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Abstract One Monad to Prove Them All is a modern fairy tale about curiosity and perseverance, two im-
portant properties of a successful PhD student. We follow the PhD student Mona on her adventure of proving
properties about Haskell programs in the proof assistant Coq.

On the one hand, as a PhD student in computer science Mona observes an increasing demand for correct
software products. In particular, because of the large amount of existing software, verifying existing software
products becomes more important. Verifying programs in the functional programming language Haskell is no
exception. On the other hand, Mona is delighted to see that communities in the area of theorem proving are
becoming popular. Thus, Mona sets out to learn more about the interactive theorem prover Coq and verifying
Haskell programs in Coq.

To prove properties about a Haskell function in Coq, Mona has to translate the function into Coq code. As
Coq programs have to be total and Haskell programs are often not, Mona has to model partiality explicitly
in Coq. In her quest for a solution Mona finds an ancient manuscript that explains how properties about
Haskell functions can be proven in the proof assistant Agda by translating Haskell programs into monadic
Agda programs. By instantiating the monadic program with a concrete monad instance the proof can be
performed in either a total or a partial setting. Mona discovers that the proposed transformation does not
work in Coq due to a restriction in the termination checker. In fact the transformation does not work in Agda
anymore as well, as the termination checker in Agda has been improved.

We follow Mona on an educational journey through the land of functional programming where she learns
about concepts like free monads and containers as well as basics and restrictions of proof assistants like Coq.
These concepts are well-known individually, but their interplay gives rise to a solution for Mona’s problem
based on the originally proposed monadic tranformation that has not been presented before. When Mona
starts to test her approach by proving a statement about simple Haskell functions, she realizes that her ap-
proach has an additional advantage over the original idea in Agda. Mona’s final solution not only works for
a specific monad instance but even allows her to prove monad-generic properties. Instead of proving proper-
ties over and over again for specific monad instances she is able to prove properties that hold for all monads
representable by a container-based instance of the free monad. In order to strengthen her confidence in the
practicability of her approach, Mona evaluates her approach in a case study that compares two implementa-
tions for queues. In order to share the results with other functional programmers the fairy tale is available as
a literate Coq file.

If you are a citizen of the land of functional programming or are at least familiar with its customs, had a
journey that involved reasoning about functional programs of your own, or are just a curious soul looking for
the next story about monads and proofs, then this tale is for you.
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One Monad to Prove Them All

Prologue This is a literate Coq file Dylus [11], that is, it can be compiled with Coq1
as it is.

1 Preamble

O
nce upon a time there was a computer scientist called Mona D. living in the
beautiful land of functional programming. The land of functional program-
ming was divided into several kingdoms. Mona lived in the kingdom of

Haskell, a land where all citizens used the pure lazy functional programming language
Haskell.

Mona was pursuing her PhD when one day, her adviser told her about the magical
kingdom of Coq. In the magical kingdom of Coq, all citizens used the dependently
typed programming language Coq. With Coq, the citizens were not only able to write
functional programs but also to formally prove properties about these programs.

Mona was fascinated by the idea of proving properties about programs. While her
colleagues in the department of software engineering were still writing tests and
hoped to catch all bugs that way, she could once and for all prove that her programs
were correct. Mona’s adviser suggested to her to visit an allied department where she
could stay for a semester. With her good intentions at heart, our hero set out to the
kingdom of Coq to learn more about the Coq programming language.

Soon after Mona got to the kingdom of Coq she realized that proving statements
about programs came at a price in Coq. In Coq, all functions have to be provably total.
Most of the citizens in the kingdom of Haskell, however, did not care about totality as
they were used to working with partial functions. Therefore, Mona could not simply
use the Haskell programs she had one-to-one in Coq.

Our hero went to the largest library in the kingdom of Coq and consulted many
manuscripts2 written by sages from the entire land of functional programming. The
first manuscript she found was written by Breitner et al. [5]. In this manuscript,
the authors proved statements about Haskell programs in Coq. They transformed
Haskell programs into Coq programs by keeping as much of the structure of the
Haskell programs as possible. In order to model partial functions they added an
opaque constant default : A for every non-empty type A. By means of this constant
they defined a function error : String → A that was used to model the corresponding
Haskell function. Because default is opaque, the concrete value of default cannot be
used in any proofs.

While Mona really liked the manuscript by Breitner, Spector-Zabusky, Li, Rizkallah,
Wiegley, and Weirich, they could not reason about partial values and, thus, about the
strictness of an implementation. Furthermore, she found manuscripts that emphasized
the importance of considering partial values. For example, in a manuscript by Johann
et al. [15] she read about the destroy/unfoldr rule as presented by Svenningsson [23].

1 The file was tested with Coq version 8.7 and 8.8.
2 In Mona’s days the term manuscript was used as a synonym for all kinds of scientific
references.
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This rule fuses a list consumer with a list producer. The destroy/unfoldr rule does
not hold if partial values are considered and a strict evaluation primitive like seq is
available. Moreover, partial functions are often necessary in the implementation of
data structures, whose invariants cannot be encoded in Haskell’s type system. For
example, a function might be undefined for an empty list but an invariant states that
the argument will never be an empty list.

Mona also read a manuscript by Danielsson et al. [10] about relating the total
interpretation of a function with an interpretation of the same function that models
partiality. In essence, when the function is only applied to total arguments, the two
interpretations behave the same. While Mona saw the importance of this connection,
the approach was still not able to argue about partial functions. For example, it was not
sufficient that a program transformation held for all total arguments, if the compiler
could not enforce that the arguments are always total.

Mona did not give up. There had to be a way to get the best of both worlds. That
is, argue about a Haskell function with respect to total values whenever possible
and argue about partial values only if necessary. Mona went to the largest library
in the whole land of functional programming. And indeed she found a manuscript
by Abel et al. [1] that discussed exactly the problem she was trying to solve. Abel,
Benke, Bove, Hughes, and Norell lived in the nearby magical kingdom of Agda, where
dependently typed programming was also highly regarded by its citizens. Abel, Benke,
Bove, Hughes, and Norell presented an approach to translate Haskell programs into
monadic Agda programs. By instantiating the monadic program with a concrete
monad instance one could choose the model a statement should be proven in. For
example, if Mona chose the identity monad, she would work in a total world while
the maybe monad allowed her to argue about partiality. Furthermore, she would not
have to make any changes to her program but could argue about the same program
regardless of the monad she chose.

Abel, Benke, Bove, Hughes, and Norell used monadic expressions to model possibly
undefined expressions. As Haskell is non-strict, a data structure may contain an
undefined expression that is never demanded. For example, a cons may have an
undefined tail. Mona enthusiastically defined the following inductive data type for
lists in Coq, which resembled the corresponding definition by Abel, Benke, Bove,
Hughes, and Norell in Agda.3

Fail Inductive List M A :=
| nil : List M A
| cons : M A→ M (List M A)→ List M A.

In Coq, all arguments of a type or function can be annotated: values as well as types.
As a Haskell programmer, Mona was not used to annotating type variables with their
types, so she used the code convention that type variables would not be annotated,
if they could be inferred — just like she was used to in her Haskell programs. That
is, Mona could use M : Type→ Type and A : Type in the definition of List, but these

3 Coq uses GADT-style data type definitions.
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annotations were inferred by the system, so she left them out. Moreover, she used the
convention that constructors start with a lower-case letter.

When Mona tried to compile the definition of List in a current version of Coq, she
was quite disappointed. As indicated by the keyword Fail, the Coq compiler accepted
the definition List only if it caused an error. In Mona’s case, the Coq compiler presented
the following error message.

The command has indeed failed with message:
Non-strictly positive occurrence of “List” in “M A→ M (List M A)→ List M A”.

Mona thought that she had made a mistake when translating the Agda definition
to Coq. She wrote a letter to a friend in the kingdom of Agda. A few days later she
received an unexpected answer: the definition did not work in Agda either. At the
time the manuscript by Abel et al. [1] was written, the rules in the kingdom of Agda
were less strict, but that was a long time ago. Meanwhile, the king of the kingdom
of Agda had realized that the rules needed to be changed. The programs that could
be defined using the old rules were not safe! Following the example of the magical
kingdom of Coq, non-strictly positive occurrences as mentioned in the error message
above were now disallowed in the kingdom of Agda as well.

