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A set of multipartite orthogonal product
states is locally irreducible, if it is not pos-
sible to eliminate one or more states from the
set by orthogonality-preserving local measure-
ments. An effective way to prove that a set is
locally irreducible is to show that only trivial
orthogonality-preserving local measurement
can be performed to this set. In general, it
is difficult to show that such an orthogonality-
preserving local measurement must be triv-
ial. In this work, we develop two basic tech-
niques to deal with this problem. Using these
techniques, we successfully show the existence
of unextendible product bases (UPBs) that
are locally irreducible in every bipartition in
d⊗d⊗d for any d ≥ 3, and 3⊗ 3⊗ 3 achieves the
minimum dimension for the existence of such
UPBs. These UPBs exhibit the phenomenon
of strong quantum nonlocality without entan-
glement. Our result solves an open question
given by Halder et al. [Phys. Rev. Lett. 122,
040403 (2019)] and Yuan et al. [Phys. Rev.
A 102, 042228 (2020)]. It also sheds new light
on the connections between UPBs and strong
quantum nonlocality.

1 Introduction
Quantum state discrimination has attracted more and
more attention in recent years. Consider a composite
quantum system prepared in a state from a known
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set. The discrimination task is to identify the state
by performing measurements on the quantum system.
If it is not possible to distinguish a set of orthogo-
nal states by performing local operations and classi-
cal communications (LOCC), then this set is said to
be locally indistinguishable. The local indistinguisha-
bility has wide applications in data hiding [1–4] and
quantum secret sharing [5]. Bennett et al. firstly
gave an example of locally indistinguishable orthog-
onal product basis in the bipartite quantum system
3 ⊗ 3 [6], and it shows the phenomenon of quantum
nonlocality without entanglement. Much effort has
been devoted to the locally indistinguishable orthog-
onal product states and orthogonal entangled states
[7–23]. A special class of locally indistinguishable sets
called unextendible product bases (UPBs) stood out
[6, 7, 24]. A UPB is a set of orthogonal product
states whose complementary space contains no prod-
uct states. UPBs are connected to bound entangled
states, Bell inequalities without quantum violation,
and fermionic systems [7, 25–29]. Some results of the
existence of UPBs with the minimum size were given
in [30–33], and some explicit UPBs were constructed
in [6, 7, 34–38].

Recently, Halder et al. showed the phenomenon
of strong quantum nonlocality without entanglement
[39]. A set of orthogonal states is strongly nonlo-
cal if it is locally irreducible in every bipartition.
They showed such a phenomenon by presenting two
strongly nonlocal orthogonal product bases in 3⊗3⊗3
and 4 ⊗ 4 ⊗ 4, respectively. In Refs. [40–42], the au-
thors constructed some incomplete strongly nonlocal
orthogonal product bases in tripartite systems, but
these incomplete product bases are not UPBs. In
Refs. [43, 44], the authors constructed some strongly
nonlocal orthogonal entangled sets and bases in tri-
partite systems. Further, strong quantum nonlocality
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was generalized to more general settings [45–47]. Al-
though many efforts have been made in the strong
quantum nonlocality, the existence of strongly non-
local UPBs remains unknown. This is also an open
question in Refs. [39] and [40]. It requires more tech-
niques to tackle this problem.

In this paper, we develop two useful techniques in
Lemmas 1 and 2 to prove that a set of orthogonal
product states is strongly nonlocal. By utilizing such
techniques, in Propositions 1 and 2, we successfully
show the existence of strongly nonlocal UPBs in 3⊗3⊗
3 and 4⊗4⊗4, respectively. Based on the two strongly
nonlocal UPBs, in Theorem 1, we show that strongly
nonlocal UPBs do exist for any tripartite system d⊗
d⊗ d (d ≥ 3).

2 Preliminaries
In this paper, we only consider pure states and pos-
itive operator-valued measurement (POVM), and we
do not normalize states and operators for simplicity.

A set of orthogonal states in d1 ⊗ d2 ⊗ · · · ⊗ dn is
locally indistinguishable, if it is not possible to dis-
tinguish the states by using LOCC. A local measure-
ment performed to distinguish a set of multipartite or-
thogonal states is called an orthogonality-preserving
local measurement, if the postmeasurement states re-
main orthogonal. Further, a set of orthogonal states
in d1 ⊗ d2 ⊗ · · · ⊗ dn is locally irreducible if it is not
possible to eliminate one or more states from the set
by orthogonality-preserving local measurements [39].
Local irreducibility sufficiently ensures local indistin-
guishability. However, the converse is not true. For
example, consider the following states in 3⊗ 4,

|ψ1〉 = |0〉A(|0〉 − |1〉)B , |ψ2〉 = (|0〉 − |1〉)A|2〉B ,
|ψ3〉 = |2〉A(|1〉 − |2〉)B , |ψ4〉 = (|1〉 − |2〉)A|0〉B ,
|ψ5〉 = (|0〉+ |1〉+ |2〉)A(|0〉+ |1〉+ |2〉)B ,
|ψ6〉 = |0〉A|3〉B , |ψ7〉 = |1〉A|3〉B , |ψ8〉 = |2〉A|3〉B .

(1)
Since {|ψi〉}8

i=1 is a UPB in 3 ⊗ 4, {|ψi〉}8
i=1 is lo-

cally indistinguishable [24]. However, Bob can per-
form the measurement {|3〉B〈3|, I− |3〉B〈3|} to elimi-
nate {|ψi〉}5

i=1 and {|ψi〉}8
i=6, respectively.

In d1 ⊗ d2 ⊗ · · · ⊗ dn, n ≥ 3 and di ≥ 3, a set of
orthogonal product states is strongly nonlocal if it is
locally irreducible in every bipartition of the subsys-
tems, which shows the phenomenon of strong quan-
tum nonlocality without entanglement [39]. The au-
thors in Refs. [39, 40] also proposed an open question.
Whether one can find a strongly nonlocal UPB? We
shall give a positive answer to this open question.

There exists a sufficient condition for showing a
set to be locally irreducible. If an orthogonality-
preserving POVM on any of the subsystems is trivial
(a measurement is trivial if all the POVM elements
are proportional to the identity operator), then the

set of states is locally irreducible. Throughout this
paper, we study the strongest form of nonlocality un-
der the following definition. A set of orthogonal prod-
uct states is said to be of the strongest nonlocality if
only trivial orthogonality-preserving POVM can be
performed for each bipartition of the subsystems. In
fact, all known strongly nonlocal sets of tripartite sys-
tems are of the strongest nonlocality. Now we present
two basic lemmas which are useful for showing the
strongest nonlocality.

3 Two Basic Lemmas
For any positive integer n ≥ 2, we denote Zn as the

set {0, 1, · · · , n − 1}, and let wn := e
2π
√

−1
n . Let Hn

be an n dimensional Hilbert space. We always assume
that {|0〉, |1〉, · · · , |n− 1〉} is the computational basis
of Hn. For any operator M on Hn, we denote the
matrixM as the matrix representation of the operator
M under the computational basis. In general, we do
not distinguish the operator M and the matrix M .
Given any n × n matrix E :=

∑n−1
i=0

∑n−1
j=0 ai,j |i〉〈j|,

for S, T ⊆ {|0〉, |1〉, · · · , |n− 1〉}, we define

SET :=
∑
|s〉∈S

∑
|t〉∈T

as,t|s〉〈t|.

