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Abstract
Context Actor-based programming languages offermany essential features for developingmodern distributed
reactive systems. These systems exploit the actor model’s isolation property to fulfill their performance and
scalability demands. Unfortunately, the reliance of the model on isolation as its most fundamental property
requires programmers to express complex interaction patterns between their actors to be expressed manually
in terms of complex combinations of messages sent between the isolated actors.
Inquiry In the last three decades, several language design proposals have been introduced to reduce the
complexity that emerges from describing said interaction and coordination of actors. We argue that none
of these proposals is satisfactory in order to express the many complex interaction patterns between actors
found in modern reactive distributed systems.
Approach We describe seven smart home automation scenarios (in which an actor represents every smart
home appliance) to motivate the support by actor languages for five fundamentally different types of message
synchronization patterns, which are lacking in modern distributed actor-based languages. Fortunately, these
five types of synchronisation patterns have been studied extensively by the Complex Event Processing (CEP)
community. Our paper describes how such CEP patterns are elegantly added to an actor-based programming
language.
Knowledge Based on our findings, we propose an extension of the single-message matching paradigm of
contemporary actor-based languages in order to support a multiple-message matching way of thinking in the
same way as proposed by CEP languages. Our proposal thus enriches the actor-model by ways of declaratively
describing complex message combinations to which an actor can respond.
Grounding We base the problem-statement of the paper on an online poll in the home automation community
that has motivated the real need for the CEP-based synchronisation operators between actors proposed in the
paper. Furthermore, we implemented a DSL— called Sparrow— that supports said operators and we argue
quantitatively (in terms of LOC and in terms of a reduction of the concerns that have to be handled by
programmers) that the DSL outperforms existing approaches.
Importance This work aims to provide a set of synchronization operators that help actor-based languages to
handle the complex interaction required bymodern reactive distributed systems. To the best of our knowledge,
our proposal is the first one to add advanced CEP synchronization operators to the— relatively simplistic
single-message based matching—mechanisms of most actor-based languages.
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1 Introduction

The actor model [25] is a well-established paradigm for developing distributed reactive
systems. The actor model’s concurrency properties are fundamental to achieve the
kind of performance and scalability required by such systems in the face of having
to handle millions of simultaneous connections [10]. In the original actor model,
interaction and coordination of actors are achieved entirely by cleverly encoded
asynchronous message exchanges between those actors. Nevertheless, whenever an
actor is supposed to execute a method in response to a received set of messages (rather
than just a single message) with certain characteristics, mainstream actor languages
(e.g., Erlang, Scala, Elixir) require developers to encode the characteristics of the set
manually. This is illustrated in listing 1 (lines 4, 7, 9). In this example, the actor will
react only if a particular sequence of messages (MsgA→ MsgB→ MsgC) is received.
To delay the execution of the reaction code (line 11) until the expected messages have
been received in the right order, the actor must manually keep track (lines 5, 8, 13)
of previous messages, and validate the progress of subsequent message arrivals in a
hard-coded fashion (line 10).

Briefly, the single-message match mechanism of traditional actors complicates the
construction of said distributed reactive systems. Developers are forced to manually
weave and braid two orthogonal concerns of their actor’s interactions and coordina-
tions: when to react (i.e., precisely describe the set of messages that is supposed to
give rise to a certain behaviour) and how to react (i.e., the code that describes the
actual method to be fired upon reception of said set).

Listing 1 Example of how to detect a sequence of messages in Elixir
1 def loop({ts_a, ts_b}) do
2 state =
3 receive do
4 {:msg_a, timestamp} ->
5 {timestamp, ts_b}
6
7 {:msg_b, timestamp} ->
8 {ts_a, timestamp}
9 {:msg_c, timestamp} ->
10 if ts_b > ts_a do
11 # reaction code
12 end
13 {0,0} # reset state
14 end # receive-end
15 loop(state)
16 end

For more than three decades, researchers have been developing new programming
language features to improve the expressiveness of the interaction and coordination
features of actors. In section 5 we will present an extensive overview of the state-of-
the-art in this domain. One notable technique is based on join patterns. This technique
was popularised by Haller and Van Cutsem [23], where an extension of Scala is
presented featuring join patterns. Join patterns where invented by Benton, Cardelli,
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and Fournet [9] as part of the join calculus. They were added to the thread-based
concurrency model of C# leading to a language called Polyphonic C#. The Scala
joins patterns of [23] can be seen as an attempt to transpose the mainly synchronous
incarnation of join patterns in Polyphonic C# to the asynchronous world of Scala.
Join patterns allow many interaction and coordination patterns to be expressed

very elegantly. For example, line 2 in listing 2 exemplifies a join pattern that expresses
the coordination between the two methods (Get and Put) of a Buffer class. In this
example, the calling thread of the Get method will be blocked until the asynchronous
Put method is invoked. The ampersand (&) symbol expresses declaratively that both
threads need to rendezvous before the method’s body is executed.

Listing 2 Expressiveness of a join pattern in Polyphonic C#
1 public class Buffer {
2 public string Get() & public async Put(string s) {
3 return s;
4 }
5 }

In this paper, we use seven smart home automations (in which every home appliance
is represented by an actor) to motivate the necessity to easily encode very complex
interactions and coordinations between actors. Based on an extensive poll in the
smart home community on the internet, we show that these are seven real-world
concerns that are on the radar of actual developers of such systems. From these
seven automations, we identify five different types of message synchronisation operators.
Then, we show that the current state-of-the-art in actor coordination and interaction
technologies in general, and join patterns in particular falls short in supporting these
operators.
Based on this problem statement, we present Sparrow, a dialect of Elixir1 that

features actors whose complex interaction and coordination patterns can be described
in a highly declarative fashion. Sparrow’s interaction patterns (which support our
identified synchronisation operators) have been harvested from our extensive literature
study of the state-of-the-art of Complex Event Processing (CEP). Hence, Sparrow can
be seen as an actor language whose actors have been enriched with CEP and join
pattern ideas. We use a smart home scenario as an application domain to help steer
our research. However, we conjecture Sparrow as a general-purpose actor coordination
framework that can be used to express synchronisation patterns for other event-driven
domains (e.g., SmartCities[26], SmartBuildings[43]) as well.

The main contributions of this paper are:
We showcase current challenges for modern actor languages to coordinate large
groups of heterogeneous actors using seven smart home scenarios (see section 2).
These use cases are not just synthetic scenarios but have been validated in the
smart home community.

1 Elixir can be regarded as a modern Erlang (e.g., with macros) that runs atop BEAM; i.e.,
the Erlang virtual machine.
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We present a novel set of advanced actor synchronisation abstractions by formulat-
ing them as a domain-specific Elixir extension, called Sparrow (see section 3).
We validate our proposal by implementing the seven smart home scenarios to
demonstrate the expressiveness of the resulting code (see section 4).
We show the novelty of our approach by contrasting it with the state-of-the-art and
related work on actor interaction and coordination techniques (see section 5).