In this story, Mona D. went on a journey to find a model for Haskell programs in
Coq that obeyed the king’s rules. She learned about the laws of the kingdom of Coq
from the perspective of a programmer from the kingdom of Haskell. Mona would also
meet fellows with an interest in more theoretical aspects of functional programs and
approaches for generic programming in Haskell. On the way to achieving her goal,
there were many obstacles to overcome. Led by her curiosity and her perseverance,
reading a lot of manuscripts and meeting with her fellows would ultimately give Mona
the inspiration how to tackle her problem.

2 The Problem

M
ona spent the next days searching for manuscripts about possible adaptations
of the approach by Abel et al. [1] that worked in a current version of Coq.
Nothing came up, but Mona did not want to give up. Thus, she used her

most powerful weapon in defeating scientific obstacles: her perseverance. She tried
multiple simplified versions of data type definitions similar to List and checked for
each whether the error still occurred. The simplest data type definition she found
that caused the same error looked as follows.
Fail Inductive NonStrictlyPos := con : (NonStrictlyPos→ nat)→ NonStrictlyPos.

When Mona compiled this definition, she got the following error message.

The command has indeed failed with message:
Non-strictly positive occurrence of “NonStrictlyPos” in “(NonStrictlyPos→ nat)
→ NonStrictlyPos”.

So Mona wondered what it meant that NonStrictlyPos occurs in a non-strictly positive
way in the type signature of con : (NonStrictlyPos → nat) → NonStrictlyPos. Mona
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remembered hearing about a class of Adam Chlipala explaining the intricacies of Coq
very well. She looked up the term “strictly positive” and indeed found the relevant
note in Chlipala’s manuscript [6].

We have run afoul of the strict positivity requirement for inductive definitions,
which says that the type being defined may not occur to the left of an arrow in
the type of a constructor argument.

An inductive type like NonStrictlyPos obeys the strict positivity requirement, if
its recursive occurrences are strictly positive in the types of all arguments of its
constructors. Mona realized that the important part of the definition was that she
needed to check the types of all arguments of a constructor and not the type of the
constructor itself. Here, the inductive type has only one constructor con and this
constructor has only one argument of type NonStrictlyPos → nat. A type τ occurs
strictly positively in a type τ1 → ...→ τn → τ if and only if τ does not occur in any
of the types τi with i ranging from 1 to n. Mona took another look at the malicious
definition and understood. The type NonStrictlyPos occurs non-strictly positively in
one of its argument types, namely in NonStrictlyPos→ nat. The recursive occurrence
of the type NonStrictlyPos is “left of an arrow”. In other words NonStrictlyPos occurs as
an argument type of NonStrictlyPos→ nat, which makes NonStrictlyPos a non-strictly
positive type. In contrast, the following definition is not problematic.
Inductive StrictlyPos := con : StrictlyPos→ (nat → StrictlyPos)→ StrictlyPos.

The first argument of con of type StrictlyPos is not problematic as it is trivially strictly
positive. In the second argument of con, StrictlyPos does not occur to the left of an
arrow in the type nat → StrictlyPos. That is, as StrictlyPos occurs strictly positively in
all arguments of the constructor con, it fulfills the strict positivity requirement.

Mona still wondered why the king disallowed a definition like NonStrictlyPos in Coq.
At lunch the next day, she talked about her insights with some PhD students. One of
them had read about restrictions of dependently typed languages and explained to
her that while the definition itself did not cause any trouble, it is possible to define
functions that cause trouble. Back at Mona’s computer, they tried to understand the
restriction given the following innocent looking function in Coq assuming that the
above definition of NonStrictlyPos was accepted.
Definition applyFun (t : NonStrictlyPos) : nat :=
match t with
| con f ⇒ f t
end.

The function applyFun simply took a value of type NonStrictlyPos and applied the
function inside the argument of con to the value itself. A problematic example usage
of this function is the expression applyFun (con applyFun). Reducing the expression by
using the definition of applyFun yields applyFun (con applyFun) again, which indicates
that this expression will not terminate.

Mona now remembered something she learned in her first course about functional
programming in Haskell, namely the following data type.
Fail Inductive Mu A := mu : (Mu A→ A)→ Mu A.
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This data type can be used to implement a fix-point combinator without explicit
recursion. Before her colleague left to prepare his next tutoring class, he suggested her
to consult a manuscript by McAdam [20] to refresh her memory about the Mu data
type. If Coq allows a data type like Mu, all of a sudden general recursion is available
and the corresponding logic becomes inconsistent. Thus, a data type definition that
has recursive occurrences to the left of an arrow as in Mu and NonStrictlyPos is not
allowed. When Abel, Benke, Bove, Hughes, and Norell published their work, Agda did
not perform any termination checks and, as a consequence, did not check the strict
positivity requirement.

While Mona now understood why the data type as defined by Abel, Benke, Bove,
Hughes, and Norell is not allowed, it was still not obvious to her why the restriction
is violated in the case of List. For example, if she explicitly used the maybe monad
for M, everything worked fine. She thought about all the different monad instances
she learned in class. Then she remembered the continuation monad and realized that
an arbitrary type constructor M might violate the restriction. More concretely, she
considered the following definition of the continuation data type.
Definition Cont R A := (A→ R)→ R.

When she instantiated M in the definition of List with Cont R for some R, she got the
following type that violated the strict positivity requirement.
Fail Inductive ListC R A :=
| nilC : ListC R A
| consC : ((A→ R)→ R)→ ((ListC R A→ R)→ R)→ ListC R A.

The definition of consC is more delicate than the definitions before. Here, ListC occurs
non-strictly positive in the second argument of the constructor consC, namely (ListC R
A→ R)→ R. Mona’s colleague referred her to a manuscript by Coquand et al. [8] that
introduced the restriction to forbid non-strictly positive types in the kingdom of Coq.
He also brought to her attention that technically, although it was not the case, the
type ListC could be allowed in Agda. In Agda only types with recursive occurrences
in negative positions have to be disallowed. Negative positions are positions left of
an odd number of arrows. For example, the definition of NonStrictlyPos cannot be
allowed because the recursive occurrence in NonStrictlyPos→ nat is left of one arrow.
Just as the definition of Mu cannot be allowed in Agda either because the recursive
occurrence in Mu A → A is left of one arrow. In contrast the recursive occurrence
in (ListC R A → R) → R is left of two arrows and, therefore, could be allowed in
Agda. Coq has to be more restrictive because the sort Prop is impredicative while it is
predicative in Agda [9].

In summary, the type constructor List defined above allows arbitrary type construc-
tors as instances of M. That is, it is not safe to use this definition for all potential
instantiations of M. The restriction might be violated for a concrete instantiation, like
for example Cont as used in ListC. Since it cannot be guaranteed by definition that
this data type declaration is used safely, Coq rejects the declaration.

8:6



Sandra Dylus, Jan Christiansen, and Finn Teegen

3 The Solution

M
ona realized that she could not use a type variable in the definition of the
monadic list data type, and, thus, had to use a concrete data type. However,
she would still like to model several different monad instances in order to

be able to reason about several different possible effects.

Free Monads

Mona was a regular reader of the Haskell Weekly News, a gazette where citizens of the
kingdom of Haskell presented usages and developments of the Haskell programming
language. She remembered a lot of stories about monadic abstractions and in particular
about the free monad. The free monad turns any functor into a monad and is usually
defined as a data type with two constructors, pure and impure. Mona could use the
concrete data type definition of a free monad to represent the monadic part in the
problematic list definition. Keen to try out this idea, Mona defined the following data
type, where the type variable F needs to be a functor to make Free F a monad.
Fail Inductive Free F A :=
| pure : A→ Free F A
| impure : F (Free F A)→ Free F A.

Again, Coq rejected the definition of this data type. In the constructor impure the
type variable F is applied to Free F A and, thus, is violating the aforementioned strict
positivity requirement. Mona was disappointed that she could not apply the idea to
represent the monadic part of the list definition via the free monad to her problem. As
she was still a Haskell programmer with all her heart and the free monad was known
to have various applications in functional programming, she continued to study free
monads as a distraction from her current setback.

As Mona was mainly looking for a way to represent the identity and the maybe
monad, she checked how these monads can be represented by instances of Free. She
found the corresponding definitions in a manuscript that mentioned free monads,
written by Swierstra [24]. The identity monad corresponds to a free monad without
the impure case, because the identity monad does not have any effect. That is, in
order to model the identity monad, Mona needed a functor that had no inhabitants.
This way, it was not possible to construct an impure value. Mona defined the following
Coq data type that has no inhabitants.
Inductive Void := .