It means that SET is a submatrix of E with row co-
ordinates S and column coordinates T . In the case
S = T , we denote ES := SES for simplicity. Now, we
give two basic lemmas whose proofs will be given in
Appendix A.

Lemma 1 (Block Zeros Lemma) Let an n × n
matrix E = (ai,j)i,j∈Zn be the matrix representa-
tion of an operator E = M†M under the basis
B := {|0〉, |1〉, . . . , |n− 1〉}. Given two nonempty dis-
joint subsets S and T of B, assume that {|ψi〉}s−1

i=0 ,
{|φj〉}t−1

j=0 are two orthogonal sets spanned by S and
T respectively, where s = |S|, and t = |T |. If
〈ψi|E|φj〉 = 0 for any i ∈ Zs, j ∈ Zt(we call these
zero conditions), then SET = 0 and T ES = 0.

Lemma 2 (Block Trivial Lemma) Let an n × n
matrix E = (ai,j)i,j∈Zn be the matrix representa-
tion of an operator E = M†M under the basis
B := {|0〉, |1〉, . . . , |n − 1〉}. Given a nonempty sub-
set S := {|u0〉, |u1〉, . . . , |us−1〉} of B, let {|ψj〉}s−1

j=0
be an orthogonal set spanned by S. Assume that
〈ψi|E|ψj〉 = 0 for any i 6= j ∈ Zs. If there exists
a state |ut〉 ∈ S, such that {|ut〉}ES\{|ut〉} = 0 and
〈ut|ψj〉 6= 0 for any j ∈ Zs, then ES ∝ IS . (Note
that if we consider {|ψj〉}s−1

j=0 as the Fourier basis, i.e.
|ψj〉 =

∑s−1
i=0 w

ij
s |ui〉 for j ∈ Zs, then it must have

〈ut|ψj〉 6= 0 for any j ∈ Zs).
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4 UPBs of the strongest nonlocality in
tripartite systems
All of our UPBs in d ⊗ d ⊗ d for d ≥ 3 are from
Ref. [36]. Although there is a statement “For ex-
ample in [39], the authors introduced a new concept
called strong quantum nonlocality without entangle-
ment. While we have checked that the present UPB
does not exhibit such phenomena” claimed in Sec. VI
of Ref. [36], we will show that these UPBs do exhibit
the phenomenon of strong quantum nonlocality with-
out entanglement. In fact, they are of the strongest
nonlocality. One should note that any of these UPBs
is invariant under the cyclic permutation of the par-
ties. In order to show that any of these UPBs is of
the strongest nonlocality, we only need to show that
BC party could only perform a trivial orthogonality-
preserving POVM by Lemma 3 in Appendix B.

It is known that any set of orthogonal product
states in 2⊗ n is locally distinguishable [7]. A neces-
sary condition for the existence of a strongly nonlocal
UPB in d1 ⊗ d2 ⊗ d3 is that d1, d2, d3 ≥ 3. Therefore,
the possible minimum quantum system for the exis-
tence of such a UPB is the three-qutrit system. The
following set of states is a UPB in 3⊗ 3⊗ 3 (See Ref.
[36]). Let

A1 := {|ξj〉A|0〉B |ηi〉C | (i, j) ∈ Z2 × Z2 \ {(0, 0)}},
A2 := {|ξj〉A|ηi〉B |2〉C | (i, j) ∈ Z2 × Z2 \ {(0, 0)}},
A3 := {|2〉A|ξj〉B |ηi〉C | (i, j) ∈ Z2 × Z2 \ {(0, 0)}},
B1 := {|ηi〉A|2〉B |ξj〉C | (i, j) ∈ Z2 × Z2 \ {(0, 0)}},
B2 := {|ηi〉A|ξj〉B |0〉C | (i, j) ∈ Z2 × Z2 \ {(0, 0)}},
B3 := {|0〉A|ηi〉B |ξj〉C | (i, j) ∈ Z2 × Z2 \ {(0, 0)}},

|S〉 =
( 2∑
i=0
|i〉

)
A

 2∑
j=0
|j〉


B

( 2∑
k=0
|k〉

)
C

,

(2)
where |ηi〉 = |0〉 + (−1)i|1〉, |ξj〉 = |1〉 + (−1)j |2〉,
for i, j ∈ Z2. We find that the above UPB is of the
strongest nonlocality.

00 01 02 12 11 10 20 21 22

BC

0

1

2

A

ℬ1

𝒜1

ℬ2ℬ3

𝒜2
𝒜3

Figure 1: The corresponding 3× 9 grid of ∪3
i=1{Ai,Bi}

given by Eq. (2) in A|BC bipartition. For example,
A1 corresponds to the 2 × 2 grid {(1, 2) × (00, 01)}.
Moreover, Ai is symmetrical to Bi for 1 ≤ i ≤ 3.

00 01 02 12 11 10 20 21 22

0

1

2

(I)

Step 1

Step 2

Step 3

Step 4

(II)

(III)(IV)

Figure 2: Proving steps for the strongly nonlocal UPB
in 3⊗ 3⊗ 3.

Proposition 1 In 3⊗ 3⊗ 3, the set {∪3
i=1{Ai,Bi} ∪

{|S〉}} given by Eq. (2) is a UPB of the strongest
nonlocality. The size of this set is 19.

Proof. The six subsets Ai,Bi(i = 1, 2, 3) in A|BC
bipartition correspond to the six blocks of the 3 × 9
grid in Fig. 1. For example, A1 corresponds to the
block containing the 2 × 2 grid {(1, 2) × (00, 01)}
in Fig. 1. Moreover, Ai is symmetrical to Bi for
1 ≤ i ≤ 3. Let B and C come together to perform a
joint orthogonality-preserving POVM {E = M†M},
where E = (aij,k`)i,j,k,`∈Z3 . Then the postmeasure-
ment states {I⊗M |ψ〉 | |ψ〉 ∈ {∪3

i=1{Ai,Bi}∪{|S〉}}}
should be mutually orthogonal.

Assume that |ψ1〉A|ψ2〉B |ψ3〉C , |ϕ1〉A|ϕ2〉B |ϕ3〉C ∈
{∪3

i=1{Ai,Bi} ∪ {|S〉}}. Then

A〈ψ1|B〈ψ2|C〈ψ3|IA ⊗ E|ϕ1〉A|ϕ2〉B |ϕ3〉C
=〈ψ1|ϕ1〉A(B〈ψ2|C〈ψ3|E|ϕ2〉B |ϕ3〉C) = 0.

If 〈ψ1|ϕ1〉A 6= 0, then B〈ψ2|C〈ψ3|E|ϕ2〉B |ϕ3〉C) = 0.
By using this property, we need to show that E ∝ I.

First of all, we need to introduce some notations.
Let S = {|ψ1〉A|ψ2〉B |ψ3〉} be a tripartite orthogonal
product set. Define

S(|ψ〉A) := {|ψ2〉B |ψ3〉C | |ψ〉A|ψ2〉B |ψ3〉C ∈ S}.