2 Motivating Scenarios: Coordination of Smart Home Devices

One application domain where complex interactions between different participants of
a system occur is the smart home automation domain. In our scenario, each smart
device is digitally represented by an actor (also called digital twin [2]). These digital
twins can be run on the device itself or any other machine, for instance, on the
edge (e.g., raspberry pi) or a cloud-based platform (e.g., SmartThings). The complex
interactions between the smart home devices then need to be encoded through
message passing between their respective digital twins. For complex scenarios, this
will require advanced synchronisation patterns to express these different interactions.
In this section, we present seven home automation scenarios that exemplify five
fundamental synchronisation operators required to coordinate a group of actors.
These are:

1. Turn on the lights in a room if someone enters, and the ambient light is less than 40
lux.

2. Turn off the lights in a room after two minutes without detecting any movement.
3. Send a notification when a window has been open for over an hour.
4. Send a notification if someone presses the doorbell, but only if no notification was

already sent in the past 30 seconds.2

5. Detect home arrival or leaving based on a particular sequence of messages, and activate
the corresponding scene.3

6. Send a notification if the combined electricity consumption of the past three weeks is
greater than 200 kWh.

7. Send a notification if the boiler fires three Floor Heating Failures and one Internal
Failure within the past hour, but only if no notification was sent in the past hour.

The above examples were inspired by real automation rules shared on community
forums of smart home platforms (e.g., openHAB4 and Hass5). While conducting this
study, we only considered complex scenarios that cannot be expressed using a simple
mobile app (e.g., Home App from Apple). Each of these complex scenarios was then
classified and consolidated into the seven different scenarios described above. These

2 The postman always rings twice.
3 A scene is set of actions to be taken in a certain state of the home automation system.
4 openHAB Forum (https://community.openhab.org, last accessed 2020-10-01).
5 Hass Forum (https://community.home-assistant.io, last accessed 2020-10-01).
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Figure 1 Results of the online poll. Total of voters: 714. Voting time: 1 month

consolidated scenarios highlight different complex coordination patterns between a
group of smart devices, which can be abstracted into five primary synchronization
operators described at the end of this section. To validate that each of our scenarios is
a representative example of the different synchronisation patterns found in the wild,
we published an online poll. Each respondent was required to reply with a yes-or-no
answer whether or not they had to implement synchronisation patterns similar to
each of our seven scenarios.
Our poll was published in four smart home community forums (openHAB [7],

Hass [5], SmartThings [8], and Hubitat [6]) for one month and, during that time,
collected 714 votes. Figure 1 shows the results of this poll. Due to our poll’s non-
probabilistic nature, we cannot derive any statistical certainties based on its results.
However, it does show that our scenarios are good examples of concerns that present
themselves within that community. For example, scenario 1 exemplifies the need
for synchronizing multiple independent messages. In this scenario, there are two
sensors (motion and light) whose messages need to be synchronized. This concern was
identified and raised as a known issue by 662 (92.72%) of the voters. Scenarios 2, 3, 4,
and 5 rely on fairly advanced time-based synchronisation of messages. Furthermore,
scenario 5 requires to enforce a particular order in which its constituent messages
must match. Our poll shows that timing-constraints and message-order are also two
well-recognized concerns within the home automation community. Even the complex
scenarios (6 and 7) that require aggregation of multiple messages of the same type
over a certain time window were still encountered by more than a quarter of the
respondents.6

The results of our poll do not validate our list of scenarios as exhaustive. However, it
does give us the certainty that the listed scenarios represent common synchronisation
patterns found in the wild. Despite these results, we found that both current thread-
based smart home platforms and actor languages lack synchronisation abstractions
to coordinate heterogeneous smart home devices. We base this statement on our
experience after implementing all our examples in two popular smart home platforms

6 Possibly because scenarios (6, 7) target expensive devices which currently offer limited
integration with third-party platforms.
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(openHAB and Hass) and a modern actor language (Elixir). These selected pro-
gramming environments offer at least the same synchronisation abstractions as their
state-of-the-art alternatives (e.g., SmartThings, Akka/Scala). The full implementation
of each of the seven scenarios using each of the three programming environments
can be found online [4]. Each of our implementations using both openHab and Hass
was presented and improved based on feedback from their respective communities.

Listing 3 shows the degree of complexity that users of current smart home platforms
have to handle by themselves to implement scenario 5. Our openHAB solution consid-
ers two motion sensors, one in the entrance hall (α), and the second one outside the
front door (δ). Furthermore, we use a contact sensor (β) to detect when the front
door was opened. The occupied-home scene is enabled by the following sequence of
messages δ→ β → α, and the empty-home scene by α→ β → δ. Both scenes will be
activated if the three messages occur in a time window of 60 seconds. This imple-
mentation also assumes that only one person lives in the smart home. Although our
solution was improved thanks to the feedback received from the openHAB community,
it exposes a lack of programming abstractions to synchronize messages from multiple
devices. First, we are responsible for keeping track of each sensor’s last update (β
line 9, α line 15, δ line 28). Second, we manually discard messages older than the 60
seconds time window (lines 17, 30). Finally, we have to verify that the messages were
received in the right order (lines 20, 33) before executing the automation’s reaction.
In summary, our openHAB solution and its Elixir alternative required more than 20
lines of essential code to express the coordination of only three devices.

Further study of each of the scenarios allowed us to disambiguate five categories of
operators that are required to express each of the synchronisation patterns.

Filter operators are required to enable the filtering of messages based on their attribute
values or timing constraints. For example, in scenario 1, we are required to filter
out messages from the ambient light sensor for which the value does not reach 40
lux. Scenario 4 and 6 show the need for filtering messages based on the absence or
presence of messages within a certain time window respectively.

Selection operators are required to select messages from the set of matching messages
after filtering. Traditional actor languages only allow for the consumption of the
oldest (first in) message. However, we will require more flexible message selection
policies. For example, in scenario 7, we are only interested in the latest Internal
Failuremessage, and the third Floor Heating Failuremessage. In general, expressing
these types of constraints will require selection operators that allow us to select
any message from the set of matching messages after filtering.

Correlation operators are required to match a set of different types of messages and
to unify their attributes. For example, in scenario 1, we are required to match a
motion sensor message and an ambient light sensor message but only match if both
are present. Additionally, in scenario 5, we are also required to specify the order in
which those messages arrived in order to trigger the right scene. Depending on
the order in which sensors detected movement, the person either left the house or
arrived home.
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Listing 3 Jython-script implementation for scenario 5 in openHAB
1 c_door = ZDT.now().minusHours(24)
2 m_hall = ZDT.now().minusHours(24)
3 m_door = ZDT.now().minusHours(24)
4
5 @rule("(Py) Front Door Opened")
6 @when("Item Front_Door_Contact changed to OPEN")
7 def front_door_opened(e):
8 global c_door
9 c_door = ZDT.now()
10
11 @rule("(Py) Motion Detected - Entrance Hall")
12 @when("Item Entrance_Hall_Motion changed to ON")
13 def entrance_hall_motion(e):
14 global m_hall, m_door, c_door
15 m_hall = ZDT.now()
16
17 if m_door.isBefore(m_hall.minusSeconds(60)):
18 return
19
20 if m_hall.isAfter(c_door) and c_door.isAfter(m_door):
21 # code logic for arriving home
22
23
24 @rule("(Py) Motion Detected - Front Door")
25 @when("Item Front_Door_Motion changed to ON")
26 def front_door_motion(e):
27 global m_hall, m_door, c_door
28 m_door = ZDT.now()
29
30 if m_hall.isBefore(m_door.minusSeconds(60)):
31 return
32
33 if m_door.isAfter(c_door) and c_door.isAfter(m_hall):
34 # code logic for leaving Home
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Accumulation operators are required to aggregate a set of matching messages after
filtering. For example, in scenario 6, we are required to aggregate electricity
consumption messages of the last three weeks into their sum.