Based on this definition Mona defined the following functor to model an instance of
the free monad without impure values.
Definition Zero (A : Type) := Void.

Since the type variable A did not occur on the right-hand side of this definition, Mona
had to actually annotate the sort in order to compile the definition in Coq.

In the case of the maybe monad there is an effect, namely the absence of a value,
represented by the constructor Nothing. That is, Mona searched for a functor such
that the impure constructor models the Nothing constructor. Therefore, she needed a

8:7



One Monad to Prove Them All

type constructor that has a single constructor but does not contain any value, such
that the recursive occurrence of Free F A was not used. She defined a functor with a
single value by means of the data type unit, which contains a single value called tt.
Definition One (A : Type) := unit.

At first Mona was mainly interested in the identity and the maybe monad— because
Abel et al. [1] also considered these effects to model Haskell programs. However, when
she checked out other definitions, she realized that using the free monad opens the
door to model a variety of different monads. For example, the error monad could be
modeled by using the following functor.
Inductive Const (B A : Type) := const : B→ Const B A.

Mona had fun trying out various functors and checking what monad corresponded
to the resulting instance of the free monad. However, after a while the excitement
vanished and Mona was kind of disappointed. It felt as if she had not gained much
by using a free monad. Then, Mona suddenly had an insight. By using a free monad
she had gained one crucial advantage: she would be able to represent strictly positive
monads if she was able to represent strictly positive functors.

Motivated by this insight, she gained new impulse. She got in contact with a group of
sages in the area of verification stating her problem concerning Coq’s restriction. These
experts pointed her to a manuscript by Keuchel et al. [16]. Keuchel and Schrijvers
wanted to define the following data type in Coq that can be used to define the fix
point of a functor.
Fail Inductive FixF F := fixF : F (FixF F)→ FixF F.

The type FixF is a generalization of Mu as defined in section 2. Thus, the data type
FixF cannot be defined in Coq because the functor F might place its argument FixF
F in a non-strictly positive position. In order to be able to define this data type the
functor F has to be restricted. This restriction is based on the notion of containers as
introduced by Abott et al. [2]. Mona was quite happy about the feedback because she
could use the same approach to define Free.

Containers

The idea of a container abstracts data types that store values. A prominent example is
the list data type. A list can be represented by the length of the list and a function
mapping positions within the list, that is, mapping natural numbers between one and
the length of the list to the elements of the list. This idea can be generalized to other
data types like trees. In this case, instead of a simple natural number, one needs a
more complex data type to model all possible positions of a specific shape.

A container is given by a type Shape that models all possible shapes and a function
Pos that takes a shape and yields the type of the possible positions of the given shape.
The extension of a container is the concrete data type that is modeled, that is, the
extension provides a mapping of valid positions to values [3]. Mona used the following
implementation of a container extension in Coq.
Inductive Ext Shape (Pos : Shape→ Type) A := ext : ∀ s, (Pos s→ A)→ Ext Shape Pos A.
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For example, in the case of lists, the extension is the mapping of list indices to list
elements.

Mona learned a lot about Coq by defining the data type Ext. For example, she
learned that, in Coq — in contrast to Haskell — when a polymorphic constructor or
function was applied, the type that was used as an instance was passed explicitly.
For example, the constructor ext was polymorphic over the type A. In order to apply
ext Mona would have to pass the concrete instance for the type variable A. However,
it was possible to persuade Coq to infer these types from the corresponding values.
Mona tweaked all constructors and functions in her Coq code so that they behaved
like constructors and functions in Haskell. For example, while ext would normally
take five arguments in Coq — the three types Shape, Pos and A, a shape s : Shape and
a function of type Pos s→ A, by tweaking it, it took only the last two arguments as a
Haskell programmer would expect.

In order to understand the use of Ext Mona modeled the data type One as a
container following the naming convention used by Swierstra [24]. She came up with
the following definition.
Definition ShapeOne := unit.
Definition PosOne (s : ShapeOne) := Void.
Definition ExtOne A := Ext ShapeOne PosOne A.

The data type One was polymorphic over its type argument A, which was used
as a phantom type and, therefore, not used on the right-hand side of the definition.
Furthermore, One had just one constructor that did not hold any value. As One did
not contain any values, the container only had a single shape without any positions.
Mona modeled the shape of One with the unit type. She used the name Shape for the
type of shapes, as in ShapeOne, and Pos for the corresponding position type. The type
of the extension of the container, which consists of the shape type ShapeOne and the
position function PosOne as well as the type of the elements A, was named ExtOne.

The container extension ExtOne was isomorphic to One. In order to prove this
property Mona defined two functions to transform these data types into one another.
She called these functions toOne and fromOne, respectively.
Definition toOne A (e : ExtOne A) : One A := tt.
Definition fromOne A (z : One A) : ExtOne A := ext tt (λ p : PosOne tt ⇒ match p with end).

The definition of toOne was straightforward as there was only a single value of
type One A. The definition of fromOne passed its unit value tt to the constructor ext.
The second argument of ext was a function that could never be applied because its
argument type has no inhabitants. Therefore, the pattern matching on the position p
could never be successful. As the type of p had no inhabitants, the pattern matching
did not have a right-hand side.

At last, Mona proved that toOne and fromOne were actually inverse to each other
and, thus, formed an isomorphism between ExtOne and One.
Lemma to fromOne : ∀ A (ox : One A), toOne (fromOne ox) = ox.
Lemma from toOne : ∀ A (e : ExtOne A), fromOne (toOne e) = e.

In order to define a data type that represented all free monads whose functor
was a container, Mona defined a type class named Container. This type class was
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parametrized over a type constructor F : Type → Type that was isomorphic to the
corresponding container extension. The type class provided the type of shapes and
the mapping of a shape to the type of positions. Furthermore, the type class provided
functions to and from for transition between the functor and the corresponding
container extension. As Mona got more familiar with the advantages of Coq, the type
class also provided propositions that from and to formed a bijection.
Class Container F :=

{
Shape : Type;
Pos : Shape→ Type;
to : ∀ A, Ext Shape Pos A→ F A;
from : ∀ A, F A→ Ext Shape Pos A;
to from : ∀ A (fx : F A), to (from fx) = fx;
from to : ∀ A (e : Ext Shape Pos A), from (to e) = e

}.

In order to complete the example for One, Mona defined the following instance
named COne

4.
Instance COne : Container One :=

{
Shape := ShapeOne;
Pos := PosOne;
to := toOne;
from := fromOne;
to from := to fromOne;
from to := from toOne

}.

Implementation

Equipped with these new insights about containers and their usage to define strictly
positive types, Mona defined the following data type that implements a free monad
whose functor is a container. Here and in the following Mona assumed that F : Type
→ Type was a type constructor.
Inductive Free (CF : Container F) A :=
| pure : A→ Free CF A
| impure : Ext Shape Pos (Free CF A)→ Free CF A.

Instead of using an arbitrary functor F the definition of Free used a container
extension to ensure that the definition was provably valid in Coq, i.e., Free only
occurred in strictly positive positions. To test her definition, Mona implemented the
following abbreviation. The value Nothing5 was the value of the free monad that
represented the corresponding value of the maybe monad.
Definition Nothing A : Free COne A := impure (ext tt (λ p : PosOne tt ⇒ match p with end)).

4 Mona could define multiple instances for the same type in Coq, because all instances were
explicitly named.

5 She used the convention that smart constructor names started with an upper case character.
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When Mona continued reading about free monads, she read that from every natural
transformation from a functor f to a monad m she can construct a monad homo-
morphism from Free f to m. Therefore, for every monad m there exists a monad
homomorphism from an instance of Free to m because she can use the identity func-
tion as natural transformation. More precisely, the simplest construction Mona can
use to model a monad m is to represent it as Free m.