Moreover, define S(A) = {|j〉B |k〉C | j, k ∈ Zn} as
the support of S(|ψ〉A) which spans S(|ψ〉A). For ex-
ample, in Eq. (2), A1 := {|ξj〉A|0〉B |ηi〉C | (i, j) ∈
Z2×Z2\{(0, 0)}}. Then A1(|ξ1〉A) = {|0〉A|ηi〉C}i∈Z2 ,
A(A)

1 = {|0〉B |0〉C , |0〉B |1〉C}, and A1(|ξ1〉A) is
spanned by A(A)

1 . Actually, {A(A)
i ,B(A)

i }3
i=1 can be

easily observed by Fig. 1. They are the projection
sets of {Ai,Bi}3

i=1 in BC party in Fig. 1.
Step 1 Since |ξ1〉A, |η1〉A are non-orthogonal, apply-
ing Lemma 1 to any two elements of {A1(|ξ1〉A),
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A2(|ξ1〉A), B2(|η1〉A), B1(|η1〉A)}, we obtain

A(A)
i

EA(A)
j

= 0, A(A)
i

EB(A)
k

= 0,

B(A)
k

EB(A)
`

= 0, B(A)
k

EA(A)
i

= 0, (3)

for 1 ≤ i 6= j ≤ 2, 1 ≤ k 6= ` ≤ 2.
Next, by using the states |2〉A|ξ1〉B |η0〉C ∈ A3 and

{|ξ1〉A|0〉B |ηi〉C}i∈Z2 ⊂ A1, we have

0 = B〈ξ1|C〈η0|E|0〉B |ηi〉C = B〈1|C〈1|E|0〉B |ηi〉C ,
(4)

for i ∈ Z2. Applying Lemma 1 to {|1〉B |1〉C} and
{|0〉B |ηi〉C}i∈Z2 , we obtain a11,00 = a11,01 = 0. In
the same way, we can show that a11,02 = a11,12 =
0 by using the states |2〉A|ξ1〉B |η0〉C ∈ A3 and
{|ξ1〉A|ηi〉B |2〉C}i∈Z2 ⊂ A2. By the symmetry of
Fig. 1, we can also show that a11,10 = a11,20 =
a11,21 = a11,22 = 0. Since E† = E, E is a block
diagonal matrix. It can be expressed by

E = EA(A)
1
⊕EA(A)

2
⊕E{|1〉B |1〉C}⊕EB(A)

2
⊕EB(A)

1
. (5)

The intuitive figure of E can be shown in Fig. 2 (I).
Step 2 By using the states {|ξ1〉A|ηi〉B |2〉C}i∈Z2 ⊂
A2, we have B〈η0|C〈2|E|η1〉B |2〉C =
B〈η1|C〈2|E|η0〉B |2〉C = 0. It implies a02,12 = a12,02.
Moreover, by using the states |S〉 and
{|0〉A|ηi〉B |ξj〉C}(i,j)∈Z2×Z2\{(0,0)} = B3, we have

0 = B

(∑2
j=0〈j|

)
C

(∑2
k=0〈k|

)
E|η1〉B |ξ1〉C

= a01,01 − a02,02 + a12,12 − a11,11 + a00,01,

0 = B〈η0|C〈ξ1|E|η1〉B |ξ0〉C
= a01,01 − a02,02 + a12,12 − a11,11.

(6)
It implies a00,01 = 0. By using the
states {|ξ1〉A|0〉B |ηi〉C}i∈Z2 ⊂ A1, we have
B〈0|C〈η0|E|0〉B |η1〉C = 0. It implies a00,00 = a01,01.
Thus

EA(A)
1

= kIA(A)
1
. (7)

The intuitive figure of E can be shown in Fig. 2 (II).
Step 3 Considering {|0〉A|ηi〉B |ξj〉C}(i,j)∈Z2×Z2\

{(0,0)} = B3 and |S〉. By using Eqs. (5) and (7), we
have the following equality

1∑
s=0

1∑
t=0

B〈s|C〈t+ 1|E|ηi〉B |ξj〉C

=
2∑
s=0

2∑
t=0

B〈s|C〈t|E|ηi〉B |ξj〉C = 0.

Moreover, we have

1∑
s=0

1∑
t=0
|s〉B |t+ 1〉C = |η0〉B |ξ0〉C . (8)

Therefore, by using the states {|S〉} ∪
{|0〉A|ηi〉B |ξj〉C}(i,j)∈Z2×Z2\{(0,0)}, we have

B〈ηk|C〈ξ`|E|ηi〉B |ξj〉C = 0, (9)
for (k, `) 6= (i, j) ∈ Z2 × Z2. By Eqs. (5) and (7), we
know that {|0〉B |1〉C}EB(A)

3 \{|0〉B |1〉C}
= 0. Moreover,

B〈0|C〈1|ηi〉B |ξj〉C 6= 0 for (i, j) ∈ Z2 × Z2. Applying
Lemma 2 to {|ηi〉B |ξj〉C}(i,j)∈Z2×Z2 , we have

EB(A)
3

= k1IB(A)
3
. (10)

Since A(A)
1 ∩ B(A)

3 6= ∅, it implies k = k1. Thus, by
Eqs. (7) and (10), we obtain

EA(A)
1 ∪B(A)

3
= kIA(A)

1 ∪B(A)
3
. (11)

The intuitive figure of E can be shown in Fig. 2 (III).
Step 4 By the symmetry of Fig. 3, we can obtain
E = kI. The intuitive figure of E can be shown in
Fig. 2 (IV).

Thus, E is trivial. This completes the proof. ut

The following is a UPB in 4⊗ 4⊗ 4 (See Ref. [36]),

A0 :={|φr〉A|φs〉B |φt〉C | (r, s, t) ∈ Z(×3)
2

\ {(0, 0, 0)}},
A1 :={|ξj〉A|0〉B |ηi〉C | (i, j) ∈ Z3 × Z3 \ {(0, 0)}},
A2 :={|ξj〉A|ηi〉B |3〉C | (i, j) ∈ Z3 × Z3 \ {(0, 0)}},
A3 :={|3〉A|ξj〉B |ηi〉C | (i, j) ∈ Z3 × Z3 \ {(0, 0)}},
B1 :={|ηi〉A|3〉B |ξj〉C | (i, j) ∈ Z3 × Z3 \ {(0, 0)}},
B2 :={|ηi〉A|ξj〉B |0〉C | (i, j) ∈ Z3 × Z3 \ {(0, 0)}},
B3 :={|0〉A|ηi〉B |ξj〉C | (i, j) ∈ Z3 × Z3 \ {(0, 0)}},

|S〉 :=
( 3∑
i=0
|i〉

)
A

 3∑
j=0
|j〉


B

( 3∑
k=0
|k〉

)
C

,

(12)
where Z(×3)

2 := Z2 × Z2 × Z2, |ηi〉 =
∑2
k=0 w

ik
3 |k〉

and |ξj〉 =
∑2
k=0 w

jk
3 |k + 1〉 for i, j ∈ Z3 and |φi〉 =

|1〉+(−1)i|2〉 for i ∈ Z2. Now, we show that the above
UPB is of the strongest nonlocality.

Proposition 2 In 4⊗ 4⊗ 4, the set {∪3
i=1{Ai,Bi} ∪

{A0} ∪ {|S〉}} given by Eq. (12) is a UPB of the
strongest nonlocality. The size of this set is 56.

The proof of Proposition 2 is given in Appendix C.
Based on Propositions 1 and 2, we could show the
existence of UPBs with the strongest nonlocality in
d⊗ d⊗ d for any integer d ≥ 3.