Transformation operators are required to transform (e.g., map) a list of accumulated
messages. These messages can be subject to new predicate conditions. For example,
in scenario 6, we need to check if the total electricity consumption is greater than
200 kWh before sending a notification. Only if the predicate condition is true all
the accumulated messages are consumed.

In this section, we have identified the above five types of operators that are required
to express complex synchronisation patterns. Unfortunately, as we show in more
detail in section 5, state-of-the-art actor languages and frameworks lack the necessary
support for these types of operators. Contrary, the above operators are frequently
supported by CEP languages/frameworks (e.g., TESLA [11], ETALIS [3], PARTE [37],
FlinkCEP [47], and Esper [27]). In the next section, we explore the integration of the
well understood CEP operators into actors to overcome these limitations.

3 Advanced Join Patterns

In this section, we introduce the main contribution of this paper, to wit a novel join
pattern language called Sparrow. Like previous join pattern languages [23, 32, 33],
Sparrow extends the traditional single-message match interface of actors [25] to
support multiple-message match. However, in order to support the five synchroni-
sation operators described in the previous section, Sparrow’s join pattern language
design is heavily inspired by CEP languages and frameworks. Sparrow leverages
the macro facilities of the Elixir programming language for its implementation. As
such, Sparrow is implemented as a domain-specific language (DSL) that benefits from
the integration of the extensive set of Elixir/Erlang libraries in that ecosystem. The
conceptual model underlying Sparrow’s technical implementation was formalised
into an executable operational semantics using PLT-Redex [14]. The description of
this operational semantics can be found in a companion technical report [40] for this
paper.
Listing 4 shows an implementation of scenarios 1 and 2 in Sparrow. A Sparrow

module (Actor definition) consists of four parts: importing Sparrow’s macros (line 2),
pattern definitions (lines 4–-14), reaction definitions (lines 16, 17), reaction bindings
(lines 19, 20).

The Sparrow programming language can be subdivided into two smaller languages.
On the one hand, there is the Sparrow’s pattern language (see section 3.1); this
is a declarative subset of Sparrow (inspired by CEP languages) that enables the
declaration of complex synchronisation patterns (see listing 4, lines 4–-14). On the
other hand, the Sparrow’s reaction language (see section 3.2) is a superset of the
Elixir programming language in which the reaction to a matching pattern can be
specified (see listing 4, lines 16, 17). The react_to with: special form ties both languages
together. It determines which reactions will be fired after a complex synchronisation
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Listing 4 Main parts of a Sparrow program
1 defmodule SparrowByExample do
2 use Sparrow.Actor
3
4 pattern motion as {:motion, id, status, room}
5 pattern light as {:light, id, status, room}
6
7 pattern on_motion as motion{status= :on}
8 and light{status= :on}
9 and {:amb_light, id, value, room} when value > 40,
10 options: [last: true]
11
12 pattern no_motion as not motion{status= :on}[window: {2, :mins}]
13 and light{status= :on},
14 options: [last: true]
15
16 reaction turn_on_light(l, i, t), do: # send on command
17 reaction turn_off_light(l, i, t), do: # send off command
18
19 react_to on_motion, with: turn_on_light
20 react_to no_motion, with: turn_off_light
21
22 end

<pattern-definition> := pattern <identifier> as <pattern>
<pattern> := <elem-pattern> [(and | or ) <elem-pattern>]* [<guard>] [, [options: <option>+]]
<elem-pattern> := [not] <selector> [[<operator>+]] {|> <transformer>}*
<selector> := {<symbol>, <attribute>*} | <identifier>[{{<inline-guard> | <alias-op>}+}]
<attribute> := <value> | <symbol> | <logic-var>
<guard> := when <expression>
<inline-guard> := <identifier> = <expression>
<alias-op> := <identifier> ∼> <identifier>
<symbol> := :<identifier>
<logic-var> := [(@ | ! )]<identifier>
<operator> := window: <time> | debounce: <time> | every: <number> | count: <number>
<transformer> := fold(<expression>, <expression>) | bind(<identifier>)
<option> := seq: <boolean> | interval: <time> | last: <boolean>
<time> := {<number>, (:secs | :mins | :hours | :days | :weeks)}

Figure 2 EBNF-styled grammar for the Sparrow’s pattern language

pattern has been detected. The next subsections describe both parts of the Sparrow
language in detail and their underlying implementation (see section 3.3). Figure 2
shows an EBNF-styled grammar for the Sparrow’s pattern language. The definition
for <expression>, <identifier> <value>, <number> and <boolean> have been omitted and
corresponds to ordinary Elixir expressions, identifiers, primitive values, numbers and
booleans respectively.
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3.1 Sparrow Pattern Language

Similarly to the Erlang/Elixir family of actor languages, in Sparrow, incoming mes-
sages are pattern matched against several message patterns. When a match is found,
the matching message(s) are consumed from the actor’s inbox, and the actor starts a
process to react to those messages. This reaction is specified in the Sparrow reaction
language (see section 3.2). Sparrow has support for three types of patterns: elemen-
tary patterns enable the matching of single messages, composite patterns enable the
composition of multiple elementary patterns, and accumulation patterns enable the
accumulation and aggregation of multiple messages of the same type.

3.1.1 Elementary Patterns
Elementary patterns are the most basic kind of patterns. They always start with a
selector that designates a single message followed by an optional operator and an
optional guard expression. Defining a new pattern in Sparrow can be done using
the pattern special form. Figure 3 shows the definition of an elementary pattern
that matches when an open window is detected at any location (this is part of
the implementation for scenario 3). The pattern keyword is used to give a name to
the pattern. In Sparrow, patterns are second-class citizens that can be reused and
composed to define complex patterns. The as keyword is followed by the selector of
the pattern. Similar to Elixir’s messages, a selector in Sparrow is represented as a
tuple. Its first element determines the type7 of message to match, and always has
a unique constant value (:window in our example). The other selector elements are
called attributes, and they can be primitive values (e.g., String, Number) or logic
variables. Logic variables represent a dynamic primitive value that is unknown until
the matching of the pattern against a message that sits in the actor’s inbox.

pattern open_window as {:window, id, :open, location}

2

1

3

Figure 3 Example of an elementary pattern: (1) Primitive to declare a pattern; (2) Assign
a name for future references; (3) Define the pattern’s selector

As with plain Elixir/Erlang, pattern matching on primitive values can be used to
filter messages based on their attribute values. For instance, the pattern shown in our
example will only match :window messages for which the second attribute (status) has
as value :open. The other attributes (id, location) are logic variables.