The homomorphism was often defined by means of a fold function for the Free
data type. One other important function on Free that Mona wanted to define was the
function bind, which was associated with monads. She found the following definitions
of fold and bind on Free in the manuscript by Swierstra [24].

foldFree :: Functor f => (a -> b) -> (f b -> b) -> Free f a -> b
foldFree pur imp (Pure x) = pur x
foldFree pur imp (Impure fx) = imp (fmap (foldFree pur imp) fx)

(»=) :: Functor f => Free f a -> (a -> Free f b) -> Free f b
Pure x »= f = f x
Impure fx »= f = Impure (fmap (»= f) fx)

Based on these definitions, Mona translated the functions to Coq, naming them
fold free and >>=, respectively.
If you are keen to know how Mona translated these functions to Coq, you and Mona can
dive deeper into technical details in section A.1. If you know how to work with recursive
higher-order definitions and containers, or do not need any more details, just read ahead.
The function fold free was only a means to an end. Mona defined the function induce,
which lifts a function that maps the functor F to the corresponding monad M6 to a
homomorphism between the free monad and the corresponding monad7.
Definition induce A (f : ∀ X, F X → M X) (fx : Free CF A) : M A :=
fold free (λ x ⇒ ret x) (λ x ⇒ join (f (M A) x)) fx.

To test her current setup, Mona implemented the following functions that map
instances of Free to the identity and the maybe monad, respectively.
Definition zero to id A (zx : Zero A) : Id A := match zx with end.

Definition free to id A (fx : Free CZero A) : Id A := induce zero to id fx.

Definition one to maybe A (ox : One A) : Maybe A := nothing.

Definition free to maybe A (fx : Free COne A) : Maybe A := induce one to maybe fx.

The functions zero to id and one to maybe, respectively, map the functors Zero
and One to the corresponding monads. As there are no values of type Zero A, Mona
used an empty pattern match to get a value of type Id A to define zero to id.

Mona was quite satisfied with her development so far, using containers she suc-
cessfully defined a valid type definition for free monads in Coq. However, Mona also

6 The monad M is equipped with the functions ret and join.
7 Mona had to pass the type argument M A to the higher-ranked functional argument f used

in the application of join because Coq was not able to infer it.
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realized an important point she had not considered before. Namely, while for every
monad m there exists a functor f with a homomorphism from Free f to m, there is
not necessarily a function from the monad back to the free monad, such that the
homomorphism forms an isomorphism with this function. For example, as mentioned
by Swierstra [24], the list monad is not a free monad in the sense that the list monad
is not isomorphic to an instance of the free monad. In order to prove statements
about more complex effects Mona would have to be able to model monads like the
list monad that were not free. Mona realized that she could not resort to structural
equality as some values that were structurally equal in the original monad were not
structurally equal in the the presentation using Free f. This divergence is due to the
fact that more values inhabit the resulting representation using Free than inhabit the
original monad, if the original monad is not a free monad. She observed, however,
that she could use a custom equality for this kind of monad to solve this problem.
When proving a statement in a setting with a monad that was not a free monad, she
would use a custom equality instead of using structural equality.

At first, defining this kind of custom equality felt like an involved task to Mona,
because she had to compare two instances of the free monad that used a container
extension as functor. However, Mona realized that she could define the equality by
means of induce and an equality on the original monad. That is, in order to compare
two instances of the free monad she could use the homomorphism to map these
instances to the original monad and use structural equality on the monadic terms.
This way she was able to model an effect that is not free. In a nutshell, Mona would
interpret the Free values as their monadic representatives and compare the monadic
values using structural equality.

In another round of poring over her manuscripts, Mona found an implementation
by Verbruggen et al. [26] that uses polynomial functors to define generic data types in
Coq. The encoding using polynomial functors represents data types as combinations
of four primitive constructors: unit, identity, product, and sum. One disadvantage
of this encoding is that many interesting data types cannot be represented: there is
no possibility to represent function types at least not without running into problems
concerning the strict positivity restriction, again. In contrast, Mona could reason about
all monads m that are free monads in the sense that there exists a functor f such
that m is isomorphic to Free f. Mona had the additional restriction that f had to be a
container. For example, identity, maybe and error are free monads whose functors
are containers.

If a monad m is not a free monad, that is, it is not isomorphic to some instance of
Free, Mona could still reason about it using a custom equality as long as the functor
can be modeled using a container. For example, the state monad is not a free monad
but can be modeled using a container. Mona found implementations of more involved
effects like state using the free monad in combination with a container.8 Mona was

8 For example, Mona found an implementation of the state monad in Agda using a
free monad and containers (https://github.com/agda/agda-stdlib/blob/v2.4.0/README/
Container/FreeMonad.agda (last accessed: 2019-01-28).
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quite astonished by the variety of monads she could model in her current setting. Then
she once again considered the continuation monad that she failed to instantiate in the
beginning of her journey. Indeed, it was still not possible to model the continuation
monad using a container extension. It was a bit of a pity for Mona that she could not
represent the continuation monad, nevertheless, for now, she was content with the
variety of monads that she could represent with her encoding.

4 A Simple Proof

T
he next morning, Mona tackled the definition she struggled with in the
beginning and that started this whole journey in the first place: a list with
polymorphic elements and constructors with monadic components. Instead

of using a polymorphic type constructor for the monadic effect, Mona parametrized
the definition of a monadic list over a container CF and applied the type Free CF A to
the arguments of the cons constructor.
Inductive List (CF : Container F) A :=
| nil : List CF A
| cons : Free CF A→ Free CF (List CF A)→ List CF A.

Mona was quite happy with her implementation of a list with monadic effects. As a
next step, she wanted to prove a property about a simple Haskell function. First, she
had to translate her Haskell program into a monadic Coq program. Fortunately, the
manuscript by Abel et al. [1] contained the formal definition of a transformation of
Haskell programs into Agda programs.

Right now Mona did not care about a formal definition of the translation to Coq,
but was more interested in reasoning about the manually transformed code in Coq.
Nevertheless she realized that the translation from Haskell to Coq was an interesting
topic in itself. For example, because programs in Coq had to terminate, the Coq
termination checker had to be able to check that the monadic transformation of the
program terminated. Mona wondered whether there was a transformation that, given
that a non-monadic version was accepted by the termination checker, accepted the
monadic translation as well.

In order to simplify the definition of monadic programs Mona defined the following
smart constructors.
Definition Nil A : Free CF (List CF A) := pure nil.

Definition Cons A (fx : Free CF A) (fxs : Free CF (List CF A)) : Free CF (List CF A) :=
pure (cons fx fxs).

With these smart constructors and the monadic bind operator >>= at hand, Mona
was ready to define functions on Lists. As a simple example Mona defined list con-
catenation.
Fixpoint append’ A (xs: List CF A) (fys: Free CF (List CF A)) : Free CF (List CF A) :=
match xs with
| nil⇒ fys
| cons fz fzs⇒ Cons fz (fzs >>= λ zs⇒ append’ zs fys)
end.
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Definition append A (fxs fys: Free CF (List CF A)) : Free CF (List CF A) :=
fxs >>= λ xs⇒ append’ xs fys.

If you are keen to know why Mona had to define append using a helper function, you
can follow Mona to get some insights about nested recursive function definitions in Coq
in section A.2. If you are already familiar with nested recursive function definitions in
Coq or simply do not need more details for now, just read on.

Induction Principle

Finally, Mona had all the ingredients at hand to prove properties about Haskell
functions. As she had read the manuscript by Abel et al. [1] she wanted to prove the
associativity of append as well. In accordance with the manuscript, she started to
argue about a total world, that is, using the identity monad.

A classical proof of the associativity of append used structural induction over the
argument list. In Coq, a proof by structural induction used a lemma called the induction
principle that is automatically generated for each data type. However, when Mona
tried to apply the induction principle for the monadic list data type List, it did not
work as expected at first.

In a nutshell, Mona needed to define a custom induction principle for the free
monad data type Free as well as for List, the list data type with monadic components.
One might wonder why she needed an induction principle for the data type Free at
all. In the definition of the free data type at the beginning of section 3, the impure
constructor builds a stack of applications of the functor. To reason about this stack of
functor applications an induction principle was required.
If you want to know why Mona failed to apply the induction principle, please read about
all the insights she gained on induction principles in section A.3. If you already know
all about nested inductive type definitions and their induction principles or do not need
more details for now, just read on.
With the definitions of induction principles named Free Ind and List Ind, respectively,
at hand, Mona was eager to try her proof of the associativity of append again.

Identity Monad

Working with Coq opened a whole new, magical world to her. Proofs in Coq consisted
of a sequence of spells called tactics. As Mona was always eager for knowledge, she
read several spell books and tried to write a proof of the associativity of append. All
the following lemmas that Mona wanted to prove were quantified over a type, so she
wrote a side-note that A was an arbitrary type and used A as an implicit parameter.

