arg1, ...,argn). Moreover, using await we spec-
ify that the execution of the pseudocode only continues once n’s message handler
returns (e.g. value= await n←m(arg1, ...,argn)). To denote the elements within a
dictionary we use the following notation: [k, v] ∈ D where [k, v] is a key-value pair
and D is a dictionary. To read the value bound to key k in dictionary D we write: D.k.
Finally, to add a key-value pair [k, v] to a dictionary D we write: D= D∪ {[k, v]}.
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4.2.2 Exploration Phase

ALGORITHM 1: Exploration
1 sourcesReceived= 0
2 foreach pred ∈ DP do
3 I = I ∪ {[pred, {}]}
4 end
5 if |DP|== 0 then /* I am a source node */
6 lastProp= (self , initVal, {[self], 0}, 0)
7 for succ ∈ DS do
8 succ← sources({self}, lastProp)
9 end
10 end

Handler sources(sources,initProp)
1 from= initProp.from
2 I.from= I.from∪ {initProp}
3 sourcesReceived += 1
4 foreach s ∈ sources do
5 if [s,_] /∈ S then
6 S= S∪ {[s, {}]}
7 end
8 S.s= S.s∪ {from}
9 end
10 if sourcesReceived== |DP| then
11 allSources= {s|[s,_] ∈ S}
12 sourceClocks= {[s, 0]|s ∈ allSources}
13 lastProp= (self , initVal, sourceClocks, 0)
14 for succ ∈ DS do
15 succ← sources(allSources, lastProp)
16 end
17 end

Algorithm 1 provides the specification of a node’s behaviour during the exploration
phase. The algorithm is executed for each node at the start of the reactive program.
Only the node’s direct predecessors, direct successors, initial value, self reference and
logical clock are known at this point (i.e. DP, DS, initVal, self and clock contain this
information, all other node elements are empty).
Informally the purpose of the algorithm is twofold. First, each node computes the

paths from source nodes which lead to that node. Second, nodes populate their I
dictionaries with their predecessors’ initial values.
At the start of the exploration phase each node creates a new dictionary per pre-

decessor to store that predecessor’s input set (see line 2 to line 4). Moreover, source
nodes send the sources message (see line 5 to line 9) which contains a singleton set
with their self reference and their initial propagation value. We represent propagation
values as 4-tuples propVal= (from, value, sClocks, fClock): from is a reference to the node
propagating the value, sClocks is a dictionary of clock times for all source nodes which
are direct or indirect predecessors of from and fClock is from’s clock time.
The sources Handler defines how nodes handle the sources message. As soon as a

node receives a set of source references from each of its direct predecessors it relays
these references together with its initial propagation value to all its direct successors
(see line 10 to line 16 in the sources Handler). At the end of this process each node in
the graph knows which source nodes are able to reach it and through which direct
predecessor. For example, in Figure 3(C) E’s S dictionary contains [A, {C, D}] and
[B, {C, D}]

4.2.3 Barrier Phase
ALGORITHM 2: Barrier
1 startsReceived= 0
2 if |DS|== 0∧ sourcesReceived== |DP| then
3 foreach pred ∈ DP do
4 pred← start()
5 end
6 end

Handler start()
1 startsReceived += 1
2 if startsReceived== |DS| then
3 foreach pred ∈ DP do
4 pred← start()
5 end
6 end
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Glitches could occur if values were to propagate before all nodes were able to
construct their input queues. The barrier phase, see Algorithm 2, allows source nodes
to determine when it is safe to start propagating values.
As soon as a sink node (i.e. a node without successors) is done exploring (i.e. it has

received a sources message from all its direct predecessors, see line 2), it sends a start
message to all its predecessors to indicate that they can start producing values. Any
non-sink node relays this message upstream as soon as it has received a start message
from all its direct successors (see line 2 in the start Handler). A source node starts
propagating values once it receives a start message from all its direct successors. At
this point the source node knows by induction that all downstream successors are
done exploring.

4.2.4 Propagation Phase

Handler change(vnew = (from, value, sClocks, fClock))
1 I.from= I.from∪ {vnew}
2 allArgs= ×({{vnew}} ∪ {i|i ∈ I \ {I.from}})
3 matches= {args ∈ allArgs|∀argdp1

, argdp2
∈ args : [s, {dp1, ..., dp2}] ∈ S→ argdp1

.sClocks.s== argdp2
.sClocks.s}

4 if matches 6= ; then
5 lastMatch= max(matches)
6 clock += 1
7 lastProp= (self , U(lastMatch.values), lastMatch.sClocks, clock)
8 foreach succ ∈ DS do
9 succ← change(lastProp)
10 end
11 foreach arg= (f , v, sc, fc) ∈ lastMatch do
12 I.f = I.f \ {vals ∈ I.f |vals.fClock< fc}
13 end
14 end

Each key-value pair [s, preds] ∈ S informs a node that it can only update using values
received from predecessors in pred if these values have equal clock times for source
node s. In other words, the following must hold:
U(argpred1

, ..., argpredn
) ⇐⇒ ∀[s, {predi, ..., predj}] ∈ S : argpredi

.sClocks.s== argpredj
.sClocks.s

The change Handler defines the heart of QPROP (i.e. how values propagate through
the distributed dependency graph in a glitch free way). It starts as soon as a node
n receives a new propagation value vnew = (from, value, sClocks, fClock) which is imme-
diately stored in n’s I set for from (see line 1). We assume that each input set in I is
totally ordered based on its values’ fClocks. Subsequently, n computes a nested set of
all possible arguments to its update function (see line 2). This partially ordered set
is obtained by taking the cross product (marked by the × operator on line 2) of vnew

with each of n’s predecessors’ I sets.
n filters this set of arguments to only contain glitch-free sets of arguments (see

line 3). Furthermore, n takes the lexicographic maximum of these sets of arguments
(see line 5). This set contains the last value propagated by each predecessor which
can be used to update n in a glitch free way. n uses these values to invoke its update
function after which it propagates its updated value to all direct successors (see line 7
to line 10). We assume that lastMatch.values and lastMatch.sClocks respectively return
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a set containing the value of each argument in lastMatch and the union of the sClocks
of each argument in lastMatch.
Finally, n removes all stale values from its input sets. We consider a value to be stale

if a newer value propagated by the same predecessor has previously been used as
argument to U. All values older than the ones in lastMatch are stale and can therefore
be removed (see line 11). We refer the reader to Appendix B for a concrete example of
QPROP’s workings.
In conclusion, QPROP meets the reactivity requirements as follows:

Resilience The temporary failure of a node in the distributed dependency graph does
not cause a system-wide failure. Instead, only the failed node’s downstream succes-
sors might stop propagating values (i.e. if the failed node’s values are required to
avoid glitches). For example, if the config node in our fleet management applica-
tion fails the dashboard node will continue updating as the vehicles’ data changes.
Although QPROP does not explicitly provide fault-tolerance mechanisms, it can be
implemented atop existing crash-recovery frameworks [1, 15, 31].

Elasticity In QPROP nodes are completely autonomous. Each node propagates values
at its own pace without intervention from a central coordinator, provided that
this propagation does not cause a glitch. For example, if the geo node in our fleet
management application slows down because of request load one can dynamically
increase its computational resources to scale the application.

Asynchrony QPROP exclusively relies on asynchronous communication between nodes.

5 Supporting Dynamic Graph Changes with QPROPd

QPROP only supports involuntary temporal changes. To support intentional topological
changes we extend QPROP with QPROPd (i.e. dynamic QPROP). We support four
dynamic operations: adding a node to and removing a node from the dependency
graph and adding a dependency to and removing a dependency from the graph. For
the sake of brevity we only discuss the dynamic addition of a dependency in this
section, all other operations are provided in Appendix D.

5.1 Dynamic Graph Changes: An Intuition

Applying dependency changes to the graph’s topology requires all directly or indirectly
affected nodes to update their S and I dictionaries. Figure 4(A) and (B) respectively
show the state of the dependency graph before and after the addition of a new
dependency between A and D. It is QPROPd’s task to extend E’s S dictionary entry for
A from [A, {C}] to [A, {C, D}], to add A to D’s S dictionary and to ensure that E now
receives values originating from A through D.
Note that the system is running, QPROPd must therefore guarantee glitch freedom

during the addition of dependencies. Assume that source node A propagates value
a1 before the addition of the dependency (as shown in Figure 4(A)). Throughout
this example we omit the sClocks and fClock parts of propagation values for the sake
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Figure 4 A) Dependency graph before dynamic addition of a dependency between A and
D. Source A propagates value a1. B) Dependency graph after dynamic addition
of a dependency between A and D. Source A propagates value a2.

of brevity. We also assume that B does not change throughout the example (e.g. C
updates itself using a1 and B’s initial value as arguments). Due to network congestion,
node E is yet to receive a1 from C.
A propagates value a2 after the dependency between A and D is added and all S

dictionaries have been updated. a1 finally arrives to E via C and a2 arrives to E via D.
However, dynamically adding a dependency changed E’s S dictionary. As a result, E
can now only update if:

∃argC ∈ I.C,∃argD ∈ I.D : argC.sClocks.A== argD.sClocks.A.