Operators are high-level conditions that further delineate the kind of messages that
can be matched by the pattern selector. A selector can optionally be followed by one
or more operators enclosed in square brackets. Elementary patterns support three

7 The type of a selector is always an Elixir atom (:).
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types of operators: negation, debouncing, and extensional sequencing.8 For example,
figure 4 shows an implementation for scenario 2 that uses a negation operator. For
this scenario, we want to turn off the lights after two minutes without movement.
Detecting the absence of motion events can be implemented in Sparrow by using the
negation operator (not) in combination with a timing window.

pattern turn_off_light as not {:motion, id, :on, location}[window: {2, :mins}]

1 2

Figure 4 Implementation of scenario 2 using a negated pattern: (1) Negate the selector
definition; (2) Set the time window

Negated selectors must always be combined with a time window (e.g., in seconds,
minutes, or hours). Every time the selector matches a new message, the time window
is reset. Once the time window expires, the pattern is automatically matched.
Figure 5 shows an implementation of scenario 4 using the debouncing9 operator.

For this scenario, we only want to match doorbell messages if no other doorbell
message was matched in the past 30 seconds. A debounced operator does exactly
that, the first message that matches the preceding selector automatically matches
the entire pattern. Any future messages that follow within the debouncing time are
automatically discarded.

pattern doorbell_alert as {:doorbell, id}[debounce: {30, :secs}]

Figure 5 Implementation of scenario 4 using a debouncing time between messages

Finally, figure 6 presents the use of the extensional sequencing operator in order to
implement a partial solution for scenario 7. For our partial solution, we are interested
in matching every third heating failure event. This can be done in Sparrow by following
the pattern selector with an extensional sequencing operator using the every keyword.
In our example, only every thirdmessage is matched and consumed. All other messages
that match the selector are discarded.

pattern heating_failure as {:heating_f, id, code}[every: 3]

Figure 6 Example using the extensional sequencing operator (every) of Sparrow

Guards are boolean predicates that are executed after a match of the selector and
its operators is found. Like with traditional Elixir guards [48], Sparrow guards are
only allowed to contain boolean predicate expressions that can always be executed

8 The integration of Sparrow in Elixir required us to design negation as a prefix operator, and
debouncing and sequencing as postfix operators.

9 The term debouncing is taken from the domain of electrical circuits where a particular
debouncing algorithm is used to avoid multiple triggers (within a period) to produce an
undesired control output [19].
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in constant time (and are side-effect free). Figure 7 shows a guarded pattern that
will be activated if it matches an open window message from the bedroom or the
kitchen. The full pattern is only matched (and the corresponding reaction fired) when
the guard expression evaluates to true. If the guard expression evaluates to false, the
pattern is not matched, and the messages are not consumed.

pattern open_window as {:window, id, :open, location} 
                    when location == :bedroom or location == :kitchen

Figure 7 Example of a pattern with a guard expression

3.1.2 Composite Patterns
Elementary patterns that have been named by means of the pattern keyword can be
reused, further specified or composed with other patterns.

Reusing elementary patterns can be done by specifying a pattern name instead of
a selector when defining a new pattern. An optional set of inline guards can follow
this name. Inline guards are just syntactic sugar to write compact guard expressions.
Pattern reuse is illustrated in figure 8, which shows two semantically equivalent
variants (B, C) of a pattern that extends another elementary pattern (A). Both patterns
are matched whenever a window of the kitchen is open. Pattern B uses a guard
expression to further specify that the open window needs to be detected in the
kitchen using the equals operator (==). On the other hand, pattern C employs an inline
guard to substitutes the logic variable location for the atom :kitchen using the match
operator (=).

pattern open_window as {:window, id, :open, location}

pattern kitchen_window_a as open_window when location == :kitchen

pattern kitchen_window_b as open_window{location= :kitchen}

A

B

C

Figure 8 Examples of pattern reuse: (A) Definition of an elementary pattern; (B) Further
specifying an existing pattern with an additional guard expression; (C) Definition
of a reused pattern with an additional inline guard

Composing patterns can be done by linking multiple elementary patterns by means
of a logic operator. Sparrow supports both conjunctions (and) and disjunctions (or)
of patterns.10 Figure 9 illustrates the use of composing patterns in order to partially
implement smart home scenario 5. For this scenario, we are interested in detecting
when the user is arriving home by first detecting motion at the front door, followed by
receiving an open door event, followed by detecting motion in the entrance hall. In our

10 Like with traditional actor languages; disjunction can also be achieved by separating each of
the patterns in the disjunction. However, as Sparrow also has conjunction, which is usually
not supported by traditional actor languages, we also syntactically support disjunction.
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example, the occupied_home pattern is defined as a conjunction of three elementary
patterns. The first and third one reuse the motion_sensor pattern to match only motion
events from the front door and entrance hall respectively, On the other hand, the
second one is an anonymous pattern that matches door opening events.

Any composed pattern can be followed by an optional set of operators. By default,
a composed pattern does not enforce any particular order in which its constituents’
patterns must match. However, that behaviour can be changed using the intensional
sequencing operator (seq). In our example of figure 9, we set sequencing to true in
order to specify that the occupied_home pattern can only be matched if the matched
messages arrive in the same order as they are specified in the pattern definition.

pattern occupied_home as motion_sensor{location= :front_door}

                     and {:contact, id, :open, :front_door}

                     and motion_sensor{location= :entrance_hall},

                     options: [ seq: true ]

pattern motion_sensor as {:motion, id, :on, location}

Figure 9 Example of use of sequencing operator (seq)

Renaming logic variables Sparrow has support for unification of logical variables
crossing the constituents of a composed pattern. This is often desirable as it allows
for the unification of various attributes across different pattern selectors. However,
Sparrow currently unhygienically expands all named patterns into the composed
pattern (similar to unhygienic macros). This can potentially lead to unexpected
unification of logical variables when composing named patterns. For example, our
first implementation of scenario 5 in figure 9 contains a bug as it incorrectly does
not match the sequence of messages shown in figure 10.A. Figure 10.B shows the
expanded form of the composite pattern defined in figure 9. Each of the selectors
of the elementary patterns contains the same logical variable id. However, in this
case, it is undesirable to unify these three logical variables as each sensor can have a
different id. To circumvent this issue, Sparrow allows developers to manually change
the logical variable for an attribute using the aliasing operator (~>). The aliasing
operator renames the logical variable on its left-hand side to the logical variable
on its right-hand side in the elementary pattern. This operator is not an optimal
solution. In future versions of Sparrow, the default behaviour of unification will be
changed to facilitate the maintenance of large pattern sets. However, as patterns are
not first-class entities, developers can identify shared logic variables by looking at
the pattern definition. Figure 10.C presents an improved version of the occupied_home
pattern.