Mona started with an auxiliary lemma for append’. The proof of the auxiliary lemma
was mostly straightforward and similar to a proof for ordinary lists. In case of an empty
list the statement was trivially true and in case of a non-empty list the statement
followed from the induction hypothesis. In order to apply the induction hypothesis
Mona used the custom tactic simplify. The shortcut simplify H as IH simplified a
hypothesis H generated by List Ind and introduced the required hypothesis under
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the name IH. This slight transformation was necessary due to the custom induction
principle used for List.

Lemma append’ assocId : ∀ (xs : List CZero A) (fys fzs : Free CZero (List CZero A)),
append’ xs (append fys fzs) = append (append’ xs fys) fzs.

Proof.
(* Let xs, fys, fzs be arbitrary. *)
intros xs fys fzs.

(* Perform induction over the List structure xs. *)
induction xs using List Ind.

− (* Base case: xs = nil *)
reflexivity.

− (* Inductive case: xs = cons fx fxs with induction hypothesis H
Perform induction over the Free structure fxs. *)

induction fxs using Free Ind.

+ (* Base case: fxs = pure x
Simplify and use induction hypothesis IH. *)

simpl. simplify H as IH. rewrite IH. reflexivity.

+ (* Inductive case: fxs = impure (ext s pf ) with s of type ShapeZero *)
destruct s.

Qed.

There was an odd-looking assumption in the inductive case for Free: a value s of
type ShapeZero. That is, she had a value of a type that did not have any inhabitants.
Mona realized that s was a false assumption; she simply had to call that bluff! The
tactic destructmade a case distinction on its argument; in this case it made Coq realize
that the value s cannot exist. This behavior actually started to make sense to Mona.
Using Zero meant that she was currently proving something in a total setting. In a
total setting, nothing can go wrong, so there actually was no impure case.

As a next step Mona proved the actual lemma that stated the associativity of append
as follows.
Lemma append assocId : ∀ (fxs fys fzs : Free CZero (List CZero A)),

append fxs (append fys fzs) = append (append fxs fys) fzs.
Proof.
(* Let fxs, fys, fzs be arbitrary. *)
intros fxs fys fzs.

(* Perform induction over the Free structure of fxs. *)
induction fxs using Free Ind.

− (* Base case: fxs = pure x
Simplify and use auxiliary lemma. *)

simpl. apply append’ assocId.

− (* Inductive case: fxs = impure (ext s pf ) with s of type ShapeZero *)
destruct s.

Qed.

In the base case of the induction over the Free structure Mona simply used the tactic
apply to use the lemma she had proven before. In the inductive case she again had a
value that did not exist and, therefore, got rid of it by using destruct.
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Mona was quite content and thought that her proof was reasonably simple, however,
she found it still slightly more complex than the original proof by Abel, Benke, Bove,
Hughes, and Norell. For example, Mona had to handle the impure case explicitly,
which does not exist when using the actual identity monad.

Maybe Monad

As Mona was happy with the proof in the total setting, as a next step she considered
a setting with partial values, that is, using One as container instead of Zero. She
expected the proofs to be similar to the ones before, as one should be able to handle
the pure cases in the same way. And, indeed, the proofs were nearly identical and
only differed in the inductive cases for Free.
Lemma append’ assocMaybe : ∀ (xs : List COne A) (fys fzs : Free COne (List COne A)),

append’ xs (append fys fzs) = append (append’ xs fys) fzs.
Proof.

. . .
+ (* Inductive case: fxs = impure (ext s pf )

Simplify, drop Cons, impure, and ext s on both sides. *)
simpl. do 3 apply f equal.

(* Use functional extensionality and case distinction over p : PosOne s *)
extensionality p. destruct p.

Qed.

Lemma append assocMaybe : ∀ (fxs fys fzs : Free COne (List COne A)),
append fxs (append fys fzs) = append (append fxs fys) fzs.

Proof.
. . .
− (* Inductive case: fxs = impure (ext s pf )

Simplify, drop impure, and ext s on both sides. *)
simpl. do 2 apply f equal.

(* Use functional extensionality and case distinction over p : PosOne s. *)
extensionality p. destruct p.

Qed.

The proofs actually had to consider a potential value in the impure cases, because
the shape s of the underlying container One is ShapeOne, a type that has exactly one
inhabitant. Thus, Mona could not take the easy way out relying on a false assumption
again. When she took a second close look, Mona realized that there was still something
odd about the given assumptions. Mona got rid of the constructors Cons, impure and
ext that both sides of the equality had in common by using f equal9 thrice. After using
f equal Mona ended up with two functions. Both functions took an argument of type
PosOne s, again a type without inhabitants.

As Mona came from the kingdom of Haskell, she was used to the rule of functional
extensionality. That is, if two functions behave the same for all possible arguments,

9 She read that the spell f equal was sometimes also called congruence or cong in other
magical kingdoms.
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the functions are considered equal. In Coq, two functions are equal with respect to
the equality = if these functions evaluate to the same value or are defined in the
exact same way, expression by expression, character by character modulo renaming.
If two functions just behaved the same for all possible arguments, Mona needed the
axiom of functional extensionality in order to use this property in Coq. Fortunately,
this axiom is consistent with the Calculus of Inductive Constructions, that is, with the
lambda calculus that is the formal basis of Coq. After applying the rule of functional
extensionality Mona had to show that the two functions behaved the same for all
possible inputs. However, as the argument type of such an input did not contain any
inhabitants, there were no arguments and therefore, the statement was trivially valid.
Mona used destruct again to prove that there were no possible values for p.

Mona understood that she was able to finish the proof with destruct because the
free monad that represented the maybe monad was quite simple. The impure case
represented the constructor nothing and this constructor did not contain any value.

Monad-Generic Proof

Mona was very satisfied with her solution. Up until now, she was able to prove
statements about Haskell programs when only considering total values and was also
able to consider partial values. She consulted the manuscript by Abel et al. [1] again
and read the following paragraph.

The reader may well wonder why we prove the same property twice, for two
different monads — why not just prove it once-and-for-all, for any monad? While
this may seem attractive in principle, it turns out to be much more difficult in
practice. [...] Since Agda does not know how to compute with a general monad
it will not be able to simplify the type of the properties by performing reduction
steps. Thus, the only thing we can do to prove properties is to use the monad
laws explicitly. Although it is possible to prove properties in this way, those
proofs are both more difficult to perform and to understand, and much longer
than the ones we presented above.

The scales fell from Mona’s eyes. These statements did not hold in her setting. When
using a free monad underneath, a generic proof was not that difficult anymore. If
Mona proved a statement for the free monad for an arbitrary container, the statement
would hold for a whole class of monads — with the minor restriction that the monad
can be represented by a container-based instance of the free monad. As this possibility
was more than Mona had originally hoped for, she immediately began to write the
following monad-generic proofs.
Lemma append’ assoc : ∀ (xs : List CF A) (fys fzs : Free CF (List CF A)),

append’ xs (append fys fzs) = append (append’ xs fys) fzs.
Proof.

. . .
+ (* Inductive case: fxs = impure (ext s pf ) with induction hypothesis H *)
simpl. do 3 apply f equal. extensionality p.
simplify H as IH. apply IH.

Qed.
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Lemma append assoc : ∀ (fxs fys fzs : Free CF (List CF A)),
append fxs (append fys fzs) = append (append fxs fys) fzs.

Proof.
. . .
− (* Inductive case: fxs = impure (ext s pf ) with induction hypothesis IH *)
simpl. do 2 apply f equal. extensionality p.
apply IH.

Qed.

Again these proofs basically followed the same structure. Besides the generic pa-
rameter CF for the container, once again, the only crucial differences occurred in the
inductive cases for Free. In general, Mona could not hope for false assumptions to
complete the proofs. A more complex effect, for instance non-determinism, could
actually have a recursive occurrence in the impure case. In this case the induction
principle for Free came in handy. Mona used the induction hypothesis that said that the
given statement already holds for all values that resulted from applying the position
function pf. More precisely, the induction hypothesis provided the following statement,
which states that the statement holds for lists resulting from pf p for all possible
positions p.

∀ p : Pos s, append (pf p) (append fys fzs) = append (append (pf p) fys) fzs

After using functional extensionality she was able to simply apply this hypothesis
by using apply IH. In contrast, in the case of Zero there was no impure case and in the
case of One the impure case did not contain any values. Thus, Mona did not need to
use the induction hypothesis for these concrete instances.