Fix an integer d ≥ 3. For any integer 0 ≤ k ≤
bd−3

2 c, let C(d,d−2k) = ∪3
i,j=1{A

(d,d−2k)
i ,B(d,d−2k)

i },
where each A(d,d−2k)

i and B(d,d−2k)
j are defined as fol-

lows:
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A(d,d−2k)
1 := {|ξ(d−2k)

j 〉A|k〉B |η(d−2k)
i 〉C | (i, j) ∈ Zd−1−2k × Zd−1−2k \ {(0, 0)}},

A(d,d−2k)
2 := {|ξ(d−2k)

j 〉A|η(d−2k)
i 〉B |d− 1− k〉C | (i, j) ∈ Zd−1−2k × Zd−1−2k \ {(0, 0)}},

A(d,d−2k)
3 := {|d− 1− k〉A|ξ(d−2k)

j 〉B |η(d−2k)
i 〉C | (i, j) ∈ Zd−1−2k × Zd−1−2k \ {(0, 0)}},

B(d,d−2k)
1 := {|η(d−2k)

i 〉A|d− 1− k〉B |ξ(d−2k)
j 〉C | (i, j) ∈ Zd−1−2k × Zd,d−1−2k \ {(0, 0)}},

B(d,d−2k)
2 := {|η(d−2k)

i 〉A|ξ(d−2k)
j 〉B |k〉C | (i, j) ∈ Zd−1−2k × Zd−1−2k \ {(0, 0)}},

B(d,d−2k)
3 := {|k〉A|η(d−2k)

i 〉B |ξ(d−2k)
j 〉C | (i, j) ∈ Zd−1−2k × Zd−1−2k \ {(0, 0)}},

(13)

where |η(d−2k)
i 〉 =

∑d−2−k
t=k w

i(t−k)
d−1−2k|t〉, and

|ξ(d−2k)
j 〉 =

∑d−2−k
t=k w

j(t−k)
d−1−2k|t+1〉, for i, j ∈ Zd−1−2k.

If d is even, we define A(d,0) := {|φr〉A|φs〉B |φt〉C |
(r, s, t) ∈ Z2 × Z2 × Z2 \ {(0, 0, 0)}} where
|φi〉 = |d−2

2 〉 + (−1)i|d2 〉 for i ∈ Z2. Moreover,
we define the “stopper state” as

|Sd〉 =
(
d−1∑
i=0
|i〉

)
A

d−1∑
j=0
|j〉


B

(
d−1∑
k=0
|k〉

)
C

.

Now, we give a general result.

Theorem 1 In d⊗ d⊗ d, d ≥ 3,

(i) when d is odd, the set {∪
d−3

2
k=0C(d,d−2k) ∪ {|Sd〉}}

given by Eq. (13) is a UPB of the strongest non-
locality. The size of this set is d3 − 4d+ 4;

(ii) when d is even, the set {∪
d−4

2
k=0C(d,d−2k) ∪

{A(d,0)} ∪ {|Sd〉}} given by Eq. (13) is a UPB
of the strongest nonlocality. The size of this set
is d3 − 4d+ 8.

The proof of Theorem 1 is given in Appendix D.
Therefore, we have shown that strongly nonlocal
UPBs in d ⊗ d ⊗ d do exist for all d ≥ 3, which an-
swers an open question in Refs. [39, 40]. In Ref. [40],
the authors gave a construction of a strongly nonlocal
orthogonal product set of size 6(d − 1)2 in d ⊗ d ⊗ d
for any d ≥ 3. When d = 3, the size of the strongly
nonlocal orthogonal product set is 24, which is big-
ger than the size of the UPB given by Eq. (2). Note
that any their strongly nonlocal orthogonal product
set in d ⊗ d ⊗ d is not a UPB as it is completable.
Our strongly nonlocal UPBs reveal the relationship
between strong quantum nonlocality and UPBs.

For the normalized UPB {|ψi〉}tdi=1 in d ⊗ d ⊗ d of
this paper, where td = d3 − 8(bd−3

2 c+ 1) for d ≥ 3, it
can be used to construct the bound entangled state

ρ = 1
td

(
I−

td∑
i=1
|ψi〉〈ψi|

)
(14)

with the following new property introduced by a re-
cent result [48]. The bound entangled state ρ has
positive partial transposition across every bipartition,
but it is not separable across every bipartition [48]. It

is well-known that a separable bipartite state must
have positive partial transposition. Such a bound en-
tangled state shows that the set of states which are
separable across every bipartition is a strict subset
of states having positive partial transposition across
across every bipartition in d⊗ d⊗ d [48]. Further, let
Hd be the subspace spanned by the UPB {|ψi〉}tdi=1,
then the complementary space of Hd (denote it by
H⊥d ) is an entangled subspace (each state of this sub-
space is entangled). However, it is not a genuinely
entangled subspace (each state of this subspace is gen-
uinely entangled) [36]. For example, when d = 3, the
state |φ1〉 = |ξ0〉A|0〉B |η0〉C − |ξ0〉A|η0〉B |2〉C ∈ H⊥3 ,
and it is separable across A|BC bipartition. How-
ever, if we let |φ2〉 = |0〉A|η0〉B |ξ0〉C − |η0〉A|2〉B |ξ0〉C
and |φ3〉 = |2〉A|ξ0〉B |η0〉C − |η0〉A|ξ0〉B |0〉C , then the
complementary space of the subspace spanned by
{|ψi〉}t3i=1 ∪ {|φi〉}3

i=1 is a genuinely entangled sub-
space, which is distillable across every bipartition [36].

It is possible to apply our techniques to construct
strongly nonlocal UPBs in d1 ⊗ d2 ⊗ d3. However, we
need to overcome several difficulties. First, we need
to construct UPBs in d1 ⊗ d2 ⊗ d3 (it is possible to
generalize the UPB in d ⊗ d ⊗ d of the paper to the
UPB in d1⊗d2⊗d3). Second, for the strong quantum
nonlocality of the UPB, we require that the UPB has
a similar structure under cyclic permutation of the
subsystems by Lemma 3. Otherwise, we need to show
that any two subsystems can only perform a trivial
orthogonality-preserving POVM, and it causes a lot of
calculations. Third, for the grid representation of the
UPB in A|BC bipartition (see Fig. 1 for an example),
we need to use Block Zeros Lemma and Block Trivial
Lemma efficiently.

It is known that UPB is locally indistinguishable
[24]. One may ask whether there exists a UPB that
is locally indistinguishable across every bipartition?
The intuition is to construct a UPB which is still a
UPB across every bipartition. Unfortunately, this is
a well-known open question [49]. Nevertheless, our
strongly nonlocal UPB implies the UPB which is lo-
cally indistinguishable across every bipartition. Thus
our strongly nonlocal UPB solves this problem in a
different way.