Timing constraints on composite patterns Similar to windowing for elementary pat-
terns, composite patterns also support timing-constraints. Developers can specify a
time-interval in which the composed set of patterns should be matched. Figure 11
presents a new version of the occupied_home pattern where the 60 seconds time con-
straint is added. Similar to intentional sequencing, this time constraint (interval) is
also defined in the options of a composite pattern.
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{:motion, 30, :on, :front_door}  {:contact, 20, :open, :front_door}  {:motion, 31, :on, :entrance_hall}

t1 t2 t3
Time

A

B

1

{:motion, id, :on, :front_door} and {:contact, id, :open, :front_door} and {:motion, id, :on, :entrance_hall}

C pattern occupied_home as motion_sensor{location= :front_door} and {:contact, cid, :open, :front_door}

                     and motion_sensor{location= :entrance_hall,id~> mid},

                     options: [ seq: true ]
1

2

Figure 10 Example of a composite pattern with shared logic variables: (A) Sample of mes-
sages; (B) Expansion of the occupied_home pattern’s composite selector; (B.1)
Highlight shared logic variables; (C) Fixed declaration of the occupied_home
pattern; (C.1) Change attribute identifier; (C.2) Rename attribute identifier using
the alias operator

pattern occupied_home as motion_sensor{location= :front_door} 

                     and {:contact, cid, :open, :front_door}

                     and motion_sensor{location= :entrance_hall,id~> mid},

                     options: [ seq: true, interval: {60, :secs} ]

Figure 11 Example of a composite pattern with a time interval constraint

Composite patterns selection strategy Like most actor languages, Sparrow messages
are matched in FIFO order. However, Sparrow enables one to deviate from that default
selection strategy. Figure 6 already showed an example of this by only selecting every
third message. This particular message selection strategy is useful to synchronize
always on the latest messages that may be relevant to a pattern. For example, the
implementation of the pattern occupied_home from figure 11 must always check all
potential messages received from the three sensors in the last 60 seconds. However,
as observed in figure 12.A at t4, the pattern should only check the latest message (t3)
from the entrance hall’s motion sensor and discard the old ones (t1, t2).

A

B pattern occupied_home as motion_sensor{location= :front_door}

                     and {:contact, id, :open, :front_door}

                     and motion_sensor{location= :entrance_hall, id ~> mid},

                     options: [ seq: true, interval: {60, :secs},last: true ]

t1
Time

t2 t3 t4 t5

M_FrontDoor

C_FrontDoor

M_EntHall

Figure 12 A solution to the occupied-home scene of scenario 5: (A) Messages received by
the actor; (B) Composite pattern that enforces a selection strategy (last-in)

3.1.3 Accumulation Patterns
Accumulation patterns extend elementary patterns with quantified and unquantified
accumulation of sets of the same type of message. Once the set of messages is accumu-
lated, further transformation and filtering can be applied. Accumulation patterns can
be constructed from elementary patterns by means of several optional accumulation
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operators. Like other operators (see section 3.1.1), they can be specified between
square brackets following the selector.

Quantified accumulation patterns are used to accumulate a fixed number of matching
messages. Figure 13.A shows a pattern that uses the count operator to match three
heating failure messages. However, similar to reused patterns, the pattern expansion
step of Sparrow’s macros will unhygienically expand these patterns. In our example,
this means that the pattern heating_failure accumulates three heating failure messages
from the same boiler and with the same failure code as the logical variables id and
code will be unified (see figure 13.B). Although this default behaviour may be useful
in some circumstances, it is not always desirable.

Sparrow introduces the operators:must be distinct ! andmay be distinct @, to specify
the expected matching behaviour of logic variables when used in an accumulation
pattern. The former guarantees that the constrained attribute must have a distinct
value in all the messages accumulated. In contrast, the latter allows the constrained
attribute to have any value. For example, the definition of heating_failure pattern shown
in figure 13.C will match three messages from the same boiler regardless of the code
attribute’s value.

pattern heating_failure as {:heating_f, id, code}[count: 3]A

B {:heating_f, id, code} and {:heating_f, id, code} and {:heating_f, id, code}

pattern heating_failure as {:heating_f, id, @code}[count: 3]C

Figure 13 Example of a quantified accumulation pattern that matches three heating failure
messages: (A) Use of the operator count to accumulate tree messages; (B)
Highlight shared logic variables in expanded pattern; (C) Use of the may be
distinct operator @ to accumulate messages regardless of the code attribute’s
value

Unquantified accumulation patterns are used to accumulate any number of messages
within a certain time window using the window operator. Figure 14.A shows a pattern
that uses the window operator to accumulates all heating failure messages from the
last 60 minutes. Messages older than the time constraint are automatically removed
by Sparrow’s run-time. As a second example of unquantified accumulation patterns,
figure 14.B shows a hybrid accumulation pattern that use both count and time-based
accumulation operators. In this last case, the first operator that reaches its condition
will win and result in a match.

Transformation operators allow developers to transform and filter a group of received
messages that have been accumulated. For example, figure 15.B presents a pattern that
implements the requirements for scenario 6. Notice that the electricity_alert pattern
uses the may be distinct operator (B.1) to match all daily consumption values. Once
the accumulation operator is satisfied (B.2), the list of messages is transformed (B.3).
Later, the pattern uses the special form bind (B.4) to save total electricity consumption
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pattern heating_failure as {:heating_f, id, @code}[window: {60, :mins}]A

pattern heating_failure as {:heating_f, id, @code}[count: 3, window: {60, :mins}]B

Figure 14 Examples of unquantified accumulation patterns: (A) Use of the window operator
to accumulate all messages in the last 60 minutes; (B) Example mixing both
accumulation operators

in a local variable (total). Finally, the guard expression (B.5) is evaluated to determine
if the messages are consumed or not by the pattern. In this example, messages older
than three weeks are automatically discarded by the Sparrow runtime.

pattern daily_electricity as {:consumption, meter_id, value}

1

A

pattern electricity_alert as daily_electricity{@value}[window: {3, :weeks}]

                             |> fold(0, fn({_,_,v}, acc)-> acc + v end)

                             |> bind(total)

                             when total > 200 

B

2

3

4

5

Figure 15 Sparrow solution for scenario 6: (A) Elementary pattern definition; (B) Accumu-
lation pattern example with a transformer operator and guard

3.2 Sparrow Reaction Language

So far, we have only focused on the Sparrow’s pattern language. However, once a
pattern is matched, the matched messages are consumed, i.e., removed from the
actor’s inbox, and the actor starts reacting to the matched pattern. In Sparrow, this
reaction logic is syntactically decoupled from the pattern definition (similar to [51]).
A reaction can be dynamically bound to one or more patterns, and a pattern can have
multiple reactions. This behaviour was intentionally designed to facilitate the reuse of
both patterns and reactions. Furthermore, it avoids developers to add an extra layer
of indirection (middleman) to determine which reactions to execute. The middleman
approach circumvents the duplicity definition of both patterns and reactions. However,
it also introduces a performance penalty since it is always notified whether a pattern
has registered reactions or not. In summary, the decoupling of patterns and reactions
allows the programmer to dynamically change the behaviour of a Sparrow actor, which
is reminiscent of a become statement in the original actor model.
Figure 16 showcases a smart home scenario where the binding of reactions to a

pattern is based on the current season of the year (e.g., summer, winter). In this
way, developers can avoid duplicated patterns with different reactions to match the
season requirements. This figure omits the code related to the dynamic scheduling
of the reactions. Figure 16.A shows the definition of two reactions (turn_off_heating,
turn_off_cooling) using the reaction special form. Both reactions can be bound to the
pattern window_open (see figure 16.B) based on the current season. The definition of
a reaction is similar to the definition of a named function that always has the same
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reaction turn_off_heating (mgs, int_res, state), do: # reaction code

1

A

C

2 3 4

react_to open_window, with: turn_off_heating

1 2

D remove turn_off_cooling, from: open_window

1 2

E remove_reactions open_window

reaction turn_off_cooling (mgs, int_res, state), do: # reaction code

B pattern open_window as {:window, id, :open, location}

Figure 16 Overview of reaction primitives: (A) Define two reactions; (B) Add a reaction to
a pattern; (C) Remove a reaction from a pattern; (D) Remove all reaction of a
pattern

three parameters. The first one (A.1) is a list of messages matched by the pattern.
The second parameter (A.2) is a key-value list with all the intermediate results saved
with the bind operator during a transformation process (see figure 15.B.4). Finally, the
third parameter (A.3) represents the current state of the actor. In this example, the
definition of both reactions omits the code related to their body and their dynamic
scheduling.