As hard days of working through Coq tactics and these proofs passed, Mona was
very pleased with her current approach. She was even more than thrilled that using
the free monad gave rise to generic proofs that hold for a whole class of monads.
Furthermore, she observed that monad-generic proofs were not difficult at all. The
case for the pure constructor was not difficult because it is closely connected to the
corresponding case without effects. Even the proof for the impure constructor was
reasonable simple. In the impure case Mona always had to prove — with an induction
hypothesis at hand — that the statement holds for all possible positions.

5 A Case Study

P
roving a more or less trivial property for a single list function was not exactly
setting the world on fire. Thus, Mona was eager to try her approach to prove
the correctness of actual Haskell code. Since she was helping out with some

classes at the department she stayed at, she seized the opportunity to teach her
approach in class. The main topic of the class was to compare two implementations
of queues. There was a naive implementation using a single list and a more advanced
implementation that used two lists to improve the performance. In class they started
with an implementation in Haskell and discussed that both concrete implementations
are interchangeable with one another; the reasoning was backed up by property-based
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testing via QuickCheck [14]. Mona thought that the implementations would be a
particularly good example, because they contained total as well as partial functions10.
That is, some of the statements were only valid in the context of the maybe monad,
while most statements held in the total as well as in the partial setting.

type Queue a = [a]

empty :: Queue a
empty = []

isEmpty :: Queue a -> Bool
isEmpty q = null q

front :: Queue a -> a
front (x:q) = x

add :: a -> Queue a -> Queue a
add x q = q ++ [x]

type QueueI a = ([a],[a])

emptyI :: QueueI a
emptyI = ([],[])

isEmptyI :: QueueI a -> Bool
isEmptyI (f,b) = null f

frontI :: QueueI a -> a
frontI (x:f,b) = x

addI :: a -> QueueI a -> QueueI a
addI x (f,b) = flipQ (f,x:b)

flipQ :: QueueI a -> QueueI a
flipQ ([],b) = (reverse b,[])
flipQ q = q

prop_isEmpty qi =
invariant qi ==>
isEmptyI qi == isEmpty (toQueue qi)

prop_add x qi =
toQueue (addI x qi) == add x (toQueue qi)

prop_front qi =
invariant qi && not (isEmptyI qi) ==>
frontI qi == front (toQueue qi)

Scroll 1 A queue implementation based on a single list (left) and one based on two lists
(middle) as well as QuickCheck properties relating these implementations (right).

Scroll 1 shows two different implementations of queues in Haskell. The implementa-
tion to the left uses a single list to model the queue. The implementation in the middle
uses two lists in order to provide a more efficient implementation of the function add.
Mona defined the following function toQueue to relate these two implementations.

toQueue :: QueueI a -> Queue a
toQueue (f,b) = f ++ reverse b

In order to prove statements about the functions shown in Scroll 1 in Coq, Mona
started to transform the data types Queue and QueueI to corresponding monadic
versions. For the definition of QueueI, she additionally needed a monadic version of
pairs. The data type Queue is just a type synonym for a list, which can be defined in
Coq as a type synonym as well.
Inductive Pair (CF : Container F) A B := pair : Free CF A→ Free CF B→ Pair CF A B.
Definition QueueI (CF : Container F) A := Pair CF (List CF A) (List CF A).
Definition Queue (CF : Container F) A := List CF A.

The functions front and frontI were partially defined because the cases for the empty
list were missing in these definitions. That is, when modeling these functions in Coq,
Mona had to use the maybe instance. Mona only considered the implementation of
front as the definition of frontI followed the same idea. Moreover, she defined the Coq
version of toQueue to relate both implementations. The transformations of all other
functions to Coq were straightforward and followed the approach used for append.
Mona used the constant Nothing as defined in section 3 to simplify the definitions.

10 In fact, Mona had also read about this example in the manuscript by Abel et al. [1].
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Definition front A (fq : Free COne (Queue COne A)) : Free COne A :=
fq >>= λ q⇒ match q with

| nil⇒ Nothing
| cons x ⇒ x
end.

Definition toQueue A (fqi: Free CF (QueueI CF A)) : Free CF (Queue CF A) :=
fqi >>= λ ’(pair ff fb)⇒ append ff (reverse fb).

In class Mona discussed the QuickCheck properties given in the right column in
Scroll 1. The operator ==> took a boolean expression that was checked as a precon-
dition for the test case. The function invariant stated an invariant about the QueueI
implementation, namely, that the back end of the queue would be empty whenever
the front end was empty. In other words, either the back end was empty or the front
end was not empty. This property was checked by the following predicate on queues.

invariant :: QueueI a -> Bool
invariant (f,b) = null b || not (null f)

When writing test cases in QuickCheck, the programmer usually considers total
values only. Therefore, Mona extended the invariant with the requirement that all
queues that are checked are total using the proposition total list. While Mona used
the maybe instance as model, she did not define total list for the special case of the
maybe monad, but generalized it to an arbitrary effect. That is, while she still named
the predicate total list, it rather checked whether the list was effect-free.
Inductive total list A : Free CF (List CF A)→ Prop :=
| total nil : total list (pure nil)
| total cons : ∀ fx fxs, total list fxs→ total list (pure (cons fx fxs)).

The definition needed to distinguish between two cases. First, a defined empty list
was total, that is, pure nil was total. Second, a defined non-empty list pure (cons fx
fxs) was total if the tail fxs was total as well. The proposition did not check whether
the element fx was defined, that is, whether it had the form pure x.

Since Mona wanted to work with properties about QueueIs, she extended the
definition to check both list components of a queue. The functions fst and snd projected
to the components of a pair lifted into the free monad.
Definition total queue A (fqi : Free CF (QueueI CF A)) : Prop :=
total list (fst fqi) ∧ total list (snd fqi).

In order to transform the Haskell function invariant to Coq, Mona implemented
monadic liftings of the functions null and the boolean combinators not, (||) as well
as (&&). Now Mona was ready to implement the invariant.
Definition invariant A (fqi : Free CF (QueueI CF A)) : Free CF bool :=
null (snd fqi) || not (null (fst fqi)).

Since the QuickCheck properties all used premises whose type is Free CF bool, Mona
defined a smart constructor (=⇒) to lift these Free CF bool values into properties.

First Mona showed the class a proof of a property that was specific to the maybe
monad. The property was specific to the maybe monad because it made use of the
partial function front. The property stated that frontI yields the same result as a
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combination of front and toQueue under the precondition that the queue fulfilled the
invariant and was not empty. Mona explained the students that all the following proofs
assumed A to be an arbitrary type, that is, A was used but not explicitly introduced in
the code she wrote.

Lemma prop front : ∀ (fqi : Free COne (QueueI COne A)),
total queue fqi→
invariant fqi && not (isEmptyI fqi) =⇒ frontI fqi = front (toQueue fqi).

In contrast to the maybe-specific properties, the properties prop isEmpty and
prop add held independently of the considered monad and could be proven once and
for all. Trivially, this monad-generic proof also implied that the same property held
in the special case of Free COne. Mona wrote a monad-generic proof of the following
property.
Lemma prop isEmpty : ∀ (fqi : Free CF (QueueI CF A)),

total queue fqi→
invariant fqi =⇒ isEmptyI fqi = isEmpty (toQueue fqi).

Some timewent by while Mona showed the class how to prove one of the QuickCheck
properties after another. At last, she proved the property prop add.
Lemma prop add : ∀ (fa : Free CF A) (fqi : Free CF (QueueI CF A)),

toQueue (addI fa fqi) = add fa (toQueue fqi).

After all proofs were done, one of Mona’s students complained about the definition
of front. For the sake of the user, the function front should yield an error that explained
the problem instead of simply raising a generic non-exhaustive patterns error. As her
student’s wish was her command, she implemented the following variant of front in
Haskell.

front :: Queue a -> a
front (x:f,b) = x
front _ = error ”front: empty queue”

One of the other students now complained that they had to do all the nice proofs
again but using the functor Const instead of One. Mona appeased them by pointing
out that they only had to do the maybe-specific proofs like prop front again, but not
all the monad-generic proofs like prop isEmpty and prop add. That is, they only had
to redo proofs that talked about function definitions that actually changed. In fact it
all fit together quite nicely. For example, as the predicate total list checked whether
a list was effect-free, Mona reused it in the case of the error effect and it specified
exactly what one was looking for: a list without errors.