Finally, we indicate the possible application of the
strongly nonlocal UPB in secret sharing. Suppose
that the information shared by systems Alice, Bob
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and Charlie is encrypted into some orthogonal quan-
tum states, and the information needs to be revealed
together at a later stage. For the common interests,
it is assumed that any operation of these participants
will not lead to the final failure of the correct disclo-
sure of the information. However, if some subsys-
tems can cooperate, how to ensure the security of
information? One finds that for their common in-
terests, the participants can only perform orthogo-
nality preserving measurement. Otherwise, even the
global measurement can not reveal the final results.
Under this setting, the strongest nonlocality of the
encoded states implies the security of the encrypted
information. In fact, the maximum success proba-
bility for perfect discrimination of states with the
strongest nonlocality is zero without global orthog-
onality preserving measurements. To perfect discrim-
ination of the strongly nonlocal UPB, there are two
methods. First, the three players are collusive, i.e.
they can perform a global orthogonality-preserving
POVM, then the strongly nonlocal UPB can be per-
fectly distinguished [50]. Second, one can use addi-
tional entanglement resources [51]. For example, let
the maximally entangled state |ψ〉 =

∑d−1
i=0 |i〉A|i〉B be

shared between Alice and Bob, then Alice teleports
her subsystem to Bob by using the teleportation-
based protocol [47, 52]. Next, let the maximally en-
tangled state |ψ〉 =

∑d−1
i=0 |i〉B |i〉C be shared between

Bob and Charlie, then Charlie teleports his subsys-
tem to Bob by using the teleportation-based protocol.
Thus, Bob can easily distinguish the strongly nonlo-
cal UPB. It costs 2 log2 d ebits of entanglement re-
source in the above discrimination protocol. Protocols
consuming less entanglement than the teleportation-
based protocol attract much attention in recent years
[37, 43, 47, 51, 53].

5 Conclusion
We have shown the existence of strongly nonlocal
UPBs in d ⊗ d ⊗ d for any d ≥ 3, which answer an
open question in Refs. [39] and [40]. Our results ex-
hibit the relations between quantum nonlocality and
UPBs. Recently, Ref. [54] has proved the existence of
strongly nonlocal UPBs in general three-, and four-
partite systems. There are some interesting problems
left. Can we construct strongly nonlocal UPBs in d⊗n
for d ≥ 3 and n ≥ 5? Whether there exists a UPB
in d⊗n which is still a UPB for every bipartition for
d ≥ 3 and n ≥ 3?
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A The proofs of Lemmas 1 and 2
A.1 The proof of Lemma 1
Lemma 1 (Block Zeros Lemma) Let an n × n matrix E = (ai,j)i,j∈Zn be the matrix representation of an
operator E = M†M under the basis B := {|0〉, |1〉, . . . , |n− 1〉}. Given two nonempty disjoint subsets S and T
of B, assume that {|ψi〉}s−1

i=0 , {|φj〉}
t−1
j=0 are two orthogonal sets spanned by S and T respectively, where s = |S|,

and t = |T |. If 〈ψi|E|φj〉 = 0 for any i ∈ Zs, j ∈ Zt(we call these zero conditions), then SET = 0 and T ES = 0.

Proof. Since {|ψi〉}s−1
i=0 , {|φj〉}

t−1
j=0 are two orthogonal sets spanned by S and T respectively, and Dim(span S) =

s, Dim(span T ) = t, it implies that the subspaces satisfy

span{|ψ0〉, |ψ1〉, . . . , |ψs−1〉} = span S,
span{|φ0〉, |φ1〉, . . . , |φt−1〉} = span T .

(A1)

For any |k〉 ∈ S and |`〉 ∈ T , by Eq. (A1), they are a linear combination of {|ψi〉}s−1
i=0 and {|φj〉}t−1

j=0 respectively.
Then by the given conditions 〈ψi|E|φj〉 = 0 (∀ i ∈ Zs, j ∈ Zt), we would obtain

ak,` = 〈k|E|`〉 = 0. (A2)

It means that SET = 0. Since E† = E, we also have T ES = 0. ut

A.2 The proof of Lemma 2
Lemma 2 (Block Trivial Lemma) Let an n × n matrix E = (ai,j)i,j∈Zn be the matrix representation
of an operator E = M†M under the basis B := {|0〉, |1〉, . . . , |n − 1〉}. Given a nonempty subset S :=
{|u0〉, |u1〉, . . . , |us−1〉} of B, let {|ψj〉}s−1

j=0 be an orthogonal set spanned by S. Assume that 〈ψi|E|ψj〉 = 0
for any i 6= j ∈ Zs. If there exists a state |ut〉 ∈ S, such that {|ut〉}ES\{|ut〉} = 0 and 〈ut|ψj〉 6= 0 for any j ∈ Zs,
then ES ∝ IS . (Note that if we consider {|ψj〉}s−1

j=0 as the Fourier basis, i.e. |ψj〉 =
∑s−1
i=0 w

ij
s |ui〉 for j ∈ Zs,

then it must have 〈ut|ψj〉 6= 0 for any j ∈ Zs).

Proof. Without loss of generality, we can assume that |ui〉 = |i〉 for any i ∈ Zs. Under this assumption, each
of the states {|ψj〉}s−1

j=0 can be expressed as a linear combination of {|i〉}s−1
i=0 , i.e., |ψj〉 =

∑s−1
i=0 hi,j |i〉. And the

set of states {|ψj〉 =
∑s−1
i=0 hi,j |i〉}

s−1
j=0 can be normalized as {|ϕj〉 =

∑s−1
i=0 h̃i,j |i〉}

s−1
j=0. Then H := (h̃i,j)i,j∈Zs is

an s× s unitary matrix. Let

F =
(

H 0s×(n−s)
0(n−s)×s 0(n−s)×(n−s)

)
(A3)

be an n× n matrix. We can define an operator on the space Hn,

F =
s−1∑
i=0

s−1∑
j=0

h̃i,j |i〉〈j|.

Then the matrix F is the matrix representation of the operator F under the basis {|0〉, |1〉, . . . , |n− 1〉}.
The set of states {|ϕj〉 =

∑s−1
i=0 h̃i,j |i〉}

s−1
j=0 can be written as {|ϕj〉 = F |j〉}s−1

j=0. Since 〈ψi|E|ψj〉 = 0 for any
i 6= j ∈ Zs, it means that 〈ϕi|E|ϕj〉 = 0 for any i 6= j ∈ Zs. Then we have

〈i|F †EF |j〉 = 0 for i 6= j ∈ Zs. (A4)

The Eq. (A4) implies that
H†ESH = diag(α0 α1 · · · αs−1), (A5)

where αi ∈ C for i ∈ Zs. Since H is a unitary matrix, we have

ESH = H diag(α0 α1 · · · αs−1). (A6)

Since {|t〉}ES\{|t〉} = 0, the t-th row of ES is (0 0 · · · at,t · · · 0). Then the t-th row of ESH is
(at,th̃t,0 at,th̃t,1 · · · at,th̃t,t · · · at,th̃t,s−1). Furthermore, the t-th row of H diag(α0 α1 · · · αs−1) is
(α0h̃t,0 α1h̃t,1 · · · αs−1h̃t,s−1). Then at,th̃t,j = αj h̃t,j for any j ∈ Zs. Since 〈t|ψj〉 = ht,j 6= 0 for any
j ∈ Zs, i.e. h̃t,j 6= 0 for any j ∈ Zs, we have αj = at,t for any j ∈ Zs. Then

ES = H diag(at,t αt,t · · · at,t)H† = diag(at,t αt,t · · · at,t). (A7)

Thus, ES ∝ IS . ut
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B Two more lemmas used in this paper
Lemma 3 Let {|ψ〉} ⊂ ⊗ni=1HAi be a set of orthogonal states. Define B1 = {A2A3 . . . An}, B2 =
{A3 . . . AnA1}, B3 = {A4 . . . AnA1A2}, . . . , Bn = {A1 . . . An−1}. If Bi party can only perform a trivial
orthogonality-preserving POVM for any 1 ≤ i ≤ n, then the set {|ψ〉} is of the strongest nonlocality.