Binding a reaction to a pattern is done using the react_to special form (see figure 16.C)
which expects two arguments: the pattern’s name (C.1), and the reaction’s name (C.2).
When the pattern open_window (see figure 16.B) is successfully matched, the actor will
invoke all its reactions in the same order they were bound to the pattern. A reaction
can also be unbound from a pattern. The remove primitive function (see figure 16.D)
also expects the same two arguments as the react_to primitive function but in reverse
order. Finally, the remove_reactions function (see figure 16.E) removes all the reactions
of the pattern received as argument.

3.3 Implementation

As mentioned in section 3, Sparrow extends the traditional single-message match
interface of actors to support multiple-message match. To achieve that, a Sparrow
actor has a virtual-inbox that it is used as a knowledge base of an embedded pattern
engine. Like the traditional actor’s inbox, the virtual-inbox is theoretically unbounded
in size. However, unlike traditional actor languages, Sparrow messages have a finite
lifetime. Each actor can define a default lifetime for the messages it receives. After a
message expires, it is automatically garbage collected by the pattern engine.

The pattern engine builds a directed graph (also known as discrimination network)
representing all patterns defined in its actor. Internally, Sparrow’s patterns are rep-
resented by a special type of node called pattern node. These nodes implement the
different synchronisations operators motivated in section 2 and supported by Sparrow.
Additionally, each pattern node maintains a history (called buffer) of previous matched
messages. Although in figure 17 patterns are represented by a single type of node,
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Pattern Engine

Actor

Inbox

Discrimination

Network
1

2

Reaction Executor

3

Pattern’s reactions 

Message

Message being transfered

Root node 

Pattern node 

Reaction in execution 

Legend

Virtual-Inbox

Figure 17 Overview of the internal representation of a Sparrow actor: (1) Transfer of
a received message to the virtual-inbox; (2) Feed the engine’s discrimination
network with a new message; (3) Queue pattern reaction after a successful
match

several subtypes exist, each of them addressing a particular type of pattern defined in
section 3.
Figure 17 shows a simplified view of the internal representation of an actor in

Sparrow and its messagematching process. Thematching process starts by transferring
each received message from the actor’s inbox into the virtual-inbox. Later the pattern
engine tries to match each new message against a group of patterns for which it is
relevant; we call this process a match-cycle. The discrimination network’s root node
serves as the entry point of new messages for the matching process. This node will
determine potential pattern nodes based on the message’s type and will forward it to
them. After this step, the message will flow through the discrimination network until
a pattern node with a successful match of its conditions is found. In that case, the
message is consumed by its reaction(s), which will be one after the other executed
sequentially by the actor’s reaction executor. Otherwise, the message remains in the
node’s buffer until a successful match is completed or until the message expires. The
above process is an essential tool for the engine’s incremental matching strategy. This
strategy is based on a custom implementation of the RETE algorithm [15]. Furthermore,
it implements a single pattern selection and selected message consumption policies [54].
The former guarantees that a pattern matches at most once per match-cycle. The
latter guarantees that a pattern can consume a message only once. However, multiple
patterns can consume the same message. The details of this implementation can be
found in our GitHub repository.11

11 https://github.com/softwarelanguageslab/sparrow
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4 Evaluation

In this section, we evaluate Sparrow’s expressiveness by comparing its solutions to
our seven scenarios against the ones expressed in two popular smart home platforms
(openHab, Hass) and one actor language (Elixir). We chose Elixir because it is the
host language of our DSL, and it provides synchronisation abstractions similar to
other mainstream actor languages (e.g., Erlang, Scala). We followed a quantitative
evaluation approach based on an analysis of the lines of code required to express each
automation’s coordination logic. In other words, our comparison does not consider
code not related to the coordination process (e.g., imports, reaction logic of the
automations). To obtain a fair comparison between our actor-based solutions and
the ones from the smart home platforms, we published these solutions on both
community’s forums (see openHAB [39] and Hass [38] topics). This allowed us to get
feedback, and incrementally arrive at a solution that could be implemented by experts
in these communities in our comparison. Figure 18 shows a solution to scenario 5
in openHAB (A), Elixir (B), and Sparrow (C). We decided to analyse this particular
solution since it showcases most of the actions that developers have to take care
of during the implementation of our scenarios. Due to the similarity between the
solutions of openHAB (Jython) and Hass (Python), we omitted the latter. However,
the interested reader can inspect this and the rest of our solutions in our GitHub
repository [4].

As can be observed in figure 18, for this particular automation, the Sparrow’s solution
is the most compact of all three. However, we want to compare the relative amount of
code that we (as developers) have to write for handling all different concerns related
to the synchronisation of messages. To do this analysis, we highlighted four concerns
that we frequently found in the implementations of our smart home scenarios. The
first one (state management) indicates the code that is used to save temporal data
required by the ongoing coordination process. For example, in both openHAB and
Elixir implementations, we had to manually track each sensor’s most recent message,
spending 42.86% and 40% respectively of the coordination code on that action.
However, Sparrow shields developers from this kind of work. The second concern
(windowing management) highlights the code needed to discard messages that do not
satisfy the pattern’s timing constraints. In contrast, the third one (sequencing control)
points the code to enforce a particular message order. The coordination code required
for these two actions in automation 5 was relatively simple. However, unlike Sparrow
(lines 10, 13), the complexity of these synchronisation operations in openHAB (lines 21,
24, 33, 36) and Elixir (lines 8, 9, 16, 17) is directly proportional to the number of devices
involved. The last concern, pattern definition emphasizes the code used to express the
type of messages to be synchronized and their content-based conditions. Although it is
the most crucial concern for the coordination process, openHAB and Elixir’s patterns
only define when to react to single messages. The inability to express the whole
coordination process by means of declarative patterns forces developers to shift their
focus from when to react to how to do it. By contrast, in Sparrow (see figure 18.C), a
developer focuses on the declaration of patterns, and he lets the run-time to figure
out how to match its constituents.
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Sequencing controlWindowing managementPattern definitionState management