6 The End

H
appy with her results, Mona headed back home to the kingdom of Haskell
the next week. She had learned a lot about proving properties of Haskell
programs. Well-known concepts like monadic transformations of data types,

containers and free monads were the foundations of her solution. The combination of
all of these ideas led to a new approach to model and prove properties about effectful
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programs in Coq. Even more importantly, while Abel et al. [1] thought it difficult to
prove monad-generic statements, Mona had discovered that it was not that difficult
after all. She was able to prove statements using an arbitrary effect represented using
the free monad, whose functor is a container.

Mona really looked forward to continuing to pursue her PhD because there were so
many questions she would like to have an answer to. For now she only considered the
effect of partiality, while her proofs held for arbitrary effects. For example, using her
approach she could model lazy tracing as provided by the function trace by means
of a simple reader monad. The best news about her current setup was that all the
monad-generic proofs would still hold in this setting.

Besides extending her simple model of Haskell with more advanced effects, Mona
planned to use her setting to model other programming languages. For example,
a functional logic programming language like Curry can be modeled by the same
transformation as shown by Fischer et al. [13]. This model uses a non-determinism
monad instead of the partiality monad. Mona also planned to investigate modeling a
probabilistic programming language as she read that functional logic and probabilistic
programming are closely related in a manuscript by Dylus et al. [12].

When Mona looked into effects like non-determinism, she observed that there were
some additional requirements. While the free monad extends a functor f with an
additional structure to define the functions ret and bind, the free monad provides
exactly this structure only. However, some monads provide more structure than given
by a free monad. Mona thought about the list monad again, which was not a free
monad and needed a custom equality in her setting as discussed in section 3. In order
to prove statements that rely on additional properties of a concrete monad, Mona
could not resort to structural equality, she would have to define a custom equality.
However, defining custom equalities for free monads by means of the corresponding
monad homomorphism is straightforward. Furthermore, monad-generic proofs can
also be reused in a setting with a custom equality because terms that are definitionally
equal are also equal with respect to a custom equality.

Thinking about different effects raised the question of whether the translation of
programs had to be adapted. Mona’s current translation was based on the optimized
version by Abel et al. [1], where partiality was the only effect that could occur. In this
case a function f of type τ→ τ′ could be modeled by a Coq function of type M τ→
M τ′. However, in a more general setting, Mona had to use a function of type M (M τ
→ M τ′) instead. For example, if seq is available, one can observe whether a function
f is defined as undefined or as λ x ⇒ undefined. For instance, the expression seq f 42
fails in the former case, but yields 42 in the latter case.

Using function types of the form M (M τ→ M τ′) is in particular important, when
modeling a functional logic language. For example, some free theorems fail in the con-
text of functional logic languages due to the difference between a non–deterministic
choice of two functions and a function that non-deterministically yields two results as
shown by Christiansen et al. [7] and elaborated by Mehner et al. [22]. Mona wanted to
use her framework for a variety of effects, thus, the optimized translation of function
types used by Abel et al. [1] was not applicable anymore.
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Finally, Mona wondered about other possibilities to model the monadic data types
she wanted to define. One possible alternative was to use a more direct modeling of
strictly positive monads. Currently, she used a free monad whose functor is a container.
Instead she could as well use only a container. For example, the identity and the
maybe monad can be modeled as containers. That is, she could use container monads
as discussed by Uustalu [25], which model containers that provide a monadic structure.
This way she could even model the list monad without using a custom equality. How-
ever, when using container monads directly Mona could only reason about monadic
programs using monad laws. Abel et al. [1] did not consider monad-generic proofs
because they had to resort to monad laws. In contrast, Mona’s current approach using
free monads enabled Coq to compute with a general monad and simplify properties
by reduction. Another alternative was to use freer monads introduced by Kiselyov
et al. [17], whose definition did not need a representation of striclty positive types
using containers at all. There were already several encodings to model different kinds
of monadic effects using freer monads: McBride [21] defines a General monad to
model general recursion as effect, Letan et al. [19] use the Program monad initially
presented in the operational package known from Haskell11 to reason about a small
imperative language, and Koh et al. [18] identify interaction trees as a suitable tool to
verify functional correctness of a server implemented in C.

The case study about queues only involved two data structures: lists and pairs.
Lifting data types into their monadic counterparts follows a general scheme. Mona
found a manuscript by Atkey et al. [4] that showed how to benefit from describing
inductive types interleaved with effects as initial f-and-m-algebras. Their description
of data types interleaved with effects was similar to the monadic lifting that Mona
pursued. The benefit of using initial f-and-m-algebras came from the clear separation
of monadic effects described by the m and the pure data structure represented by a
functor f. This observation reminded Mona of her own proofs about the associativity
of append as well as other proofs using induction. There were always two cases to
consider: the pure case and the impure case, where the pure cases was then again
divided into the different constructors of the data type involved. Mona was eager to
find out if her approach can also benefit from the abstractions used in the work of
Atkey and Johann.

As Mona knew that a successful PhD student would interest her peers in her results,
she started to spread the word about her work. In order to practice her writing
skills, she also wrote a short story about her journey through the land of functional
programming. Mona continued to pursue her PhD and lived happily ever after.
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A A Trip to the Technical Corners of the Land of Dependently Typed
Programming

A.1 Definition of fold and bind

Mona wanted to translate the Haskell definition of the functions fold and bind on
Free she found in the manuscript by Swierstra [24]. She started with fold as it looked
like the easier task.

foldFree :: Functor f => (a -> b) -> (f b -> b) -> Free f a -> b
foldFree pur imp (Pure x) = pur x
foldFree pur imp (Impure fx) = imp (fmap (foldFree pur imp) fx)

In contrast to Swierstra, Mona worked on a container representation that she had to
transform into the corresponding functor using to first in order to use fmap. However,
instead of using the function fmap she could use a concrete mapping function cmap
on Ext directly. This way she could get rid of the additional Functor constraint.

Mona defined the following map function for the container CF, where Shape and
Pos are the types associated with the container.
Definition cmap A B (f : A→ B) (x : Ext Shape Pos A) : Ext Shape Pos B :=
match x with
| ext s pf ⇒ ext s (λ x ⇒ f (pf x))
end.

Based on the definition of cmap, she implemented the following recursive function
to fold Free expressions. As the function imp worked on arguments of type F B,
Mona applied the function to on the argument of imp to transform the container
representation into the concrete structure F.
Fixpoint fold free A B (pur : A→ B) (imp : F B→ B) (fx : Free CF A) : B :=
match fx with
| pure x ⇒ pur x
| impure e⇒ imp (to (cmap (fold free pur imp) e))
end.

Besides the special handling of the container construction, the translation was quite
straightforward. Next up, Mona took another look at the Haskell definition of the
bind operator for Free.

(»=) :: Functor f => Free f a -> (a -> Free f b) -> Free f b
Pure x »= f = f x
Impure fx »= f = Impure (fmap (»= f) fx)

For her translation to Coq, she did not need to use fmap, as above, but the auxiliary
function cmap. Otherwise the two definitions looked quite alike.
Fixpoint free bind A B (fx : Free CF A) (f : A→ Free CF B) : Free CF B :=
match fx with
| pure x ⇒ f x
| impure e⇒ impure (cmap (λ x ⇒ free bind x f ) e)
end.
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Only later, Mona realized that the definition caused problems. When she tried to
define recursive functions that use free bind, Coq’s termination checker nagged about
most of her programs.

As Mona studied a lot of Coq code during her journey, she remembered that recursive
functions were often defined using so-called Sections. For example, the standard library
for lists in Coq follows the same approach to define functions like map, fold right and
fold left. She changed her code as follows.
Section fbind.

Variable A B: Type.
Variable f : A→ Free CF B.

Fixpoint free bind’ (ffA: Free CF A) :=
match ffA with
| pure x ⇒ f x
| impure (ext s pf )⇒ impure (ext s (λ p⇒ free bind’ (pf p)))
end.

End fbind.

At the start of the section Mona introduced all variables annotated with their types
that would be used throughout the section. All definitions in this section take these
variables as additional arguments when used outside of the section. That is, within
the section the function free bind’ had the type Free CF A → Free CF B, whereas it
had the type (A→ Free CF B)→ Free CF A→ Free CF B outside of the section. That
is, within the section the only remaining argument of free bind’ was the inductive
argument that was decreasing: the Free structure ffA. Mona read that it was crucial
to define the function f as a section variable in order to signalize Coq’s termination
checker that the function f never changed in any recursive call. Furthermore, Mona
defined the operator >>= based on free bind’, but with arguments swapped.