D will never propagate a1, given that it was not a successor of A at the time. This
leaves E with two options. First, E continues behaving according to the definition of
QPROP. In this case E can only satisfy the aforementioned condition using a2 values.
E will never update using C’s a1 value and will remove it from its I sets instead (see
the change Handler). In other words, the dynamic addition of a dependency resulted
in the loss of a message.
A second option is for E to temporarily ignore values propagated by D. As soon as

E has updated itself with C’s a1 and D’s last valid propagated value (i.e. not D’s a2

value) it can resume regular propagation using values from C and D. E can safely use
this value for D given that it was propagated before the addition of the dependency
between A and D. We say that D is brittle for E. Concretely, the problem occurs when
a node must extend an already existing entry in its S dictionary. In our example, node
E adds D to the [A, {C}] entry in S. To avoid the loss of messages we choose for this
latter option in QPROPd.
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5.2 QPROPd

ALGORITHM 3: Dynamic dependency
addition
arguments :A new predecessor pred

1 (predLastProp, sources) = await pred← newSucc(self)
2 DP= DP∪ {pred}
3 if >source ∈ sources : [source,_] ∈ S then
4 I = I ∪ {[pred, {predLastProp}]}
5 end
6 await self ← addSources(pred, sources)

Handler newSucc(succ)
1 DS= DS∪ {succ}
2 if |DP|== 0 then
3 return (lastProp, {self})
4 else
5 allSources= {s|[s,_] ∈ S}
6 return (lastProp, allSources)
7 end

Handler addSources(from,sources)
1 foreach source ∈ sources do
2 if [source,_] ∈ S then
3 S.source= S.source∪ {from}
4 Br = Br ∪ {[from, {}]}
5 else
6 S= S∪ {[source, {from}]}
7 end
8 end
9 foreach succ ∈ DS do
10 await succ← addSources(self , sources)
11 end

For each dynamic operation in QPROPd we provide an algorithm which is run by the
node initiating the operation (e.g. a node dynamically adding a dependency to a new
predecessor). Moreover, we define a number of new message handlers which extend
the set of message handlers defined in Section 4.
A node n dynamically adding a dependency to a new predecessor pred runs Al-

gorithm 3, which performs three main tasks. First, n requests the last propagated
value from pred together with a set of all sources able to reach pred (see line 1). By
requesting this information, pred adds n to its list of successors (see line 1 in the new-
Succ Handler). Second, if n is not brittle for pred (i.e. there is no overlap between
the sources that can reach pred and those that can reach n) it creates an entry in
I for pred (see line 3). Third, n updates its own topological information (i.e. the S
dictionary) and that of its direct and downstream successors. To do so , n sends itself
the addSources message (see line 6) with pred and the sources which can reach pred
as arguments. The addSources Handler uses these arguments to update the receiving
node’s S dictionary (see line 2 to line 6). Moreover, the handler tracks which predeces-
sors are brittle for n in a dictionary Br which contains entries [brittlePred, vals] ∈ Br,
where brittlePred is a brittle predecessor for n and vals are values propagated by said
predecessor. This addSources message is recursively sent to n’s direct and downstream
successors (see line 10).

n immediately continues with QPROPd’s pre-propagation phase once the dependency
addition operation has completed (i.e. n and all its downstream successors have
updated their topological information). A barrier phase is not required here, given
that values are already propagating through the system.
QPROPd introduces a pre-propagation phase for all nodes. The goal of this phase is

to determine whether certain predecessors cease to be brittle as the result of a node
receiving a new propagation value. Consider the example depicted in Figure 4(B).
D ceases to be brittle for E as soon as E updates using C’s a1 value as arguments. In
other words, when the value with the smallest clock time for A in Br.D is one clock

5:16



Florian Myter, Christophe Scholliers, and Wolfgang De Meuter

ALGORITHM 4: Pre-propagation
arguments :A new value vnew = (from, value, sClocks, fClock)

1 case ¬isBrittle(from)∧¬hasBrittleSibling(from) do
2 self ← change(vnew) /* Proceed with QPROP′s propagation phase */
3 case ¬isBrittle(from)∧ hasBrittleSibling(from) do
4 I.from= I.from∪ {vnew}
5 if ∀pred ∈ DP : isBrittleSibling(pred, from) =⇒ Br.pred 6= ; then
6 self ← change(vnew) /* Proceed with QPROP′s propagation phase */
7 foreach pred ∈ DP : isBrittleSibling(pred, from)∧ synchronised(pred) do
8 MoveToI(pred)
9 end
10 end
11 case isBrittle(from) do
12 Br.from= Br.from∪ {vnew}
13 if |Br.from|== 1 then
14 if synchronised(from) then
15 MoveToI(from)
16 self ← change(vnew) /* Proceed with QPROP′s propagation phase */
17 else
18 foreach pred ∈ DP : isBrittleSibling(from, pred) do
19 foreach val ∈ I.pred \ {I.pred.first()} do
20 /* Run Algorithm4 with val as input */
21 end
22 end
23 end
24 end
25 end

time bigger than the value with the smallest clock time for A in I.C (we assume a1 and
a2 to have clock times for A of 1 and 2 respectively). We say that D is a brittle sibling
of C and that D has synchronised with C if the aforementioned condition holds.
Algorithm 4 defines a node n’s behaviour when it receives a change message from a

predecessor from. It relies on a number of predicates (i.e. isBrittle, hasBrittleSibling,
isBrittleSibling and synchronised) and a function (i.e. MoveToI) which are defined in
Appendix D.1. n executes the algorithm before the change Handler. The algorithm
discriminates based on the predecessor from propagating a value vnew to n:
1. from is not a brittle predecessor and it does not have any brittle siblings (see line 1).

In this case n can safely continue with QPROP’s propagation phase.
2. from is not a brittle predecessor but it has at least one brittle sibling (see line 3).

In other words, n has another predecessor pred which is brittle and which shares
a common predecessor with from. The algorithm first checks whether all brittle
siblings of from have at least propagated one value. Assume a brittle predecessor
predbrittle has not yet propagated a value (i.e. Br.predbrittle is empty). It is impossible
for n to assess whether predbrittle is already synchronised or whether it is still brittle
and n can therefore not update itself safely. If all brittle siblings have at least
propagated one value, n is able to try and update itself with vnew. Subsequently
the algorithm checks whether certain predecessors have ceased to be brittle as a
result of this possible update. If a predecessor has ceased to be brittle (indicated
by the synchronised predicate) the MoveToI function is invoked which copies the
predecessor’s propagation values from Br to I and removes it from Br.
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3. from is a brittle predecessor (see line 11). The algorithm starts by checking whether
vnew is the first message received from from (i.e. |Br.from|== 1). If this is the case
it can be that from is already synchronised (see line 14) in which case the MoveToI
function is invoked and n is able to safely update. This would be the case in our
example if D would propagate a1 due to A only propagating a1 after the dynamic
dependency addition. If from is not synchronised but vnew is the first message
received from from (see line 18) the algorithm needs ensure that from’s non-brittle
siblings have no unprocessed values. Concretely, when Br.from is empty all values
propagated by its non-brittle siblings are stored in I without being processed (see
line 4). Therefore, when n receives the first value from from the algorithm needs to
process these unused values.
In summary, QPROPd relaxes one of the assumptions made by QPROP. Namely, that

the dependency graph does not intentionally change once the system has passed the
exploration phase. However, this relaxation comes at the price of temporarily ignoring
propagation values. This is a necessary evil in order to guarantee glitch freedom in
this dynamic context.

6 Evaluation

Our evaluation of QPROP and QPROPd is twofold. First, we prove that QPROP and
QPROPd guarantee glitch freedom, eventual consistency, monotonicity and absence
of progress (see Appendix F). Second, we compare the runtime performance of our
approach to that of SID-UP [12]: a state of the art centralised approach. As we discuss
in Section 2, approaches such as the one proposed in [3] essentially rely on the same
central coordination technique. Moreover, as shown in [12] the algorithm outperforms
adaptations of non-distributed propagation algorithms.
In order to compare our approach to SID-UP we systematically compare the runtime

performance of two distributed reactive systems implemented in Spiders.js: one built
atop QPROP or QPROPd and one built atop SID-UP. We first compare a QPROP
and SID-UP implementation of the fleet management application detailed Section 3.
Subsequently we compare a larger, artificial, application built atop QPROP, QPROPd

and SID-UP. We compare the approaches using the following three metrics:
Load is the amount of requests per second the system receives. Each request results

in the propagation of a value through the distributed dependency graph.
Latency is the average time it takes for a single value to propagate from a given source

node to a sink node.
Throughput is the amount of values which propagate from source node to sink node

for a given period of time.
Processing time is the time it takes for a request to propagate to a sink node. The

difference with latency is that we start measuring processing time as soon as a
request has been made. In contrast, we measure latency only as soon as the request
is first propagated by a source node.
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Memory usage we define the heap memory usage as the memory used by a particular
service in its allocated heap. Moreover, we define the RSS (Resident Set Size) memory
usage as the memory used by a particular service in its allocated heap, stack and
code segment. Both heap memory usage and RSS memory usage are measured
through node.js’ process.memoryUsage() 2
It is important to note that due to QPROP and QPROPd’s eventually consistent

nature they might perform less updates than SID-UP for a same load. In SID-UP each
update of a source node is guaranteed to cause a single update for all its successors.
In QPROP and QPROPd concurrent updates to multiple source nodes might only cause
common successors to update once. To ensure the fairness of our comparison we
therefore only consider a benchmark to have finished when the given system has
completely processed the given amount of load. For example, assume a benchmark
which simulates a load of 100 requests per second for a total of 30 seconds. Moreover,
the system used for the benchmark contains a single sink node. For both SID-UP
as well as QPROP and QPROPd we consider the benchmark to have finished if the
system’s sink node has updated 3000 times. In Appendix E.3 we measure the amount
of these concurrent interactions.
In general our benchmarks show that QPROP significantly outperforms SID-UP

with regards to throughput, processing time and memory usage. This is in spite of
QPROP’s substantial computational complexity which is O (M N ) for QPROP’s core (i.e.
line 2 in the change Handler) where M is the worst-case amount of messages stored
for N direct predecessors. Although it slightly under performs with regards to latency,
QPROP is able to respond to client requests in a timely fashion regardless of load.
As a result, a distributed system implemented atop QPROP is more reactive than its
SID-UP variant.

