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ABSTRACT 

High frequency oscillations (HFOs) have been used for seizure prediction and are promising biomarkers of 
epileptogenesis. However, detecting HFOs is time consuming and subjective, prompting research into 
automated detection and classification pipelines. We aim to understand how different EEG filtering 
methods impact these pipelines and harmonize detections from the same data when preprocessed differently. 
We preprocessed EEG with two different filters and then detected events with the short time energy (STE) 
detector and compared common detections. We applied t-distributed stochastic neighbor embedding (t-SNE) 
to the datasets and compared embeddings then investigated if shifting commonly detected events prior to 
t-SNE helped standardize embeddings. The finite impulse response (FIR) and infinite impulse response 
(IIR) filters achieved a Cohen’s Kappa coefficient of 0.8962 after shifting, reflecting a high level of 
agreement. The t-SNE embeddings were similar only when data were shifted prior to embedding. Feasible 
solutions to this shifting problem are addressed. 

Keywords: high frequency oscillations, EEG, epilepsy, finite impulse response filter, infinite impulse 
response. 

1 INTRODUCTION 

Traumatic brain injury (TBI) patients can experience secondary pathologies, including posttraumatic 
epilepsy (PTE), or unprovoked seizures following a TBI (Garner et al. 2019). Pathological high frequency 
oscillations (HFOs) found in electroencephalography (EEG) recordings have been used to detect regions of 
epileptogenesis or seizure onset zones (Li et al. 2018; Liu et al. 2018; Gliske et al. 2016; Worrel et al. 2004; 
Cimbálník et al. 2018; Birjandtalab et al. 2016; Liu et al. 2015) and are promising potential biomarkers of 
epileptogenesis (Vespa et al. 2013; Agrawal et al. 2006). These waveforms are transient bursts of activity 
between 80-500 Hz that can be distinguished from background EEG (Frauscher et al. 2017). However, 
detecting HFOs is exceedingly difficult. Visual detection of HFOs is time consuming—requiring up to 10 
hours to visually analyze a 10-minute 10 channel recording (Zelmann et al. 2012). Even experienced 
epileptologists have biases that cause poor interrater agreement (Spring et al. 2017). The subjective, ill-
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defined nature of choosing when a segment of data “stands out” (Frauscher et al. 2017) questions the 
strength of studies that depend on the validity of their annotations. As a result, visual analyses are not 
feasible for large datasets, such as the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy 
(EpiBioS4Rx) (Duncan et al. 2019), which collects continuous EEG for 7-14 days in human TBI patients 
and 30+ days in a preclinical rodent model.  

Recent studies have addressed the burden of manual HFO detection by implementing automatic HFO 
detectors, which identify precise, numerical traits associated with HFOs (Zelmann et al. 2012; Dirodi et al. 
2019; Worrel et al. 2008). Automated HFO detectors, such as RippleLab (Navarrete et al. 2016), a widely 
used detector, are imperfect due to the incredibly diverse range of filtering and processing methods that 
affect detected waveforms. One inconsistency lies in bandpass filter frequency limits: studies set bandpass 
filter limits from 80 Hz -160 Hz (Dirodi et al. 2019) to 80 Hz – 1000 Hz (Worrel et al. 2008) and many in 
between. Different studies also use various types of bandpass filters, namely the finite impulse response 
(FIR) filters (Staba et al. 2002, Zelmann et al. 2011, Crepon et at. 2010, Jacobs et al. 2008) and infinite 
impulse response (IIR) filters (Worrel et al. 2008). Varying the filtering methods applied to raw EEG affects 
the waveforms supplied to automated HFO detectors. 

Developing a standardized HFO preprocessing and detection pipeline will allow HFO detectors to be 
compared across laboratories, ultimately resulting in a more quantitatively rigorous and comprehensive 
definition of HFOs. While Zelmann et al. 2011 compared HFO detectors to find an optimal detector, our 
work focuses on standardizing HFO detection methods. The goal of this study is to discover the effects of 
filtering methods on automated HFO detection. In addition, this study aims to minimize the variance 
introduced by different filters and harmonize detections produced from the same data that have been 
preprocessed in different ways. 

2 METHODS 

2.1 Data 

EEG data were collected from a patient who had suffered a moderate-severe traumatic brain injury (TBI) 
and later developed posttraumatic epilepsy (PTE). The data were sampled at 2000 Hz, with a duration of 6 
hours and 5 minutes, and were collected from the University of California, Los Angeles for the Epilepsy 
Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) (Duncan et al. 2019). 

2.2 Data Preprocessing 

Two datasets were formed from the original data: one was created by applying MATLAB’s EEGLAB 
(Delorme et al. 2004) FIR filter, and the other was created by applying MATLAB RippleLab’s (Navarrete 
et al. 2016) IIR filter. Both toolboxes use bandpass filters between 80 Hz and 500 Hz and do not introduce 
phase delay. The next two steps, HFO detection and t-distributed stochastic neighbor embedding (t-SNE), 
are performed on each dataset. 