Proof. For any nontrivial bipartition Ai1 . . . Aij |Aij+1 . . . Ain of the subsystems, where (i1, i2, · · · , in) is a
permutation of (1, 2, · · · , n) and 1 ≤ j ≤ n − 1. There exist some r, s ∈ {1, 2, · · · , n}, such that Ai1 . . . Aij ⊂
Br and Aij+1 . . . Ain ⊂ Bs. Therefore, both parties Ai1 . . . Aij and Aij+1 . . . Ain can only perform a trivial
orthogonality-preserving POVM. ut

Lemma 4 Let |η(d−2k)
1 〉 =

∑d−2−k
t=k wt−kd−1−2k|t〉, |ξ

(d−2k)
1 〉 =

∑d−2−k
t=k wt−kd−1−2k|t+ 1〉. Then 〈ξ(d−2`1)

1 |ξ(d−2`2)
1 〉 6=

0, 〈η(d−2`3)
1 |η(d−2`4)

1 〉 6= 0, and 〈ξ(d−2`5)
1 |η(d−2`6)

1 〉 6= 0, where d− 2`i ≥ 3 for 1 ≤ i ≤ 6.

Proof. Let wd1 = e
2πi
d1 , wd2 = e

2πi
d2 , where d1, d2 are positive integers. We claim that if 0 < k ≤ min{d1, d2},

then
∑k−1
j=0 w

j
d1
wjd2
6= 0.

If d1 = d2, then
∑k−1
j=0 w

j
d1
wjd2

= k 6= 0. If d1 6= d2, k
d1
, and k

d2
are two different elements lying in the

interval (0, 1]. Therefore, k
d2
− k

d1
cannot be an integer. Then we can obtain that (wd1wd2)k = e( kd2

− k
d1

)2πi 6= 1.
Therefore,

k−1∑
j=0

wjd1
wjd2

=
k−1∑
j=0

(wd1wd2)j = 1− (wd1wd2)k

1− wd1wd2

6= 0. (A8)

Without loss of generality, we assume that `1 ≤ `2 and `3 ≤ `4.

〈ξ(d−2`1)
1 |ξ(d−2`2)

1 〉 = w`1−`2
d−1−2`1

d−2−2`2∑
j=0

wjd−1−2`1
wjd−1−2`2

6= 0,

〈η(d−2`3)
1 |η(d−2`4)

1 〉 = w`3−`4
d−1−2`3

d−2−2`4∑
j=0

wjd−1−2`3
wjd−1−2`4

6= 0,

by the above claim. If `5 ≤ `6 − 1, then

〈ξ(d−2`5)
1 |η(d−2`6)

1 〉 = w`5+1−`6
d−1−2`5

d−2−2`6∑
j=0

wjd−1−2`5
wjd−1−2`6

6= 0.

If `5 = `6, then

〈ξ(d−2`5)
1 |η(d−2`6)

1 〉 = w`5+1−`6
d−1−2`6

d−3−`6−`5∑
j=0

wjd−1−2`5
wjd−1−2`6

6= 0.

If `5 ≥ `6 + 1, then

〈ξ(d−2`5)
1 |η(d−2`6)

1 〉 = w`5+1−`6
d−1−2`6

d−2−2`5∑
j=0

wjd−1−2`5
wjd−1−2`6

6= 0.

ut

C The proof of Proposition 2
Proof. The seven subsets A0,Ai,Bi(i = 1, 2, 3) in A|BC bipartition correspond to the seven blocks of 4× 16
grid in Fig. 3. Let B and C come together to perform a joint orthogonality-preserving POVM {E = M†M},
where E = (aij,k`)i,j,k,`∈Z4 . Then the postmeasurement states {I⊗M |ψ〉 | |ψ〉 ∈ {∪3

i=1{Ai,Bi}∪{A0}∪{|S〉}}}
should be mutually orthogonal.
Step 1 Since |ξ1〉A, |φ1〉A, |η1〉A are mutually non-orthogonal, applying Lemma 1 to any two elements of
{A1(|ξ1〉A),A2(|ξ1〉A),A0(|φ1〉A),B2(|η1〉A),B1(|η1〉A)}, we obtain that E is a block diagonal matrix,

E = EA(A)
1
⊕ EA(A)

2
⊕ EA(A)

0
⊕ EB(A)

2
⊕ EB(A)

1
. (A9)
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Figure 3: The corresponding 4× 16 grid of ∪3
i=1{Ai,Bi} ∪ {A0} in A|BC bipartition. For example, A1 correspond

to the 3× 3 grid {(1, 2, 3)× (00, 01, 02)}.

Step 1

Step 2

Step 3

Step 4

(I) (II)

(III)(IV)

Figure 4: Proving steps for the strongly nonlocal UPB in 4⊗ 4⊗ 4.

The intuitive figure of E can be shown in Fig. 4 (I).
Step 2 By using the states in {|ξ1〉A|0〉B |ηi〉C}i∈Z3 ⊂ A1, we have

B〈0|C〈ηi|E|0〉B |ηj〉C = 0, for i 6= j ∈ Z3. (A10)

Then there exist real numbers as for all s ∈ Z3 such that

EA(A)
1

=
2∑
s=0

as|0〉B〈0| ⊗ |ηs〉C〈ηs|, (A11)

as E = E†. In the same way, there exist real numbers as, bs, ct, dt, es,t such that the operator

E =
2∑
s=0

as|0〉B〈0| ⊗ |ηs〉C〈ηs|+
2∑
s=0

bs|ηs〉B〈ηs| ⊗ |3〉C〈3|+
2∑
t=0

ct|ξt〉B〈ξt| ⊗ |0〉C〈0|

+
2∑
t=0

dt|3〉B〈3| ⊗ |ξt〉C〈ξt|+
1∑
s=0

1∑
t=0

es,t|φs〉B〈φs| ⊗ |φt〉C〈φt|.

(A12)

By using those states {|0〉A|ηi〉B |ξj〉C}(i,j)∈Z3×Z3\{(0,0)} = B3, we can show that

B〈ηk|C〈ξ`|E|ηi〉B |ξj〉C = 0, for (k, `) 6= (i, j) ∈ Z3 × Z3 \ {(0, 0)}. (A13)
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Assume k 6= i. By Eq. (A12), we have

0 =B〈ηk|C〈ξ`|E|ηi〉B |ξj〉C

=
2∑
s=0

as〈ηk|0〉B〈0|ηi〉B〈ξ`|ηs〉C〈ηs|ξj〉C +
2∑
s=0

bs〈ηk|ηs〉B〈ηs|ηi〉B〈ξ`|3〉C〈3|ξj〉C

+
1∑
s=0

1∑
t=0

es,t〈ηk|φs〉B〈φs|ηi〉B〈ξ`|φt〉C〈φt|ξj〉C

=
2∑
s=0

as〈ξ`|ηs〉C〈ηs|ξj〉C +
1∑
s=0

1∑
t=0

es,t〈ηk|φs〉B〈φs|ηi〉B〈ξ`|φt〉C〈φt|ξj〉C .

(A14)

If k = 0, ` = i = j = 1, and k = 0, ` = 2, i = 1, j = 2, then by Eq. (A14), we have{
a0 + 4a1 + a2 − 2e0,0 − 2(1− w2)(1− w)e0,1 = 0,
a0 + a1 + 4a2 − 2e0,0 − 2(1− w)(1− w2)e0,1 = 0.