6.1 Use Case Comparison

The goal of our first benchmark is to compare both approaches in a real-world setting.
We therefore compare runtime performance for our fleet management system pre-
sented in Section 3, which is a prototypical implementation of the production system
deployed by Emixis. We measure latency, throughput, processing time and memory
usage under varying loads actually measured by Emixis’ production version of the fleet
management application. In a nutshell the production system receives on average 45
requests per second during the weekend, 75 requests per second during the evening
and 300 requests per second during daytime. We conduct the benchmarks using a
setup similar to Emixis’, namely an Ubuntu 14.04 server with two dual core Intel Xeon
2637 processors (2 physical threads per core) with 265 GB of RAM.

Figure 5 and Figure 6 respectively show how both systems compare with regards to
throughput and latency under varying load. The former clearly shows that QPROP
outperforms SID-UP with regards to throughput. SID-UP is unable to handle more than

2 https://nodejs.org/api/process.html#process_process_memoryusage (last accessed 2018-12-
01).
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Figure 7 Dependency graph of the larger microservice system

100 requests per second, all additional requests remain in the central coordinator’s
buffer. In other words, SID-UP is unable to efficiently handle the daytime load of
our fleet management application. However, QPROP performs worse with regards to
latency. In SID-UP a value can only propagate through the distributed dependency
graph when the previous value has completed its propagation. In other words, all
nodes in the distributed dependency graph are always ready to accept new values.
Latency is therefore unaffected by the load. In QPROP this is not the case, values
propagate through the graph concurrently. Upon receiving a new value, a node could
still be processing the previous one which negatively impacts latency. Additional
benchmark results are provided in Appendix E.1 (QPROP also outperforms SID-UP
with regards to processing time and memory usage).

6.2 General Comparison

The fleet management application only consists of five microservices. To further
investigate the performance properties of QPROP, QPROPd and SID-UPwe compare the
approaches using a larger example. Concretely, we implement a system comprised of
60microservices where each service relays the requests it receives to other services. The
application’s dependency graph is exemplified in Figure 7. We conduct the benchmarks
on a cluster of 60 Raspberry Pi 3 devices (Quad Core 1.2 GHz Broadcom 64 bit CPU
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and 1GB of RAM). Each Raspberry Pi has a 100Mbit/s network port and hosts a single
microservice.
Figure 8 compares the results of the QPROP and SID-UP implementations of the

microservice systems. As is the case for the fleet management application, SID-UP is
able to handle considerably less load than QPROP. SID-UP’s maximum throughput
is roughly 5 requests per second, while QPROP reaches its throughput peak at 85
requests per second. Although QPROP’s throughput decreases after this peak, it is still
roughly able to handle an order of magnitude more requests per second.
In order to compare QPROPd and SID-UP we measure the impact of performing

operations which intentionally change the dependency graph’s topology. For a static
load of 100 requests per second we vary the number of dynamic dependencies added
to the dependency graph. Figure 9 shows the results of these experiments. Dynamic
topology changes affect both systems’ throughput: QPROP’s throughput roughly
decreases with 20% when 20 operations are performed while SID-UP’s throughput
decreases with roughly 10%. Additional results for these benchmarks are discussed
in Appendix E.2.

7 Limitations

QPROP guarantees eventual consistency (see Appendix F for a proof). Assuming that
source nodes stop propagating new values, all nodes in the graph eventually update
using their predecessors’ last values. However, nodes in QPROP can become subject
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to livelocks. For example, reconsider Figure 3(C). Node E’s glitch freedom constraint
goes as follows:

UE(valC, valD) ⇐⇒ TimeA(valC) == TimeA(valD)∧ TimeB(valC) == TimeB(valD)

However, it is possible that E never receives a pair (valC, valD) for which this holds.
Assume that A and B update concurrently. Due to interleaving of messages it can be
that C invokes its update function using the new value for A and B’s old value as
arguments. Furthermore, D invokes its update function using the new value for B and
the old value for A as arguments. Upon receiving these values, E will not be able to
meet its glitch freedom constraint. Assume that A and B infinitely update concurrently
and this exact interleaving of messages continues. In this case E is never able to update
without causing glitches and is therefore stuck in a livelock. However, E resolves this
livelock as soon as A or B stop updating. In general, nodes in QPROP can livelock for
graph topologies where two or more source nodes (e.g. A and B) all propagate values
to a single node in the graph (e.g. D) via two or more overlapping paths.
QPROP’s livelocks resemble the "duelling proposers" [22] scenario for Paxos (i.e. two

nodes alternately increase proposal numbers). Future work will focus on assessing
whether randomisation [22, 24] (e.g. letting nodes await a random sleep timeout
before handling a change message) could alleviate the livelock issue in practice.

8 Related Work

In Elm [11] each node in the dependency graph runs under its own thread of control.
Moreover, each node has a number of queues which hold values propagated by
predecessors. However, Elm relies on a global event dispatcher to provide new values
to source nodes, which precludes elasticity and resilience.
A number of non-distributed reactive programming languages have recently been

researched (e.g. FrTime [9] and Flapjax [21]). As discussed in Section 2 these languages
topologically sort the dependency graph underlying reactive applications to guarantee
glitch freedom. A similar approach is taken by synchronous reactive programming
languages, such as Esterel [4], which rely on a scheduler to determine the order in
which values propagate through the dependency graph.

Globally asynchronous locally synchronous(GALS) [3] systems provide a distributed
approach to synchronous reactive programming. GALS discriminate between two
kinds of systems: exochronous and endo/isochronous [17]. Endo/isochronous systems
are defined by the fact that the system only relies on the values of signals, never on
the presence/absence of the value of a signal. Concretely, this constraints the system
to having a number of input signals for which one can infer at what pace they produce
values. Using this classification, QPROP explicitly targets exochronous systems where
multiple source signals might produce values at different and varying rates. To our
knowledge current GALS systems solely target endo/isochronous systems [13, 25].
Although exochronous systems can be endochronised, this entails the addition of
a centralised monitor or master clock to obtain the presence/absence of a signal
value [3].
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Quality-aware reactive programming (QUARP) [26] abstracts away the notion
of glitches to a more general notion of propagation quality. This allows QUARP to
implement decentralised glitch freedom as well as other propagation criteria (e.g.
geographical location of nodes). QUARP and QPROP fundamentally differ in the glitch
freedom guarantees they provide. In a nutshell, QUARP nodes only maintain the last
propagated value for each of their predecessors. This value is overwritten each time the
node receives a value from its associated predecessor. Nodes in QUARP can therefore
livelock for any graph topology able to cause glitches (see Figure 3(A)). In contrast,
QPROP nodes can never livelock for the topology shown in Figure 3(A). Moreover,
QUARP does not guard against the issues which arise from dynamic topology changes
(see Section 5). We refer the reader to Appendix C for a more detailed discussion
regarding livelocks in QUARP and QPROP.
The work presented in [30] extends the synchronous reactive programming lan-

guage Céu [29] with support for GALS systems. However, as stated in [30] it does not
guarantee glitch freedom.
SID-UP [12] is a propagation algorithm specifically designed towards the develop-

ment of decentralised distributed systems. However, as discussed in Section 2, SID-UP
requires a central coordinator to support systems where source nodes update con-
currently. This feature of SID-UP makes it unfit to deal with the reactive systems we
envision.
Spreadsheet applications such as Microsoft’s Excel essentially allow one to write

asynchronous reactive code. Each cell in the spreadsheet can be seen as a signal which
can depend on the values contained in other cells. Moreover, given Excel’s multi-
threaded capabilities [7] these updates can happen concurrently. A generalisation of
this model to stream processing was introduced by [32]. However, glitches are avoided
in this model by analysing the dependencies between cells. Such an analysis cannot be
employed in a distributed context without resorting to a centralised entity. Moreover,
this analysis would need to be re-run upon dynamic changes to the dependency graph
incurring a substantial overhead.
AmbientTalk/R [8] is a reactive extension to the AmbientTalk [10] language. How-

ever, AmbientTalk/R only guards against local glitches (i.e. only signals residing on
the same physical device are updated glitch freely).

9 Conclusion

Reactivity describes both certain kinds of programming languages as well as certain
kinds of systems. Reactive programming languages provide constructs to declaratively
implement event-driven applications. Reactive systems always respond to inputs in
a timely fashion. For single-threaded non-distributed programs one can implement
a reactive system using a reactive programming language. However, we observe
that when moving to a distributed setting this is no longer the case. Using existing
approaches, programmers are unable to implement reactive distributed systems using
distributed reactive programming languages.
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This lack of reactivity on behalf of current distributed reactive programming ap-
proaches stems from their propagation algorithms. We identify two key issues with
these algorithms. First, they rely on central coordination to guarantee correctness
(i.e. glitch freedom) of the distributed system. Second, they assume a lack of partial
failures in the systems they support. In terms of reactive distributed systems [5, 6, 16]
this entails that current DRP propagation algorithms are neither elastic nor resilient.
In this paper we propose two novel propagation algorithms, QPROP and its dy-

namic extension QPROPd, which guarantee glitch-free propagation of values without
resorting to centralised coordination. This decentralised design enables QPROP and
QPROPd to support elastic systems. Moreover, QPROP and QPROPd embrace partial
failures within distributed reactive applications. Nodes are able to crash without
affecting the system as a whole. In other words, QPROP and QPROPd are resilient.
We prove that QPROP and QPROPd are able to guarantee glitch freedom and show,
through comparative benchmarks, that their decentralised design positively impacts
reactivity. In conclusion QPROP and QPROPd bridge the gap between distributed
reactive programming and reactive distributed systems. Programmers using frame-
works or languages built atop QPROP or QPROPd are able to implement their reactive
distributed systems using distributed reactive programming.
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A Overview of Node Representation

Table 1 Overview of information held by each node in the dependency graph

Abbreviation Explanation

DP Set containing references to the node’s direct predecessors.
DS Set containing references to the node’s direct successors.
I Dictionary containing the input set for each direct predecessor of

the node.
S Dictionary where the keys are references to source nodes and

the values are sets of references to direct predecessor which are
included in paths from the key source node to the node.