C  1 defmodule Automation5 do
  2    use Sparrow.Actor
  3    
  4    pattern motion as {:motion, id, :on, location}
  5    pattern m_front_door as motion{location= :front_door}
  6    pattern m_entrance_hall as motion{location= :entrance_hall, id~> mid}
  7    pattern c_front_door as {:contact, cid, :open, :front_door}
  8   
  9    pattern occupied_home as m_front_door and c_front_door and m_entrance_hall,
10                                          options: [ interval: {60, :secs}, seq: true, last: true ]
11    
12    pattern empty_home as m_entrance_hall and c_front_door and m_front_door,
13                                     options: [ interval: {60, :secs}, seq: true, last: true ]
14   
15    reaction activate_home_scene(l, i, t), do: # code logic for arriving home
16    reaction activate_leave_scene(l, i, t), do:  # code logic for leaving home  
17    
18    react_to occupied_home, with: activate_home_scene
19    react_to empty_home, with: activate_leave_scene
20    
21 end     

B  1 defmodule Automation5 do
  2    import Timex
  3    
  4    def loop({m_door, m_hall, c_door}) do
  5      state =
  6         receive do
  7            {:motion, _id, :on, :front_door, m_door_dt} ->
  8               if before?(shift(m_door_dt, seconds: -60), m_hall)  do
  9                  if after?(m_door_dt, c_door) and after?(c_door, m_hall) do
10                     # code logic for leaving home
11                  end
12               end
13               {m_door_dt, m_hall, c_door}
14
15            {:motion, _id, :on, :entrance_hall, m_hall_dt} ->
16               if before?(shift(m_hall_dt, seconds: -60), m_door)  do
17                  if after?(m_hall_dt, c_door) and after?(c_door, m_door) do
18                     # code logic for arriving home
19                  end
20               end
21               {m_door, m_hall_dt, c_door}
22
23            {:contact, _id, :open, :front_door, dt} ->
24               {m_door, m_hall, dt}
25         end
26
27      loop(state)
28    end
29    
30 end     

A  1  from core.rules import rule
  2  from core.triggers import when
  3  from java.time import ZonedDateTime as ZDT
  4
  5  c_door = ZDT.now().minusHours(24)
  6  m_hall = ZDT.now().minusHours(24)
  7  m_door = ZDT.now().minusHours(24)
  8 
  9  @rule("(Py) Front Door Opened")
10  @when("Item Front_Door_Contact changed to OPEN")
11  def front_door_opened(event):
12     global c_door
13     c_door = ZDT.now()
14
15  @rule("(Py) Motion Detected - Entrance Hall")
16  @when("Item Entrance_Hall_Motion changed to ON")
17  def entrance_hall_motion(event):
18     global m_hall, m_door, c_door
19     m_hall = ZDT.now()
20    
21     if m_door.isBefore(m_hall.minusSeconds(60)):
22         return
23    
24     if m_hall.isAfter(c_door) and c_door.isAfter(m_door):
25         # code logic for arriving home
26
27  @rule("(Py) Motion Detected - Front Door")
28  @when("Item Front_Door_Motion changed to ON")
29  def front_door_motion(event):
30     global m_hall, m_door, c_door
31     m_door = ZDT.now()
32
33     if m_hall.isBefore(m_door.minusSeconds(60)):
34         return
35    
36     if m_door.isAfter(c_door) and c_door.isAfter(m_hall):
37         # code logic for leaving home   
    

Figure 18 Solution for scenario 5 in openHAB (A), Elixir (B), and Sparrow (C)
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openHAB Hass Elixir Sparrow

State management 29 30 55 0
Sequencing control 2 2 2 2
Windowing management 20 15 12 7
Pattern definition 24 13 31 16

Total lines of code (LoC) 75 60 100 25 openHAB Hass Elixir Sparrow
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Figure 19 Summary of analyzing different solutions for the seven scenarios

Figure 19 summarizes our solutions with a breakdown of the total lines of code (LoC)
and their respective relative percentage according to the four identified concerns. For
each concern and platform/language, we show the sum of all LoC written in our seven
solutions. A detailed breakdown for each solution can be found in appendix A. To
populate the values shown in this figure, we manually tagged each LoC related to the
four concerns. Later, we retrieve their sum values using a helper script (statistics.exs)
located in the root directory of each solution group (e.g., openHAB, Sparrow). Using
this comparison, we show that Sparrow seems to succeed at reducing the effects
of non-functional concerns that arise during the synchronisation of messages in a
complex actor system.

5 Related Work

Our main goal in this paper was to retrofit CEP operators onto the actor model to
improve the expressiveness of encoding the interaction and coordination of actors
through join patterns. In this section, we discuss how the related work done in this
domain relates to the synchronisation operators described in section 2. We group the
below proposals in three main categories: communication model extension, monitor &
verification, and local synchronisation. Due to the not mutually exclusive definition
of our categories, some proposals may fit in more than one. Table 2 in appendix B
summarizes the support for the five types of synchronisation operators by state-of-
the-art actor frameworks and languages.

Communication model extension Most of the related work in this category add sup-
port for a multi-cast message communication [1, 12, 20, 21, 22, 45]. Other related
work adds an extra synchronisation layer to the traditional actor’s point-to-point
communication model [28, 52]. Within this category we can further disambiguate be-
tween approaches that synchronize messages on the sender-side and approaches that
synchronize messages on the receiver-side. Sparrow falls within the latter category.
All of these approaches filter messages based on their values and do not have support
for time-based filtering of messages. Moreover, with the exception of interActors [21]
and AErlang [12], all of the synchronisation mechanisms in this category are only
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able to match individual messages. In interActors, the sender of a message can wait
for two or more reply messages before continuing. On the other hand, AErlang has
support for receiver-side synchronisation by allowing the receiver actor to accumulate
and filter a finite number of messages of the same type. Our proposal takes this fur-
ther by allowing the interface of an actor to synchronize different types of messages.
Furthermore, our patterns extend the single message transformation of [28] to a list
of messages. Contrary to Sparrow, none of the proposals in this category provide
abstractions to detect the absence of messages, or enforce a matching order, or enable
matching a disjunction of messages using a single pattern.

Monitor & verification Related work in this category [13, 16, 17, 24, 29, 30, 31, 35,
36, 44, 46] uses reflection to observe and limit the interaction of one or a group
of actors. The coordination process is mostly done by a special type of meta-actors
which enforces a particular protocol for incoming and outgoing messages. In contrast,
our proposal is based on a local synchronization of messages in the receiver actor.
Like Sparrow, synchronization abstractions of the above proposals can filter messages
based on their values and time constraints (e.g., [29, 35, 46]). However, the abstrac-
tions provided by [24, 31] only supports type-based constraints. Furthermore, only
[35] can detect the absence of messages, but it assumes that actors have their local
clocks synchronized, and their invocations are scheduled atomically. Additionally, like
traditional actors, the synchronisation abstractions of these proposals always match
the oldest messages. Contrary to Sparrow, message correlation operators are used
only to enforce a particular communication protocol. The message receiver behaves
like a traditional actor matching a single message.