(A15)

It implies a1 = a2. Moreover, let k = 0, ` = 1, i = 1, j = 0, by Eq. (A14), we have

2a0 + 2a1 − a2 − 4e0,0 = 0. (A16)

Next, by using the states |S〉, |0〉A|η1〉B |ξ0〉C ∈ B3 and Eq. (A12), we have

0 = B(
3∑
j=0
〈j|)C(

3∑
k=0
〈k|)E|η1〉B |ξ0〉C = 6a0 − 8e0,0. (A17)

Then by Eqs. (A16) and (A17) and a1 = a2, we would obtain a0 = a1. Thus a0 = a1 = a2. It means that the
operator

EA(A)
1
∝

2∑
s=0
|0〉B〈0| ⊗ |ηs〉C〈ηs|, (A18)

which is equivalent to
EA(A)

1
= kIA(A)

1
. (A19)

The intuitive figure of E can be shown in Fig. 4 (II).
Step 3 Considering |S〉 and {|0〉A|ηi〉B |ξj〉C}(i,j)∈Z3×Z3\{(0,0)} = B3. By using Eqs. (A9) and (A19), we have
the following equality

2∑
s=0

2∑
t=0

B〈s|C〈t+ 1|E|ηi〉B |ξj〉C =
3∑
s=0

3∑
t=0

B〈s|C〈t|E|ηi〉B |ξj〉C = 0. (A20)

Moreover, we have
2∑
s=0

2∑
t=0
|s〉B |t+ 1〉C = |η0〉B |ξ0〉C . (A21)

Therefore, by using the states {|S〉} ∪ {|0〉A|ηi〉B |ξj〉C}(i,j)∈Z3×Z3\{(0,0)}, we have

B〈ηk|C〈ξ`|E|ηi〉B |ξj〉C = 0, for (k, `) 6= (i, j) ∈ Z3 × Z3. (A22)

For any |t1〉B |t2〉C ∈ A(A)
1 ∩B(A)

3 , we have {|t1〉B |t2〉C}EB(A)
3 \{|t1〉B |t2〉C}

= 0 by Eqs. (A9) and (A19). Moreover,

B〈t1|C〈t2|ηi〉B |ξj〉C 6= 0 for (i, j) ∈ Z3 × Z3. Applying Lemma 2 to {|ηi〉B |ξj〉C}(i,j)∈Z3×Z3 , we have

EB(A)
3

= k1IB(A)
3
. (A23)

Since A(A)
1 ∩ B(A)

3 6= ∅, it implies k = k1. Thus, by Eqs. (A19) and (A23), we obtain

EA(A)
1 ∪B(A)

3
= kIA(A)

1 ∪B(A)
3
. (A24)

The intuitive figure of E can be shown in Fig. 4 (III).
Step 4 By the symmetry of Fig. 3, we can obtain E = kI. The intuitive figure of E can be shown in Fig. 4
(IV).

Thus, E is trivial. This completes the proof. ut
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D The proof of Theorem 1
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Figure 5: The corresponding d× d2 grid of ∪
d−3

2
k=0C(d,d−2k) when d ≥ 3 is odd.

Proof. (i) We prove it by induction on d. We have shown that the conclusion holds when d = 3 by
Proposition 1. Denote δ = d−1

2 . Assume that {∪δ−2
k=0C(d−2,(d−2)−2k) ∪ {|Sd−2〉}} is of the strongest nonlocality

when d − 2 ≥ 3. We need to show that {∪δ−1
k=0C(d,d−2k) ∪ {|Sd〉}} is also of the strongest nonlocality. Define a

bijection, |j〉 → |j + 1〉, then

{∪δ−2
k=0C

(d−2,(d−2)−2k) ∪ {|Sd−2〉}} → {∪δ−1
k=1C

(d,d−2k) ∪ {|S′d−2〉}},

where |S′d−2〉 = (
∑d−2
i=1 |i〉)A(

∑d−2
j=1 |j〉)B(

∑d−2
k=1 |k〉)C . With this bijection, the set {∪δ−1

k=1C(d,d−2k) ∪ {|S′d−2〉}} is
also of the strongest nonlocality with respect to its domain subspace.

The 6δ subsets C(d,d−2k) (k = 0, 1, · · · , δ − 1, and each C(d,d−2k) contains 6 subsets) correspond to the
blocks of the d × d2 grid in Fig. 5. Let B and C come together and perform the orthogonality-preserving
joint POVM {E = M†M}, where E = (aij,k`)i,j,k,`∈Zd . Then the postmeasurement states {I ⊗M |ψ〉 | |ψ〉 ∈
{∪δ−1

k=0C(d,d−2k) ∪ {|Sd〉}}} should be mutually orthogonal.
Step 1 Since the states {|ξ(d−2k)

1 〉A, |η(d−2k)
1 〉A}δ−1

k=0 are mutually non-orthogonal by Lemma 4 in Appendix B,
applying Lemma 1 to any two elements of {A(d,d−2k)

1 (|ξ(d−2k)
1 〉A), A(d,d−2k)

2 (|ξ(d−2k)
1 〉A), B(d,d−2k)

2 (|η(d−2k)
1 〉A),

B(d,d−2k)
1 (|η(d−2k)

1 〉A)}δ−1
k=0, we obtain that E is a block diagonal matrix, except aδδ,k`, aij,δδ for 0 ≤ i, j, k, ` ≤

d − 1. By using the states {|ξ(d)
1 〉A|0〉B |η

(d)
i 〉C}i∈Zd−1 ⊂ A

(d,d)
1 and |d − 1〉A|ξ(d)

1 〉B |η
(d)
1 〉C ∈ A

(d,d)
3 , we have

a0j,δδ = 0 for 0 ≤ j ≤ d− 2 by Lemma 1. In the same way, we can obtain that ai(d−1),δδ = 0 for 0 ≤ i ≤ d− 2
by using the states {|ξ(d)

1 〉A|η
(d)
i 〉B |d− 1〉C}d−2

i=0 ⊂ A
(d,d)
2 and |d− 1〉A|ξ(d)

1 〉B |η
(d)
1 〉C ∈ A

(d,d)
3 . By the symmetry

of Fig. 5, we can also show that ai0,δδ = 0 for 1 ≤ i ≤ d− 1, and a(d−1)j,δδ = 0 for 1 ≤ j ≤ d− 1. Since E† = E,
E is a block diagonal matrix. It can be expressed by

E = E(A(d,d)
1 )(A) ⊕ E(A(d,d)

2 )(A) ⊕ EC ⊕ E(B(d,d)
2 )(A) ⊕ E(B(d,d)

1 )(A) , (A25)

where EC := E{∪δ−1
k=1C(d,d−2k)}(A) . The intuitive figure of E can be shown in Fig. 6 (I).