U The node’s update function.
initVal The node’s initial value.
lastProp The node’s last propagated value.
self A reference to the node.
clock The node’s logical clock.

Br Dictionary containing sets of propagation values for brittle prede-
cessors (used by QPROPd).

B Example Propagation

This section serves as an example of QPROP’s workings. Consider an application
comprised of five microservices as shown in Figure 10. The update functions of these
microservices go as follows:
C additions the values it receives from A and B (i.e. C = A+ B).
D subtracts the values it receives from A and B (i.e. D= A− B).
E additions the values it receives from C and D (i.e. E = C+D= (A+ B) + (A− B =

2 ∗ A).
Figure 10 provides an overview of the application’s state as values propagate through
the microservices. We discuss QPROP’s behaviour at each time step.
t=0 The barrier phase completed. We assume that A, B, C, D and E respectively

have 5, 3, 8, 2 and 10 as initial values. Each node stores its predecessors’ initial
propagation values in its I set. For example, both C and D store A’s initial value
(i.e. (A, 5, {[A, 0]}, 0)) in their I.A sets (see Section 4.2.2 for an overview of the data
contained in propagation values). Moreover, the figure also shows each node’s S
set. For example, E’s S set contains two entries: one which specifies that C and D
propagate values originating from A and one which specifies that C and D propagate
values originating from B. In other words, E can only update using values from C
and D if the following holds:

U(valC, valD) ⇐⇒ valC.sClocks.A== valD.sClocks.A∧ valC.sClocks.B== valD.sClocks.B
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t=0

B

A

D

C

E

I.A = {(A,5,{[A,0]},0)}
I.B = {(B,3,{[B,0]},0)}
S   = {[A,{A}],[B,{B}]}

I.A = {(A,5,{[A,0]},0)}
I.B = {(B,3,{[B,0]},0)}
S   = {[A,{A}],[B,{B}]}

I.C = {(C,8,{[A,0],[B,0]},0)}
I.D = {(D,2,{[A,0],[B,0]},0)}
S   = {[A,{C,D}],[B,{C,D}]}

t=2

B

A

D

C

E

I.A = {(A,7,{[A,1]},1)}
I.B = {(B,3,{[B,0]},0)}

I.A = {(A,5,{[A,0]},0)}
I.B = {(B,3,{[B,0]},0)}

I.C = {(C,8,{[A,0],[B,0]},0),
          (C,10,{[A,1],[B,0]},1)}
I.D = {(D,2,{[A,0],[B,0]},0)}

(C,10,{[A,1],[B,0]},1)

t=4

B

A

D

C

E

I.A = {(A,7,{[A,1]},1)}
I.B = {(B,3,{[B,0]},0)}

I.A = {(A,5,{[A,0]},0)}
I.B = {(B,0,{[B,1]},1)}

I.C = {(C,8,{[A,0],[B,0]},0),
          (C,10,{[A,1],[B,0]},1)}
I.D = {(D,2,{[A,0],[B,0]},0),
          (D,5,{[A,0],[B,1]},1)}

(D,5,{[A,0],[B,1]},1)

t=6

B

A

D

C

E

I.A = {(A,7,{[A,1]},1)}
I.B = {(B,3,{[B,0]},0)}

I.A = {(A,7,{[A,1]},1)}
I.B = {(B,0,{[B,1]},1)}

I.C = {(C,8,{[A,0],[B,0]},0),
          (C,10,{[A,1],[B,0]},1)}
I.D = {(D,2,{[A,0],[B,0]},0),
          (D,5,{[A,0],[B,1]},1),
          (D,7,{[A,1],[B,1]},2)}

(D,7,{[A,1],[B,1]},2)

t=8

B

A

D

C

E

I.A = {(A,7,{[A,1]},1)}
I.B = {(B,0,{[B,1]},1)}

I.A = {(A,7,{[A,1]},1)}
I.B = {(B,0,{[B,1]},1)}

I.C = {(C,8,{[A,0],[B,0]},0),
          (C,10,{[A,1],[B,0]},1),
          (C,7,{[A,1],[B,1]},2)}
I.D = {(D,2,{[A,0],[B,0]},0),
          (D,5,{[A,0],[B,1]},1),
          (D,7,{[A,1],[B,1]},2)}

(C,7,{[A,1],[B,1]},2)

t=1

B

A

D

C

E

I.A = {(A,5,{[A,0]},0),(A,7,{[A,1]},1)}
I.B = {(B,3,{[B,0]},0)}

I.A = {(A,5,{[A,0]},0)}
I.B = {(B,3,{[B,0]},0)}

I.C = {(C,8,{[A,0],[B,0]},0)}
I.D = {(D,2,{[A,0],[B,0]},0)}

(A,7,{[A,1]},1)

t=3

B

A

D

C

E

I.A = {(A,7,{[A,1]},1)}
I.B = {(B,3,{[B,0]},0)}

I.A = {(A,5,{[A,0]},0)}
I.B = {(B,3,{[B,0]},0),(B,0,{[B,1]},1)}

I.C = {(C,8,{[A,0],[B,0]},0),
          (C,10,{[A,1],[B,0]},1)}
I.D = {(D,2,{[A,0],[B,0]},0)}

(B,0,{[B,1]},1)

t=5

B

A

D

C

E

I.A = {(A,7,{[A,1]},1)}
I.B = {(B,3,{[B,0]},0)}

I.A = {(A,5,{[A,0]},0),(A,7,{[A,1]},1)}
I.B = {(B,0,{[B,1]},1)}

I.C = {(C,8,{[A,0],[B,0]},0),
          (C,10,{[A,1],[B,0]},1)}
I.D = {(D,2,{[A,0],[B,0]},0),
          (D,5,{[A,0],[B,1]},1)}

(A,7,{[A,1]},1)

t=7

B

A

D

C

E

I.A = {(A,7,{[A,1]},1)}
I.B = {(B,3,{[B,0]},0),(B,0,{[B,1]},1)}

I.A = {(A,7,{[A,1]},1)}
I.B = {(B,0,{[B,1]},1)}

I.C = {(C,8,{[A,0],[B,0]},0),
          (C,10,{[A,1],[B,0]},1)}
I.D = {(D,2,{[A,0],[B,0]},0),
          (D,5,{[A,0],[B,1]},1),
          (D,7,{[A,1],[B,1]},2)}

(B,0,{[B,1]},1)

t=9

B

A

D

C

E

I.A = {(A,7,{[A,1]},1)}
I.B = {(B,0,{[B,1]},1)}

I.A = {(A,7,{[A,1]},1)}
I.B = {(B,0,{[B,1]},1)}

I.C = {(C,7,{[A,1],[B,1]},2)}
I.D = {(D,7,{[A,1],[B,1]},2)}

Figure 10 Propagation of change with QPROP
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t=1 A updates to 7 and propagates a new value (A, 7, {[A, 1]}, 1) to its direct successors.
At this point in time, only C receives this new value and stores it in its I.A set.

t=2 Given that C just received a new value it calculates the cross product between
{(A, 7, {[A, 1]}, 1)} and I.B. This results in a single set of arguments namely:
{(A, 7, {[A, 1]}, 1), (B, 3, {[B, 0]}, 0)}

This set of arguments is trivially glitch free given that >[s, preds] ∈ S : A∈ preds ∧
B ∈ preds (i.e. the values received from A and B do not originate from a common
source). C invokes its update lambda with 7 and 3 as arguments and propagates
the resulting value (i.e. (C, 10, {[A, 1], [B, 0]}, 1)) to E which stores it in its I.C set. C
removes all values from its I.A set which have an fClock value smaller than 1 and all
values from its I.B set which have an fClock value smaller than 0.

t=3 E calculates the cross product between {(C, 10, {[A, 1], [B, 0]}, 1)} and I.D. This
results in a single set of possible arguments for E:
{(C, 10, {[A, 1], [B, 0]}, 1), (D, 2, {[A, 0], [B, 0]}, 0)}. However, this set is not glitch free
given that both arguments do not have equal clock values for A. E therefore refrains
from invoking its update function.
Meanwhile, B updates to 0 and propagates this new value (B, 0, {[B, 1]}, 1) to its
direct successors. At this point in time, only D receives this new value and stores it
in its I.B set.

t=4 D calculates the cross product between {(B, 0, {[B, 1]}, 1)} and I.A. This results in
a single set of glitch-free arguments namely:
{(A, 5, {[A, 0]}, 0), (B, 0, {[B, 1]}, 1)}

D invokes its update function with 5 and 0 as arguments and propagates the
resulting value (i.e. (D, 5, {[A, 0], [B, 1]}, 1)) to E which stores it in its I.D set. D
removes all values from I.A which have an fClock value smaller than 0 and all values
from I.B which have an fClock value smaller than 1.