A.2 Nested Recursive Function Definitions

As the Free data type was a monad, Mona wanted to define append quite naturally
using monadic notation as follows.
Fail Fixpoint append A (fxs fys : Free CF (List CF A)) : Free CF (List CF A) :=
fxs >>= λ xs⇒ match xs with

| nil⇒ fys
| cons fz fzs⇒ Cons fz (append fzs fys)
end.

Unfortunately, Coq did not accept this definition of append because the termination
checker was not able to guess the decreasing argument. However, Coq’s termination
checker accepted the following definition that was based on a helper function.
Fixpoint append’ A (xs: List CF A) (fys: Free CF (List CF A)) : Free CF (List CF A) :=
match xs with
| nil⇒ fys
| cons fz fzs⇒ Cons fz (fzs >>= λ zs⇒ append’ zs fys)
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end.

Definition append A (fxs: Free CF (List CF A)) (fys: Free CF (List CF A)) : Free CF (List CF A) :=
fxs >>= λ xs⇒ append’ xs fys.

Mona discovered that she could please Coq’s termination checker by splitting the
definition into two parts: a recursive function append’ that had an argument of type
List A and a non-recursive function append that called append’ after unwrapping the
monadic effect.

The main problem with Mona’s original definition was that List A was a nested
inductive type, Free (List A) occurred nested in List A. That is, to define a recursive
function, Mona had to use nested recursion in the definition of append’ as she had
read about in the manuscript by Chlipala [6]. More precisely, the function append’ was
nested recursive because >>= was recursive and used nested in append. In the second
branch of append’ she had to inline the definition of append in order to resemble the
nested recursive structure of the List A data type.

A.3 Induction Principles

In order to understand what exactly was going on, Mona took some time for getting
a better understanding of some technicalities of the programming language Coq. She
started to look at the induction principle for nat in Coq.12

nat ind : ∀ P : nat → Prop,
P O
→ (∀ m : nat, P m→ P (S m))
→ ∀ n : nat, P n

A proposition P n holds for all n : nat, if P holds for O and, for all m : nat, P holds for
S m given that it already holds for m. For all m : nat the proposition P m is called the
induction hypothesis.

Next, Mona took a look at the induction principle that was generated for the monadic
list type List13.
List ind : ∀ (A : Type) (P : List CF A→ Prop),
P (nil CF A)
→ (∀ (fx : Free CF A) (fxs : Free CF (List CF A)), P (cons fx fxs))
→ ∀ (l : List CF A), P l

This induction principle was supposed to be quite similar to the induction principle for
Peano numbers. However, while there was a base case for the empty list, that is P (nil
CF A), the induction principle demanded that the proposition held for the non-empty
list, that is P (cons fx fxs), without having an induction hypothesis for fxs.

In order to prove a statement about List, Mona also needed an induction principle
for Free. When Mona checked the induction principle for Free, it showed the same
problem as the induction principle for List. She would have to prove P (impure e)
without knowing anything about e.

12 The command Check nat ind prints the type of the induction principle nat ind.
13 Coq generates an induction principle called List ind for a data type called List.
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Free ind : ∀ (A : Type) (P : Free CF A→ Prop),
(∀ x : A, P (pure x))
→ (∀ e : Ext Shape Pos (Free CF A), P (impure e))
→ ∀ (fx : Free CF A), P fx

After some research Mona found a chapter in Chlipala’s manuscript that explained
how to define induction principles that fit one’s purpose. The chapter also stated that
the induction principles of nested data types generated by Coq are too weak (most of
the time). Now all Mona had to do was to define her own induction principle for List
and Free. Since Free is used nested in List, Mona started with Free.

Mona modified the type of Free ind in order to fit her purposes and named the new
induction principle Free Ind. She only had to modify the last argument of Free ind
that handled the impure case. In the impure case, she had a value e : Ext Shape Pos
(Free A), that is, a container extension with two components s : Shape and pf : Pos s→
Free A. Intuitively the impure constructor contains a container extension of values of
type Free A. Obviously, Mona needed the proposition P to hold for all elements of the
container extension. Therefore, she added the requirement that every Free A that can
be produced by the position function pf : Pos s→ Free A satisfied proposition P. If that
was the case, then P held for impure (ext s pf ). Mona made the following changes.

Free Ind : . . .
. . .
→ (∀ (s : Shape) (pf : Pos s→ Free CF A), (∀ p, P (pf p))→ P (impure (ext s pf )))
. . .

Finally, Mona had to provide a function of the type of Free Ind. Mona thought
that the puzzle pieces fitted together quite naturally when she defined the following
function via pattern matching on fx : Free A.
Fixpoint Free Ind A (P : Free CF A→ Prop)

(pur : ∀ (x : A), P (pure x))
(imp : ∀ (s : Shape) (pf : Pos s→ Free CF A), (∀ p, P (pf p))→ P (impure (ext s pf )))
(fx : Free CF A) : P fx :=

match fx with
| pure x ⇒ pur x
| impure (ext s pf )⇒ imp s pf (λ p : Pos s⇒ Free Ind P pur imp (pf p))
end.

In case of pure x, Mona had to provide a term of type P (pure x) and constructed
it by applying the function pur to x. For impure (ext s pf ), the function imp came in
handy. As first two arguments Mona used the arguments s and pf ; as third argument
she needed a proof that the proposition P already held for pf p for all appropriate
positions p, that is, an expression of type (p : Pos s)→ P (pf p). The induction principle
Free Ind had type (f x : Free A)→ P fx and, thus, matched the required type when
Mona applied pf to a given position p. The other arguments used in the application of
Free Ind are the proposition P as well as the hypotheses pur and imp that remained
unchanged.

Based on her new knowledge about the definition of induction principles and the
example in Chlipala’s manuscript [6], Mona also successfully defined an induction
principle List Ind for the data type List. Mona used induction for ordinary lists all
the time. In the base case, the statement had to be proven for the empty list. For a
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non-empty list cons x xs there was a hypothesis in place that said that the statement
already hold for xs. In the definition of List both arguments of Cons were wrapped
in Free, such that Coq did not generate any hypotheses for the remaining list in the
induction principle presented earlier.
List ind : ∀ (A : Type) (P : List CF A→ Prop),
P (nil CF A)
→ (∀ (fx : Free CF A) (fxs : Free CF (List CF A)), P (cons fx fxs))
→ ∀ (l : List CF A), P l

The same problem occurs when an induction principle is generated for an arbitrary
data structure DT that contains a list of DT as argument in one of its constructors. In
the case of nested lists, an additional property is commonly used to lift propositions
for A to lists of A, that is, to state that the property holds for all elements of a list.
Mona applied this idea and defined the following proposition ForFree that lifted a
proposition for A to Free A.
Inductive ForFree A (P : A→ Prop) : Free CF A→ Prop :=
| For pure : ∀ x : A, P x → ForFree P (pure x)
| For impure : ∀ (s : Shape) (pf : Pos s→ Free CF A),

(∀ p : Pos s, ForFree P (pf p))→ ForFree P (impure (ext s pf ))

For a given proposition P : A→ Prop Mona distinguished two cases. In case of pure
x the proposition was valid if P x held. For impure (ext s pf ) the proposition was valid
if P held for all elements of the container ext s pf. To state that P held for all elements
of the container ext s pf Mona used the same idea as for the definition of Free Ind.

With the definition of ForFree at hand, she defined the induction principle List Ind
that used a hypothesis about the remaining list in the cons case.
List Ind : . . .

. . .
→ (∀ (fx : Free CF A) (fxs : Free (List CF A)), ForFree P fxs→ P (cons fx fxs))
. . .

One detail Mona did not like about these definitions was that the induction hypoth-
esis generated by List Ind seemed so complicated to use. The hypothesis was of the
form H : ForFree P (pure xs), where P was the statement Mona needed to conclude
the proof. She could derive from the definition of ForFree that P held for xs, but she
had to apply a lot of tactics to get access to that hypothesis. In order to make the
usage of List Ind more convenient, Mona wrote a shortcut that brought the induction
hypothesis into the required form and could also handle such a hypothesis for the
impure case. The shortcut simplify H as IH simplified a hypothesis H generated by
List Ind and introduced the required hypothesis under the name IH.
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