Step 2 One notice that 〈Sd|I⊗ E|ψ〉 = 〈S′d−2|I⊗ E|ψ〉 for any |ψ〉 ∈ ∪
δ−1
k=1C(d,d−2k). Therefore, for any pair of

elements |φ〉 and |ψ〉 in {∪δ−1
k=1C(d,d−2k) ∪ {|S′d−2〉}}, we have

〈ψ|I′ ⊗ EC |φ〉 = 〈ψ|I⊗ E|φ〉 = 0,

where I′ :=
∑d−2
k=1 |k〉A〈k|. Since {∪

δ−1
k=1C(d,d−2k) ∪ {|S′d−2〉}} is of the strongest nonlocality, one shows that

EC =
d−2∑
s=1

d−2∑
t=1

L|s〉B〈s| ⊗ |t〉C〈t|

for some L. Thus the intuitive figure of E can be shown in Fig. 6 (II).
Step 3 By using the states {|ξ(d)

1 〉A|0〉B |η
(d)
i 〉C}i∈Zd−1 ⊂ A

(d,d)
1 , we have

B〈0|C〈η(d)
i |E|0〉B |η

(d)
j 〉C = 0, for i 6= j ∈ Zd−1. (A26)
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Figure 6: Proving steps for the strongly nonlocal UPBs in d⊗ d⊗ d for d ≥ 5.

Then there exists a real number as for any s ∈ Zd−1 such that

E(A(d,d)
1 )(A) =

d−2∑
s=0

as|0〉B〈0| ⊗ |η(d)
s 〉C〈η(d)

s |, (A27)

as E = E†. In the same way, there exist real numbers as, bs, ct, et such that the operator

E =
d−2∑
s=0

as|0〉B〈0| ⊗ |η(d)
s 〉C〈η(d)

s |+
d−2∑
s=0

bs|η(d)
s 〉B〈η(d)

s | ⊗ |d− 1〉C〈d− 1|+
d−2∑
t=0

ct|ξ(d)
t 〉B〈ξ

(d)
t | ⊗ |0〉C〈0|

+
d−2∑
t=0

et|d− 1〉B〈d− 1| ⊗ |ξ(d)
t 〉C〈ξ

(d)
t |+

d−2∑
s=1

d−2∑
t=1

L|s〉B〈s| ⊗ |t〉C〈t|.

(A28)

By using the states {|0〉A|η(d)
i 〉B |ξ

(d)
j 〉C}(i,j)∈Zd−1×Zd−1\{(0,0)} = B(d,d)

3 , we can get the following equality

B〈η(d)
k |C〈ξ

(d)
` |E|η

(d)
i 〉B |ξ

(d)
j 〉C = 0, for (k, `) 6= (i, j) ∈ Zd−1 × Zd−1 \ {(0, 0)}. (A29)

We assume that k 6= i and ` = j. Then by Eq. (A28), we have

0 =B〈η(d)
k |C〈ξ

(d)
` |E|η

(d)
i 〉B |ξ

(d)
` 〉C

=
d−2∑
s=0

as〈η(d)
k |0〉B〈0|η

(d)
i 〉B〈ξ

(d)
` |η

(d)
s 〉C〈η(d)

s |ξ
(d)
` 〉C +

d−2∑
s=0

bs〈η(d)
k |η

(d)
s 〉B〈η(d)

s |η
(d)
i 〉B〈ξ

(d)
` |d− 1〉C〈d− 1|ξ(d)

` 〉C

+
d−2∑
s=1

d−2∑
t=1

L〈η(d)
k |s〉B〈s|η

(d)
i 〉B〈ξ

(d)
` |t〉C〈t|ξ

(d)
` 〉C

=
d−2∑
s=0

as〈ξ(d)
` |η

(d)
s 〉C〈η(d)

s |ξ
(d)
` 〉C +

d−2∑
s=1

d−2∑
t=1

Lw
(i−k)s
d−1

=
d−2∑
s=0

as〈ξ(d)
` |η

(d)
s 〉C〈η(d)

s |ξ
(d)
` 〉C − (d− 2)L.

(A30)
There are two cases of the terms in the summation of the last equality.
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(a) If s = `, then

〈ξ(d)
` |η

(d)
s 〉C〈η(d)

s |ξ
(d)
` 〉C =

d−2∑
n=1

w`d−1

d−2∑
n=1

w−`d−1 = (d− 2)2.

(b) If s 6= `, then

〈ξ(d)
` |η

(d)
s 〉C〈η(d)

s |ξ
(d)
` 〉C =

d−2∑
n=1

w
ns−(n−1)`
d−1

d−2∑
n=1

w
(n−1)`−ns
d−1 =

d−2∑
n=1

w
(n−1)(s−`)
d−1

d−2∑
n=1

w
(n−1)(`−s)
d−1 = 1.

Therefore, Eq. (A30) is equivalent to

d−2∑
s=0

ai + ((d− 2)2 − 1)a` − (d− 2)L = 0. (A31)

However, the Eq. (A31) is satisfied for any ` ∈ Zd−1. Thus, we have a0 = a1 = · · · = ad−2. It implies that

E(A(d,d)
1 )(A) = kI(A(d,d)

1 )(A) . (A32)

The intuitive figure of E can be shown in Fig. 6 (III).
Step 4 Considering |S〉 and {|0〉A|η(d)

i 〉B |ξ
(d)
j 〉C}(i,j)∈Zd−1×Zd−1\{(0,0)} = B(d,d)

3 . By using Eqs. (A25) and (A32),
we have the following equality

d−2∑
s=0

d−2∑
t=0

B〈s|C〈t+ 1|E|η(d)
i 〉B |ξ

(d)
j 〉C =

d−1∑
s=0

d−1∑
t=0

B〈s|C〈t|E|η(d)
i 〉B |ξ

(d)
j 〉C = 0. (A33)

Moreover, we have
d−2∑
s=0

d−2∑
t=0
|s〉B |t+ 1〉C = |η(d)

0 〉B |ξ
(d)
0 〉C . (A34)

Therefore, by using the states {|S〉} ∪ {|0〉A|η(d)
i 〉B |ξ

(d)
j 〉C}(i,j)∈Zd−1×Zd−1\{(0,0)}, we have

B〈η(d)
k |C〈ξ

(d)
` |E|η

(d)
i 〉B |ξ

(d)
j 〉C = 0, for (k, `) 6= (i, j) ∈ Zd−1 × Zd−1. (A35)

For any |t1〉B |t2〉C ∈ (A(d,d)
1 )(A) ∩ (B(d,d)

3 )(A), we have {|t1〉B |t2〉C}E(B(d,d)
3 )(A)\{|t1〉B |t2〉C}

= 0 by Eqs. (A25)

and (A32). Moreover, B〈t1|C〈t2|η(d)
i 〉B |ξ

(d)
j 〉C 6= 0 for (i, j) ∈ Zd−1 × Zd−1. Applying Lemma 2 to

{|η(d)
i 〉B |ξ

(d)
j 〉C}(i,j)∈Zd−1×Zd−1 , we have

E(B(d,d)
3 )(A) = k1I(B(d,d)

3 )(A) . (A36)

Since (A(d,d)
1 )(A) ∩ (B(d,d)

3 )(A) 6= ∅, it implies k = k1. Thus, by Eqs. (A32) and (A36), we obtain

E(A(d,d)
1 )(A)∪(B(d,d)

3 )(A) = kI(A(d,d)
1 )(A)∪(B(d,d)

3 )(A) . (A37)

The intuitive figure of E can be shown in Fig. 6 (IV).
Step 5 By the symmetry of Fig. 5, we can obtain E = kI. The intuitive figure of E can be shown in Fig. 6 (V).

Thus, E is trivial. This completes the proof.
(ii) The proof is similar as (i). ut
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