t=5 E calculates the cross product between {(D, 5, {[A, 0], [B, 1]}, 1)} and I.C. This
results in two sets of possible arguments for E:
{(C, 8, {[A, 0], [B, 0]}, 0), (D, 5, {[A, 0], [B, 1]}, 1)}
{(C, 10, {[A, 1], [B, 0]}, 1), (D, 5, {[A, 0], [B, 1]}, 1)}

This first set is not glitch free given that both arguments do not have equal clock
values for B. The second set is not glitch free either given that both arguments
do not have equal clock values for A nor B. E therefore refrains from invoking its
update function.
Meanwhile, D receives the value propagated by A at time t=1 and stores it in its I.A
set.

t=6 D calculates the cross product between {(A, 7, {[A, 1]}, 1)} and I.B. This results in
a single set of possible arguments: {(A, 7, {[A, 1]}, 1), (B, 0, {[B, 1]}, 1)}. D invokes
its update function with 7 and 0 as arguments and propagates the resulting value
(i.e. (D, 7, {[A, 1], [B, 1]}, 2) ) to E which stores it in its I.D set. D removes all values
from its I.A and I.B sets which have an fClock value smaller than 1.

t=7 E calculates the cross product between {(D, 7, {[A, 1], [B, 1]}, 2)} and I.C. This
results in two sets of possible arguments for E:
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{(C, 8, {[A, 0], [B, 0]}, 0), (D, 7, {[A, 1], [B, 1]}, 2)}
{(C, 10, {[A, 1], [B, 0]}, 1), (D, 7, {[A, 1], [B, 1]}, 2)}

This first set is not glitch free given that both arguments do not have equal clock
values for A nor B. The second set is not glitch free either given that both arguments
do not have equal clock values for B. E therefore refrains from invoking its update
function.
Meanwhile, C receives the value propagated by B at time t=3 and stores it in its I.B
set.

t=8 C calculates the cross product between {(B, 0, {[B, 1]}, 1)} and I.A. This results in
a single set of glitch-free arguments namely: {(A, 7, {[A, 1]}, 1), (B, 0, {[B, 1]}, 1)}. C
invokes its update function with 7 and 0 as arguments and propagates the resulting
value (i.e. (C, 7, {[A, 1], [B, 1]}, 2)) to E which stores it in its I.C set. C removes all
values from its I.A and I.B sets which have an fClock value smaller than 1.

t=9 E calculates the cross product between {(C, 7, {[A, 1], [B, 1]}, 2)} and I.D. This
results in three possible sets of arguments:
{(C, 7, {[A, 1], [B, 1]}, 2), (D, 2, {[A, 0], [B, 0]}, 0)}
{(C, 7, {[A, 1], [B, 1]}, 2), (D, 5, {[A, 0], [B, 1]}, 1)}
{(C, 7, {[A, 1], [B, 1]}, 2), (D, 7, {[A, 1], [B, 1]}, 2)}

The first set is not glitch free given that both arguments do not have equal clock
values for A nor B. The second set is not glitch free either given that both arguments
to do not have equal clock values for A. However, the last set of arguments fulfils
E’s glitch freedom constraint. E therefore invokes its update function with 7 and 7
resulting in 14. Note that E therefore updates with twice the value of A’s update at
time t=1, as prescribed by our example. E removes all values from its I.C and I.D
sets which have fClock values smaller than 2.

C Livelocks in QPROP and QUARP

This section provides two concrete examples of livelocks in distributed reactive pro-
gramming. In the first example all nodes run the QPROP algorithm while nodes in
the second example run the QUARP [26] algorithm.

C.1 Livelocks in QPROP

Figure 11 provides an overview of the application’s state as values propagate through
the microservices. We discuss QPROP’s behaviour and how E livelocks at each time
step.
t=0 The barrier phase completed. Each node stores its predecessors’ initial propagation

values in its I set. We remind the reader that E can only update using values from
C and D if the following holds:

U(valC, valD) ⇐⇒ valC.sClocks.A== valD.sClocks.A∧ valC.sClocks.B== valD.sClocks.B
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Figure 11 Livelocks in QPROP
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t=1 A updates to a1 and propagates a new value (A, a1, {[A, 1]}, 1) to its direct suc-
cessors. At this point in time, only C receives this new value and stores it in its I.A
set. Moreover, B updates to b1 and propagates a new value (B, b1, {[B, 1]}, 1) to its
direct successors. At this point in time, only D receives this new value and stores it
in its I.B set.

t=2 C calculates the cross product between {(A, a1, {[A, 1]}, 1)} and I.B. This results in
a single set of possible arguments: {(A, a1, {[A, 1]}, 1), (B, b0, {[B, 0]}, 0)}. C invokes
its update function with these values as arguments and propagates the resulting
value (i.e. (C, c1, {[A, 1], [B, 0]}, 1) ) to E which stores it in its I.C set. C removes all
values from its I.A set which have an fClock value smaller than 1 and all values from
its I.B set which have an fClock value smaller than 0.
D calculates the cross product between {(B, b1, {[B, 1]}, 1)} and I.A. This results in
a single set of possible arguments: {(A, a0, {[A, 0]}, 0), (B, b1, {[B, 1]}, 1)}. D invokes
its update function with these values as arguments and propagates the resulting
value (i.e. (D, d1, {[A, 0], [B, 1]}, 1) ) to E which stores it in its I.D set. D removes
all values from its I.A set which have an fClock value smaller than 0 and all values
from its I.B sets which have an fClock value smaller than 1.

t=3 Upon receiving C’s new value (i.e. before receiving D’s new value) E calculates
the cross product between {(C, c1, {[A, 1], [B, 0]}, 1)} and I.D. This results in a single
sets of possible arguments for E:
{(C, c1, {[A, 1], [B, 0]}, 1), (D, d0, {[A, 0], [B, 0]}, 0)}

This set is not glitch free given that both arguments do not have equal clock values
for A. E therefore refrains from invoking its update function. Upon receiving D’s
new value (i.e. after receiving C’s new value) E calculates the cross product between
{(D, d1, {[A, 0], [B, 1]}, 1)} and I.C This results in two sets of possible arguments for
E:
{(C, c0, {[A, 0], [B, 0]}, 1), (D, d1, {[A, 0], [B, 1]}, 1)}
{(C, c1, {[A, 1], [B, 0]}, 1), (D, d1, {[A, 0], [B, 1]}, 1)}

None of these sets are glitch free, E refrains from invoking its update function.
Meanwhile, D receives the value propagated by A at time t=1 and stores it in its I.A
set.

t=4 D calculates the cross product between {(A, a1, {[A, 1]}, 1)} and I.B. This results
in a single set of possible arguments:
{(A, a1, {[A, 1]}, 1), (B, b1, {[B, 1]}, 1)}

D invokes its update function with these values as arguments and propagates the
resulting value (i.e. (D, d2, {[A, 1], [B, 1]}, 2) ) to E which stores it in its I.D set. D
removes all values from its I.A and I.B set which have an fClock value smaller than
1.

t=5 E calculates the cross product between {(D, d2, {[A, 1], [B, 1]}, 2)} and I.C. This
results in two sets of possible arguments for E:
{(C, c0, {[A, 0], [B, 0]}, 1), (D, d2, {[A, 1], [B, 1]}, 2)}
{(C, c1, {[A, 1], [B, 0]}, 1), (D, d2, {[A, 1], [B, 1]}, 2)}
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None of these sets are glitch free, E refrains from invoking its update function.
Meanwhile, A updates to a2 and propagates a new value (A, a2, {[A, 2]}, 2) to its
direct successors. At this point in time, only C receives this new value and stores it
in its I.A set.

t=6 C calculates the cross product between {(A, a2, {[A, 2]}, 2)} and I.B. This results
in a single set of possible arguments:
{(A, a2, {[A, 2]}, 2), (B, b0, {[B, 0]}, 0)}

C invokes its update function with these values as arguments and propagates the
resulting value (i.e. (C, c2, {[A, 2], [B, 0]}, 2) ) to E which stores it in its I.C set. C
removes all values from its I.A set which have an fClock value smaller than 2 and
all values from its I.B set which have an fClock value smaller than 0.

t=7 E calculates the cross product between {(C, c2, {[A, 2], [B, 0]}, 2)} and I.D This
results in three sets of possible arguments for E:
{(C, c2, {[A, 2], [B, 0]}, 2), (D, d0, {[A, 0], [B, 0]}, 0)}
{(C, c2, {[A, 2], [B, 0]}, 2), (D, d1, {[A, 0], [B, 1]}, 1)}
{(C, c2, {[A, 2], [B, 0]}, 2), (D, d2, {[A, 1], [B, 1]}, 2)}

None of these sets are glitch free, E refrains from invoking its update function.
Meanwhile, C receives the value propagated by B at time t=1 and stores it in its I.B
set.

t=8 C calculates the cross product between {(B, b1, {[B, 1]}, 1)} and I.C. This results
in a single set of possible arguments:
{(A, a2, {[A, 2]}, 2), (B, b1, {[B, 1]}, 1)}

C invokes its update function with these values as arguments and propagates the
resulting value (i.e. (C, c3, {[A, 2], [B, 1]}, 3) ) to E which stores it in its I.C set. C
removes all values from its I.A set which have an fClock value smaller than 2 and
all values from its I.B set which have an fClock value smaller than 1.

t=9 E calculates the cross product between {(C, c3, {[A, 2], [B, 1]}, 3)} and I.D This
results in three sets of possible arguments for E:
{(C, c3, {[A, 2], [B, 1]}, 3), (D, d0, {[A, 0], [B, 0]}, 0)}
{(C, c3, {[A, 2], [B, 1]}, 3), (D, d1, {[A, 0], [B, 1]}, 1)}
{(C, c3, {[A, 2], [B, 1]}, 3), (D, d2, {[A, 1], [B, 1]}, 2)}

None of these sets are glitch free, E refrains from invoking its update function.
B updates to b2 and propagates a new value (B, b2, {[B, 2]}, 2) to its direct successors.
At this point in time, only D receives this new value and stores it in its I.B set.