Local synchronisation Proposals in this category can be further classified into two
main groups. The first one targets synchronisation approaches based on promises/-
futures or message-passing continuations [18, 34, 49, 50, 53]. Unlike Sparrow, their
abstractions allow the synchronisation and chaining of individual message invocations.
The second group extends the actor interface to match a set of messages instead of indi-
vidual ones. Sparrow, like the other proposals in this category [23, 32, 33] expands the
matching capabilities of the traditional actor’s receive primitive with join patterns [9].
Join pattern languages commonly only support the unification of individual messages,
except Activators [18] and Sparrow, where patterns can define disjunctions. However,
Activators’ patterns cannot mix conjunctions and disjunctions of messages in a single
pattern like in Sparrow. Furthermore, unlike Sparrow, joins in none of these languages
enforce a particular matching order of their constituents’ messages. Languages in
this group use pattern-matching techniques to compact filtering expressions. Despite
that, only JErlang [33], JCThorn [32], and Sparrow support a non-linear pattern
matching mechanism. This mechanism allows join patterns to synchronize the values
of shared attributes among multiple messages without guard expressions. The above
join languages also force developers to statically bound patterns and reactions during
the definition of a pattern. Furthermore, they lack support for timing constraints and
accumulation operators to filter messages.
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6 Conclusions

Complicated message exchange patterns play an important role in the development
of modern actor-based applications. We introduce five novel types of synchronisation
operators to describe coordination between actors in a modern actor-based language.
The operators were inspired by well-established abstractions in the CEP domain. The
need for the operators was supported by real-world scenarios coming from the smart
home automation community. A poll ran in the said community had endorsed our
proposal with fairly large evidence. Even the most exotic operator was on the wish list
of no less than 25 percent of the developers. Our proposal has been realised technically
in the form of an Elixir dialect called Sparrow. It was validated by implementing the
scenarios in Sparrow, in two popular smart home automation platforms (openHab,
Hass) and in raw Elixir. By labeling each line of code with the concern it contributes
to, we have demonstrated that Sparrow does what it claims to do, namely giving
actor programmers the abstractions necessary to declaratively specify complex inter-
action patterns between actors. Sparrow’s join patterns have been implemented using
discrimination networks and a variant of the RETE algorithm in order to support
performance. At the time of writing, we are benchmarking Sparrow against other
actor-based coordination approaches. New versions of our DSL will also mitigate the
undesired unification of pattern attributes due to the current unhygienic expansion
approach. We are also working on an integration of Sparrow into the Hass smart
home platform. Furthermore, we plan to open-source Sparrow to the Elixir/Erlang
community, allowing us to harvest more user feedback from both communities.
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A LoC Breakdown of the Smart-Home Scenario Solutions

Table 1 Overview of lines of code for the different scenarios according to the four identified
concerns

openHAB Hass Elixir Sparrow

State management

Automation 1 0 3 7 0
Automation 2 4 2 10 0
Automation 3 1 2 6 0
Automation 4 3 2 5 0
Automation 5 9 10 6 0
Automation 6 1 1 10 0
Automation 7 11 10 11 0

Sequencing control

Automation 1 0 0 0 0
Automation 2 0 0 0 0
Automation 3 0 0 0 0
Automation 4 0 0 0 0
Automation 5 2 2 2 2
Automation 6 0 0 0 0
Automation 7 0 0 0 0

Windowing management

Automation 1 0 0 0 0
Automation 2 6 4 4 1
Automation 3 6 1 2 1
Automation 4 1 1 1 1
Automation 5 4 6 2 2
Automation 6 1 1 0 1
Automation 7 2 2 3 1

Pattern definition

Automation 1 3 2 5 2
Automation 2 2 1 6 1
Automation 3 4 1 4 1
Automation 4 2 1 2 1
Automation 5 6 3 4 6
Automation 6 3 2 6 4
Automation 7 4 3 4 1

Total lines of code (LoC) 75 60 100 25
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B Support of Synchronisation Operators by State-of-the-Art Proposals

Table 2 Overview of the synchronization operators addressed in state-of-the-art proposals
related to Sparrow

Filter Op. Selection Op. Correlation Op. Accum. Op. Transf. Op.

Co
nt
en

t-b
as
ed

Ti
m
e-
ba

se
d

Fl
ex
ib
le

Co
nj
un

ct
io
n

D
is
ju
nc

tio
n

Se
qu

en
ci
ng

Co
un

t-b
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Ti
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se
d

Ag
gr
eg

at
io
n

Communication model extensions

ActorSpace[1] x - - - - - - - -
TOTAM[45] x - - - - - - - -
Directors[52] x - - - - - - - -
Syndicate[20] x - - - - - - - -
AErlang[12] x - - xa - - - - -
interActors[21] x - - xa - - - - -
RCF[22] x - - - - - - - -
Coordinators[28] x - - - - - - - x

Monitor & Verification

Synchronizers[17] x - - x x - - - -
RTSynchronizers[35] x x - x x x - - -
Scoped-Synchronizers[13] x - - x x - - - -
Moses[30] x - - - - - - - -
ATC[29] x x - - x - - - -
ARC[36, 46] x x - - - x - - -
Ambient Contracts[44] x - - xa - x - - -
MPSA[31] xb - - - - - - - -
MPSA-Erlang[16] x - - - - - - - -
lchanels[41] xc - - - - - - - -
Effpi[42] xc - - - - xd - - -
OTyPe[24] xb - - - - - - - -

Local synchronisation

Activators[18] x - - xa x - - - -
Salsa[53] x - - xa - - - - -
Reactive Isolates[34] x - - xa - - - - x
AmbientTalk[50] x - - xa - - - - -
Scala/Akka[49] x - - xa - - - - -
Scala Joins[23] x - - x - - - - -
JErlang[33] x - - x - - - - -
Sparrow x x x x x x x x x
a Conjunction is only enforced to invocation of messages
b Additional type-based constraints are applied to message’s attributes (e.g., MsgA(int, string))
c Type constraints to outgoing messages (object-level) are checked during the compilation phase
d Sequencing is only enforced to outgoing messages

10:30



Humberto Rodriguez Avila, Joeri De Koster, and Wolfgang De Meuter

About the authors

Humberto Rodriguez Avila is a PhD student at the Software
Languages Lab, Vrije Universiteit Brussel in Belgium. His main
research area is coordination of heterogeneous actors, and more
concretely the design and implementation of programming tech-
niques to express complex actor’s interaction patterns. Contact
him at rhumbert@vub.be.

Joeri De Koster is an assistant professor in programming lan-
guages and runtimes. His current research is mainly focused on
the design, formalisation and implementation of parallel and dis-
tributed programming languages. Contact him at jdekoste@vub.be.

Wolfgang De Meuter is a professor in programming languages
and programming tools. His current research is mainly situated in
the field of distributed programming, concurrent programming, re-
active programming and big data processing. His research method-
ology varies from more theoretical approaches (e.g., type systems)
to building practical frameworks and tools (e.g., crowd-sourcing
systems). Contact him at wdmeuter@vub.be.

10:31

mailto:rhumbert@vub.be
mailto:jdekoste@vub.be
mailto:wdmeuter@vub.be

	1 Introduction
	2 Motivating Scenarios: Coordination of Smart Home Devices
	3 Advanced Join Patterns
	3.1 Sparrow Pattern Language
	3.1.1 Elementary Patterns
	3.1.2 Composite Patterns
	3.1.3 Accumulation Patterns

	3.2 Sparrow Reaction Language
	3.3 Implementation

	4 Evaluation
	5 Related Work
	6 Conclusions
	References
	A LoC Breakdown of the Smart-Home Scenario Solutions
	B Support of Synchronisation Operators by State-of-the-Art Proposals
	About the authors