The interleaving of messages for this example ensure that C and D never update using
the same values for A and B. As a result, E is never able to find a set of arguments
which do not cause glitches. Repeating this interleaving of messages therefore ensures
that E remains in a livelock.
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Figure 12 Livelocks in QUARP
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Figure 13 Livelocks in QUARP
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C.2 Livelocks in QUARP

Figure 12 and Figure 13 provide an overview of the application’s state as values
propagate through the microservices. Based on QUARP’s operational semantics [26]
we discuss how updates are propagated through the distributed dependency graph.
t=0 Source node A adds a1 with counter 0 to outA (src rule).
t=1 A transfers a1 to inC (rcv rule).
t=2 C evaluates and adds the result to outC (pub rule).
t=3 Source node A adds a2 with counter 1 to outA (src rule).
t=4 C transfers a1 to inD (rcv rule). D is unable to evaluate given that it is not active
(i.e. all of its input buffers do not contain a value).

t=5 A transfers a2 to inC (rcv rule).
t=6 C evaluates and adds the result to outC (pub rule).
t=7 C transfers a2 to inD (rcv rule). D is unable to evaluate given that it is not active.
t=8 A transfers a1 to inB (rcv rule).
t=9 B evaluates and adds the result to outB (pub rule).
t=10 B transfers a1 to inD (rcv rule). D is unable to evaluate given that the minimal

glitch freedom quality is not met (i.e. A= A→ 1= 0 is false).
t=11 A adds a3 with counter 2 to outA (src rule)).
t=12 A transfers a3 to inC (rcv rule).
t=13 C evaluates and adds the result to outC (pub rule).
t=14 C transfers a3 to inD (rcv rule). D is unable to evaluate given that the minimal

glitch freedom quality is not met (i.e. A= A→ 2= 0 is false).
In this example C propagates values at a higher pace than B (e.g. the link between A
and B suffers from higher latency than the link between A and C). Nodes in QUARP
systematically overwrite the previous value received from a predecessor. In other
words, each time E receives a new value from C it overwrites the previous value
received from C. E will therefore never be able to find a pair of values for which it can
update without causing glitches. As such, E is stuck in a livelock.

C.3 Comparing QUARP and QPROP

The fundamental difference between QUARP and QPROP is characterised by the kind
of topologies for which they might livelock.
QUARP nodes are vulnerable to livelocks for all graphs which can possibly exhibit

a glitch. The topology of such graphs (see Figure 14(A)) is characterised by a single
source node (i.e. A) which propagates values to a single node in the graph (i.e. C) via
more than one path. All such topologies can cause QUARP to let C livelock (see Sec-
tion C.2 for an example). In contrast, QPROP nodes cannot livelock for such topologies
given that QPROP nodes do not overwrite values received from predecessors.
The topology of graphs for which QPROP nodes can livelock (see Figure 14(B)) is

characterised by two or more source nodes (i.e. A and B) which all propagate values to
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B
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A

A
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C D
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Figure 14 A) minimal dependency graph topology for which QUARP livelocks. B) minimal
dependency graph topology for which QUARP and QPROP livelock.

a single node in the graph (i.e. D) via two or more overlapping paths (see Section C.1
for an example).
It is important to note that this second kind of topology is a specialisation of the

first: the subgraphs formed by the nodes {A, C , D} and {B, C , D} are both examples of
the first kind of topology. As such, all graphs for which QPROP nodes might livelock
contain at least two sub-graphs for which QUARP nodes might livelock. In other words,
QUARP nodes are vulnerable to livelocks for all topologies for which QPROP nodes are
vulnerable to livelocks but not vice versa. However, a QPROP node will eventually run
out of memory in case of a livelock as it stores all values received from predecessors.
This is not the case for QUARP nodes, given that these overwrite previously received
values.

D Dynamic Graph Topology Changes

The most crucial parts of QPROP and QPROPd are presented in Section 4.2 and
Section 5 respectively. In this section we detail the intentional graph topology changes
of QPROPd which are omitted from Section 5, namely nodes dynamically leaving or
joining the dependency graph and removing dependencies between nodes.

D.1 Addendum to Algorithm 4

Algorithm 5 contains the predicates and theMoveToI function omitted from Algorithm 4
for the sake of brevity. It is important to note that the predicates are to be considered
as macros (i.e. they expand when the node runs Algorithm 4). In other words, the
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ALGORITHM 5: Pre-propagation Predicates and MoveToI
1 Predicate isBrittle(pred) = [pred,_] ∈ Br
2 Predicate hasBrittleSibling(pred) = ∃[s, dps] ∈ S,∃predbrittle ∈ dps : pred ∈ dps∧ isBrittle(predbrittle)
3 Predicate isBrittleSibling(predbrittle, pred) = isBrittle(predbrittle)∧ ∃[s, dps] ∈ S : predbrittle ∈ dps∧ pred ∈ dps
4 Predicate synchronised(predbrittle) = ∀pred ∈ DP,∀[s, dps] ∈ S : isBritle(predbrittle)∧ pred ∈ dps∧ predbrittle ∈ dps =⇒
5 Br.predbrittle.first().sClocks.s− I.pred.first().sClocks.s≤ 1
6 Function MoveToI(predbrittle):
7 if [predbrittle,_] ∈ I then
8 I.predbrittle = I.predbrittle ∪ Br.predbrittle
9 else
10 I = I ∪ {[predbrittle, Br.predbrittle]}
11 end
12 Br = Br \ {[predbrittle,_]}
13 return
14

B
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E

A

a1

a1

a1

a1

B

A

D

C

E

B

a2
a2

a1

Figure 15 (A)Dependency graph before dynamic removal of a dependency between A and
D. Source A propagates value a1.(B)Dependency graph after dynamic removal
of a dependency between A and D. Source A propagates value a2.

free variables in the predicates (e.g. Br in isBrittle) are bound to the corresponding
node elements upon expansion.

D.2 Dynamic Dependency Removal

Figure 15(A) and (B) respectively show the state of a dependency graph before and
after removing the dependency between A and D. As is the case for the addition of
a new dependency (see Section 5.1), QPROPd’s task is to guarantee glitch freedom
during the removal operation while values are propagating through the dependency
graph.
Assume A propagates a1 before the dependency between A and D is removed. Fur-

thermore, assume E is able to update itself using these two values (see Figure 15(A)).
At this point E’s S dictionary contains two entries: [A, {C, D}] and [B, {C, D}] In Fig-
ure 15(B) the dependency between A and D has been removed. This entails that the
A entry in E’s S dictionary now looks as follows: [A, {C}]. Assume A propagates a2 to
C (given that D is no longer a successor of A). According to the change Handler (see
Section 4.2.4), E now only needs to ensure that it uses arguments for which the B
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clock times are equal. This would lead E to update itself using a1 from D and a2 from
C, which constitutes a glitch.

This problem arises whenever a nodemust modify an existing entry in its S dictionary.
In our example, E removes D from [A, {C, D}]. In other words, all values stored by E in
I.D have become stale given that D no longer propagates values which originate from
A. To avoid this issue, E must therefore remove all values received from D in I.D.

ALGORITHM 6: Dynamic de-
pendency removal
arguments :A predecessor to remove pred

1 sources= await pred← remSucc(self)
2 I = I \ {I.pred}
3 DP= DP \ {pred}
4 await self ← remSources(pred, sources)
5 if |DP|== 0 then
6 foreach succ ∈ DS do
7 await succ← addSource(self , self)
8 end
9 end

Handler remSucc(succ)
1 DS= DS \ {succ}
2 if |DP|== 0 then
3 return {self}
4 else
5 allSources= {s|[s,_] ∈ S}
6 return allSources
7 end

Handler remSources(from,sources)
1 removed= {}
2 foreach source ∈ sources do
3 S.source= S.source \ {from}
4 if S.source== ; then
5 S= S \ {[source, {}]}
6 removed= removed∪ {source}
7 else
8 I.from= {}
9 end
10 end
11 foreach succ ∈ DS do
12 await succ← remSources(self , removed)
13 end

Handler addSource(from,source)
1 if [source,_] ∈ S then
2 S.source= S.source∪ {from}
3 else
4 S= S∪ {[source, {from}]}
5 end
6 foreach succ ∈ DS do
7 await succ← addSource(self , source)
8 end

A node n dynamically removing a dependency to a predecessor pred runs Algo-
rithm 6. In a first step, n informs pred that it is removing the dependency by sending
the remSucc message. Furthermore, n removes pred’s input set from I and updates its
direct predecessors DP. Upon receiving the remSucc message (see the remSucc Han-
dler) pred removes n from its set of direct successors (i.e. DS) and returns a set with
all sources which are able to reach it. n uses this set as an argument to the remSources
message which it sends to itself. The remSources Handler will recursively update the
topological information held by n and all its direct and downstream successors.
For our example depicted in Figure 15 D will send itself the remSources message

with A as arguments for both from and sources. As a result, D will remove A from the
[A, {A}] entry in S (see line 3). Given that S.A is now empty, D removes the entire
entry from S (see lines 5 and 6). In other words, D will no longer propagate values
originating from A and notifies E of this fact by recursively sending the remSources
message to E using D and A as arguments. Upon receiving the message, E removes D
from [A, {C, D}] in S. Given that E can still receive values originating from A through
C it must empty D’s input set (see line 8) in order to avoid the aforementioned glitch.

Once all of n’s direct and downstream successors have finished updating, n needs to
ensure that it didn’t become a source node by removing the dependency with pred (i.e.
pred was its only direct predecessor). If n did become a source, it notifies its direct and
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Figure 16 QPROP’s maximum throughput for the fleet management application. Error bars
indicate the 95% confidence interval

downstream successors of this fact by sending the addSource message. In a nutshell,
the addSource Handler updates a node’s S set based on the newly reachable source.

D.3 Dynamic Node Addition and Removal

ALGORITHM 7: Dynamic node addi-
tion
1 foreach pred ∈ DP do
2 /*Proceed with Algorithm 3*/
3 end
4 foreach succ ∈ DS do
5 /*Let succ Proceed with Algorithm 3*/
6 end

ALGORITHM 8: Dynamic node
removal
1 foreach pred ∈ DP do
2 /*Proceed with Algorithm 6*/
3 end
4 foreach succ ∈ DS do
5 /*Let succ Proceed with Algorithm 6*/
6 end

Adding a node n dynamically to a dependency graph is equivalent to letting n sequen-
tially run Algorithm 3 with each of its direct predecessors as arguments. Moreover,
each of n’s direct successors runs Algorithm 3 with n as argument. Similarly, remov-
ing a node dynamically from a dependency graph follows the same pattern using
Algorithm 6.

E Additional Benchmark Results

E.1 Use Case Comparison

In Section 6.1 we compare QPROP’s throughput with SID-UP’s throughput for our
fleet management application. The results show that SID-UP’s maximum throughput
is 100 requests per second, while QPROP is able to scale up to Emixis’ daytime load of
300 requests per second. In order to measure QPROP’s maximum throughput for our
use case we vary the request load to 1400 requests per second. Figure 16 shows the
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Figure 17 Heap memory usage across ser-
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fidence interval
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Figure 19 Heap memory usage per ser-
vice for a load of 300 requests
per second. Error bars indicate
the 95% confidence interval
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Figure 20 RSS memory usage per service
for a load of 300 requests per
second. Error bars indicate the
95% confidence interval

results for this experiment. QPROP is roughly able to handle 700 requests per second,
after which throughput becomes negatively affected by the increasing load.
Figure 17 and Figure 18 show the results for the memory measurements. SID-UP

suffers from an overhead for both heap memory usage as well as RSS memory usage.
To understand this overhead, consider Figure 19 and Figure 20 which detail the heap
memory usage and RSS memory usage per service for a load of 300 requests per
second. The services running QPROP consistently use less heap and RSS memory,
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Figure 21 Request processing time under varying load. Error bars indicate the 95% confi-
dence interval

although this could be attributed to implementation differences. The major difference
between both approaches comes from the fact that SID-UP requires an additional
admitter service to coordinate updates to the application.
Figure 21 shows the request processing times for both approaches under varying

load. Although QPROP suffers from a latency overhead, one clearly sees that SID-UP
suffers from a much larger processing time overhead. The reason for this overhead
is that a request can only be handled by SID-UP once the previous request has been
handled. In contrast, QPROP allows our fleet management application to handle
requests in parallel.

E.2 General Comparison

This section contains the benchmark results for the larger microservice system which
are omitted from Section 6.2.
Figure 22 shows the latency results comparing QPROP and SID-UP . Figure 23 shows

the latency results comparing QPROPd and SID-UP under a load of 100 requests per
second. As is the case for the fleet management application, QPROP introduces an
overhead with regards to latency. Dynamic topology changes only seem to impact
QPROPd’s latency periodically. More precisely, in QPROPd a topology change will
render the part of the dependency graph affected by the change unresponsive until
the change completes. As a result, our benchmarks show an increase in outliers while
the average latency remains roughly similar across the benchmarks. In contrast, SID-
UP’s latency is unaffected by load or dynamic topology changes. The reason for this
phenomenon is explained in Section 6.1. SID-UP’s latency is unaffected by dynamic
topology changes for essentially the same reason. A change is only performed on
the dependency graph whenever the previous change has completed or the previous
propagation value has traversed the graph.

5:43



Distributed Reactive Programming for Reactive Distributed Systems

0 50 100
100

200

300

400

500

600

700

800
QPROP
SID-UP

Latency under Varying Load

Load (requests/s)

La
te

nc
y 

(m
s)

Figure 22 Latency under varying loads.
Error bars indicate the 95%
confidence interval
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Figure 26 Concurrent interactions under varying loads. Error bars indicate the 95% confi-
dence interval

Figure 24 shows the average processing time per request. As is the case for the fleet
management application, SID-UP suffers from a significant overhead as load increases.
Figure 25 shows how processing times are affected by dynamic topology changes,
both systems are put under a static load of 100 requests per second. The results show
that topology changes hardly affect processing times.

E.3 Concurrent Interactions

QPROP and QPROPd allow updates to source nodes to concurrently traverse the
dependency graph. As a result it can happen that a node depending on two source
nodes only updates once as a result of both source nodes updating. We call this
phenomenon concurrent interactions.
We measure the amount of concurrent interactions for the larger, artificial, microser-

vice system. Regular benchmarks are stopped whenever the sink nodes processed the
given amount of load (see Section 6). For the concurrent interactions benchmarks we
stop the benchmark as soon as the source nodes have produced the given amount of
load. The difference between the generated amount of load by the source nodes and
processed amount of load (i.e. updates) by the sink nodes allow us to measure the
amount of concurrent interactions.
Figure 26 shows the amount of concurrent interactions as load increases. As the

load increases the opportunities for multiple source nodes to update concurrently and
for nodes in the dependency graph to receive partial updates increases. Hence, the
amount of concurrent interactions increase as well.
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F Glitch Freedom, Termination and Eventual Consistency

Informally, an application is glitched if it has only partially been updated as the result
of a change in one of the event sources (i.e. one of the source nodes in the underlying
dependency graph). Such a partial update is the result of an incorrect traversal of the
dependency graph by the propagation algorithm. In other words, the algorithm has
updated a certain node before it updated all of its predecessors in the dependency
graph.
To aid us in proving3 that QPROP is glitch free we introduce the following definitions:

Definition 1 (Dependency Graph) A dependency graph is a pair (N, E) where N is the
set of nodes and E is a set of pairs denoting directed edges between nodes in N. This graph
consists of three types of nodes:

Source nodes : {nso ∈ N|>n ∈ N : (n, nso) ∈ E}.
Intermediate nodes : {ni ∈ N|∃n1, n2 ∈ N : (n1, ni) ∈ E∧ (ni, n2) ∈ E}.
Sink nodes : {ns ∈ N|>n ∈ N : (ns, n) ∈ E}

Definition 2 (Path) P(x, y) denotes the existence of a path in a dependency graph (N, E)
between nodes x and y. In other words :

P(x, y) ⇐⇒ (x, y) ∈ E∨ ∃z ∈ N : P(x, z)∧ P(z, y).

Definition 3 (Propagation Path) The set of reachable nodes starting from a source
node nso is a partially ordered set: PPnso

= {nso} ∪ {n ∈ N|P(nso, n)}. The order of the nodes
in this set is defined as follow: ∀n1, n2 ∈ PPnso

: n1 > n2 ⇐⇒ P(n1, n2). We say that PPnso

is n′sos propagation path.

Definition 4 (Precedence) We define that a node x directly precedes a node y in a depen-
dency graph (N, E) as follows: x >> y ⇐⇒ ∃(x, y) ∈ E. Similarly, we define that a node x
directly succeeds a node y in a dependency graph (N, E) as follows: x << y ⇐⇒ ∃(y, x) ∈ E
Note that both relations are non-transitive.

F.1 Exploration Correctness

QPROP’s exploration phase guarantees that a node n’s Sn dictionary contains en-
tries which map each source node nso able to reach n onto n’s direct predecessors
DPn = {dp ∈ N|dp>> n}. More precisely:

Theorem 1 (Exploration Correctness)

∀n ∈ N,∀dpi ∈ DPn : ∃P(nso, dpi) ⇐⇒ ∃[nso, {..., dpi, ...}] ∈ Sn

We prove this by contradiction: a node n is reachable by a source node nso through
a direct predecessor dpi. However Sn lacks an entry which reflects this fact. Formally:

∃n ∈ N,∃dpi ∈ DPn,∃P(nso, dpi) : >[nso, {..., dpi, ...}] ∈ Sn

3Our proof technique was inspired by the one employed in [12].
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This means that dpi did not include nso as an argument to the sources message (see
Section 4.2.2). A node only sends the sources message if it has received the sources
message from all its direct predecessors (see the sources Handler on line 10). Therefore,
at least one of dpi’s direct predecessors should have included nso as an argument to its
sources message but failed to do so. Iteratively applying this reasoning would entail
that nso did not include itself in the sources message to each of it direct successors. As
shown in Algorithm 1 on line 8 this cannot be the case.

F.2 Glitch Freedom

Definition 5 (Glitch) Assume a node n with update lambda Un and a set of direct
predecessors DPn = {dp ∈ N|dp>> n}. If vdpi

denotes a value propagated to n by dpi and
Timenso

(vdpi
) denotes a source node nso’s timestamp attached to vdpi

then U(vdp1
, ..., vdp|DPn |

)
produces a glitch if:

∃P(nso, dpi)∧ ∃P(nso, dpj)∧ Timenso
(valdpi

) 6= Timenso
(valdpj

)

We refer the reader to Section 4.1 for an intuitive explanation of glitches and glitch
freedom.

Theorem 2 (Glitch Freedom)

∀n ∈ N : Un(vdp1
, ..., vdp|DPn |

) ⇐⇒ ∀[nso, {dpi, ..., dpj}] ∈ Sn : Timenso
(vdpi
) == Timenso

(vdpj
)

Assume a set of source nodes Nso = {nso1
, ..., nson

} update and propagate their new
values to all their direct successors concurrently. For a glitch to occur, at least one
node n in PPNso

=
⋃n

i=1 PPnsoi
needs to update itself with a set of values vals such that

∃nso ∈ Nso,∃vdpi
, vdpj

∈ vals : Timenso
vdpi
6= Timenso

vdpj
. A node is only able to invoke its

update lambda if line 3 in the change Handler (see Section 4.2.4) returns a set of
glitch free arguments. We discern two cases. First, n was unable to find such a set of
glitch free arguments. In this case n could not have invoked its update lambda and
could therefore not have caused a glitch which contradicts our assumption. Second,
line 3 in the change Handler returned vals as set of glitch free arguments. In this case n
can safely invoke its update lambda using vals as arguments without causing a glitch
which contradicts our assumption.

F.3 Monotonicity

Definition 6 (Monotonic update) Assume a node n with update lambda Un, a set of
direct predecessors DPn = {dp ∈ N|dp>> n}. n invokes its update lambda using the fol-
lowing set of arguments Argst = {vdp1

, ..., vdp|DPn |
}. Moreover, n’s clock value is t before this

update happens. Later, at clock time t+ n, n invokes its update lambda using the following
set of arguments: Argst+n = {v′dp1

, ..., v′dp|DPn |
}. We say that n updates monotonically if and

only if:

>dpi ∈ DPn, vdpi
∈ Ar gst , v′dpi

∈ Ar gst+n : Timenso
(vdpi

)> Timenso
(v′dpi

).
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In other words, once n updates with a value vdpi
originating from a source nso it will

never update with an older value originating from the same source.

Theorem 3 (Monotonicity) Nodes always update monotonically.

We prove this by contradiction. Assume n updates twice: first using Argst as set of
arguments to Un and later using Argst+n as a set of arguments to Un. We assume that
n updated non-monotonically, in other words the following holds:

∃dpi ∈ DPn, vdpi
∈ Ar gst , v′dpi

∈ Ar gst+n : Timenso
(vdpi

)> Timenso
(v′dpi

).

Given that vdpi
and v′dpi

are the results of dpi’s updates this means that dpi updated
non-monotonically. Applying this reasoning iteratively results in a direct successor of
nso updating non-monotonically. In other words, nso first propagated a value vnso

and
then a value v′nso

for which the following holds:

Timenso
(vnso
)> Timenso

(v′nso
)

However, this cannot happen given that clock times only monotonically increase (see
line 6 in the change handler). Consequently, this means that none of nso’s direct or
indirect successors could have updated non-monotonically which contradicts our
original assumption.

F.4 Eventual Consistency

Theorem 4 (DAG Construction) Any DAG can be constructed by recursively adding
sink nodes (i.e. nodes with an out degree of 0) starting from the empty DAG.

Every DAG has at least one topological ordering. Hence, one can construct any DAG by
recursively adding nodes in the order for which they appear in the DAG’s topological
ordering. By the definition of topological ordering this entails that each node is added
to the DAG before any of its successors. In other words, in each recursive step a node
is added with out degree 0.

Definition 7 (Consistency) A distributed dependency graph is consistent if the following
holds:

∀nso ∈ N, n ∈ PPnso
: Timenso

(lastProp(n)) = clock(nso).

We denote the value of source node nso’s clock with clock(nso) and we denote the last
propagated value by n with lastProp(n).

In other words, all nodes n in a source node nso’s propagation path must have witnessed
its last update.

Theorem 5 (Eventual Consistency) If all source nodes stop propagating new values,
eventually the dependency graph reaches consistency.
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We prove this by structural induction over the dependency graph (i.e. a DAG
constructed by recursively adding sink nodes starting from the empty DAG). The
induction base considers a dependency graph containing a single node. This node is
trivially consistent with itself. The induction hypothesis is that a given dependency
graph n reaches consistency when all of its source nodes stop propagating new values.
The induction step extends this graph n with a new sink node nnew. We do this by
adding an arbitrary amount of edges from an arbitrary amount of nodes in n to
the new sink node. We prove by contradiction that this new graph is eventually
consistent. Assume that all source nodes have stopped propagating updates and that
our graph is inconsistent. Given our hypothesis this can only mean that nnew causes
the inconsistency. In other words:

∃nso ∈ N : nnew ∈ PPnso
∧ Timenso

(lastProp(nnew)) 6= clock(nso).

There are two possible reasons for this:
First, nnew was unable to update using its direct predecessors’ last propagated value

without causing a glitch. In other words, at least two of these values have a different
sClock timestamp for nso. However, the induction hypothesis ensures that nnew’s direct
predecessors have witnessed nso’s last update. Therefore, it is impossible for at least
two of nnew’s direct predecessor to propagate values with a different sClock timestamp
for nso.
Second, nnew was able to update itself using its direct predecessors’ last propagated

value, yet it still causes the graph’s inconsistency. Through the change Handler (see
Section 4.2.4) we know that nnew’s last propagated value’s sClocks is a union of the
sClocks of all values received from nnew’s direct predecessors. By definition this means
that the following holds:

∀dp ∈ {dp ∈ N|dp>> n} : Timenso
(lastProp(dp)) = Timenso

(lastProp(nnew))

Moreover, the induction hypothesis ensures that the following holds:

∀dp ∈ {dp ∈ N|dp>> n} : Timenso
(lastProp(dp)) = clock(nso).

Therefore, Timenso
(lastProp(nnew)) = clock(nso) which contradicts our original assump-

tion.

F.5 Progress

Informally, a distributed system makes progress if it performs useful computations
towards termination [14]. In our case we define this termination as follows.

Definition 8 (Update Completion) Assume a source node nso which updates and prop-
agates a new value vnso

. The update which caused nso to propagate vnso
completes if

eventually:

∀n ∈ PPnso
: Timenso

(lastProp(n)) = Timenso
(vnso
)
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In other words, we say that a distributed reactive system provides progress if (con-
current) updates are guaranteed to finish in a finite amount of time. QPROP and
QPROPd are therefore unable to guarantee progress given that both suffer from live-
locks (see Section 7 and Appendix C.1 for examples and future avenues of research). In
a nutshell, infinite concurrent updates to at least two source nodes can cause livelocks
for common successors to said source nodes. However, assuming that concurrent
updates stop, both algorithms are able to guarantee the completion of at least the
last update to each source node. This trivially follows from the proof on eventual
consistency (see Section F.4).

F.6 Dynamic Graph Changes

Essentially, QPROPd provides two dynamic operations: adding and removing a depen-
dency between nodes. Adding and removing a node from the dependency graph are
sequences of dependency additions and removals. We therefore prove the correctness
of dependency addition and removal.

Dynamic Dependency Addition We refer the reader to Section 5.2 for a detailed expla-
nation on the issue which can arise upon dynamically adding a dependency between
two nodes in the dependency graph. Assume a node n1 part of a source node’s nso’s
propagation path PPnso

. Moreover, assume nso propagates values Vbefore = {v1, ..., vn}
to its successors. A dependency is dynamically added from a node n2 to n1, which
therefore adds n2 to PPnso

. After this, nso propagates values Vafter = {vn+1, ..., vn+n} to
its successors However, n2 will never receive values from Vbefore given that these were
propagated before it joined nso’s propagation path. QPROPd must therefore ensure
that all nodes in PPnso

update using values from Vbefore before updating using values
from Vafter.
We prove this by contradiction. Assume a node n3 in PPnso

updates using values
from Vafter without first updating using values from Vbefore. Given that nodes propagate
values in order, this can only mean that ∃P(n2, n3) (i.e. all other nodes in PPnso

will
first propagate values from Vbefore). According to Algorithm 3 n3 must have received
the addSources message from at least one of its predecessors n3pred

. Moreover, n3pred

must be a direct successor of n2 and must have added n2 to its Br dictionary. Line 11 in
Algorithm 4 ensures that n3pred

will only update itself using the first value of Vafter (i.e.
vn+1) if it previously updated itself with the last value of Vbefore (i.e. vn). Hence, n3 can
impossibly receive values from Vafter before receiving values from Vbefore.

Dynamic Dependency Removal We refer the reader to Section D.2 for a detailed
explanation on the issue which can arise upon dynamically removing a dependency
between two nodes in the dependency graph. Dynamically removing a dependency
between a node n2 and its predecessor n1 changes n2’s S dictionary as well as the S
dictionaries of all its successors. QPROPd must therefore ensure glitch freedom while
nodes update their topological information.
A node n only updates its topological information as a result of receiving the

remSourcesmessage (see remSources Handler). We discern two cases. First, n removes
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an entry for a source node nso from S (see line 5 in the remSources Handler). In this
case, n only had a single predecessor propagating values which originate from nso

and can therefore not produces glitches. Second, n removes a predecessor pred from
an entry for a source node nso which still contains other predecessors preds. However,
in this case n removes all values for pred from I. All subsequent values n will receive
from pred will no longer originate from nso and can therefore not cause glitches.
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