2.3 HFO Detection 

HFOs were identified using a highly sensitive but nonspecific energy-based detector proposed by Staba et 
al. (Staba et al. 2002). Implemented in RippleLab (Navarrete et al. 2016), the detector divides data from 
each channel into 180-second epochs. Within each epoch, root-mean-square (RMS) energy values are 
computed for successive 3 ms nonoverlapping windows. Segments are identified as HFOs if they 1) 
maintain energy greater than 5 standard deviations above mean RMS, 2) longer than 6 ms, and 3) contain 
more than 8 combined peaks and troughs. Events occurring less than 10 ms apart were combined to form 
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one event. Finally, segments were standardized to span 150 ms before and after the midpoint of the original 
detection to form the data matrix for subsequent unsupervised clustering. 

2.4 t-Distributed Stochastic Neighbor Embedding 

Detecting relevant HFOs is exceedingly difficult. Physiological HFOs are involved in the common tasks of 
memory formation and information processing (Zijlmans et al. 2012). Moreover, high-frequency bursts are 
also exhibited following peripheral stimulation (Baker et al. 2003). Finally, artifacts and non-HFO 
waveforms are often erroneously detected by modern HFO detectors. As a result, some studies have applied 
dimensionality reduction methods to discover patterns in the data that distinguish these categories (Liu et 
al. 2018). This provides insight into the entire dataset and saves time by automatically separating artifacts, 
non-HFO detections, and sorting HFOs into groups. 

One approach that has become popular for visualizing high dimensional data is the t-distributed stochastic 
neighbor embedding (t-SNE) algorithm (Van Der Maaten et al. 2015). t-SNE defines a pairwise similarity 
measure between points and finds a low-dimensional embedding that roughly preserves this metric on a 
local scale. The goal of t-SNE is to minimize the difference between the original dataset and low-
dimensional embedding. As t-SNE has been a powerful tool in classifying images and speech but has not 
yet been applied to HFO classification, we apply it to the waveforms detected by the HFO detector to see 
if it is affected by preprocessing methods. With t-SNE as a model for other machine learning algorithms, 
understanding how discepancies in HFO detectors and filtering methods affect subsequent machine learning 
will provide insight into the growing field of automated HFO classification, a much faster, cheaper 
alternative to visual detection. 

Following HFO detection on the 6 hour and 22 minute EEG file, the n detected waveforms each of length 
m = 300 (2000 Hz * 0.15 sec) form an 𝑚 x 𝑛 data matrix X = {𝑥', 𝑥), … , 𝑥+}. The kernel applied in t-SNE 
is computed as follows. First, the nonsymmetric Gaussian kernel 

 𝐾./ = 𝑘1𝑥., 𝑥/2 = exp(−8𝑥. − 𝑥/8)
)
/2𝜎.)) , (1) 

 

is reintroduced with a different parameter 𝜎. that will be explained later. From here, a normalized Markov 
matrix 𝑃./ = 𝑝(𝑖, 𝑗) is constructed on the dataset and can be interpreted as the probability that observation 
𝑥. will diffuse to 𝑥/  in a random walk. We set 

 
𝑝(𝑖, 𝑗) =

𝑘(𝑖, 𝑗)
∑ 𝑘(𝑖, 𝑙)CD.

, 

 
(2) 

with 𝑝(𝑖, 𝑖) = 0. Then the 𝑚 x 𝑚 symmetric kernel 𝑊 = [𝑤(𝑖, 𝑗)] employed in t-SNE is defined as 

 
𝑤(𝑖, 𝑗) =

𝑝(𝑖, 𝑗) + 𝑝(𝑗, 𝑖)
2𝑛

. 
 

(3) 

Returning to the kernel parameters, each 𝜎. is chosen such that the perplexity of the ith column of 𝑊 is equal 
to some predetermined value u. 

Datasets can be reduced to a smaller three dimensions, for example, and visualized in such a way that 
relative distances are preserved. However, this is not always true for data sampled from an intrinsically 
high-dimensional (more than three dimensions) dataset since the region of all points equidistant from a 
center grows with distance much faster in high dimensions than in low dimensions. 
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This is defined as the “crowding problem” (Van Der Maaten et al. 2008) and addressed by defining 
similarity in the low-dimensional space with a heavy-tailed distribution instead of a Gaussian. We let the 
low-dimensional complements to the original dataset 𝑋 = {𝑥', 𝑥), … , 𝑥+}  be 𝑌 = {𝑦', 𝑦),… , 𝑦+} 
respectively. The similarity 𝑠(𝑖, 𝑗) between 𝑦' and 𝑦) is defined in terms of the student-t distribution with 
one degree of freedom: 

 𝑠(𝑖, 𝑗) =
1

𝜋 R1 + 8𝑦. − 𝑦/8
)
S
. (4) 

 
After normalizing (4) to form the low-dimensional kernel 𝑄./ = 𝑞(𝑖, 𝑗) where 

 
𝑞(𝑖, 𝑗) =

𝑠(𝑖, 𝑗)
∑ 𝑠(𝑖, 𝑙)VDC

,										𝑞(𝑖, 𝑖) = 0, 

 
(5) 

 
t-SNE attempts to choose {𝑦', 𝑦),… , 𝑦+} such that the joint distributions 𝑄 and 𝑃 are as similar as possible. 
This is quantified by minimizing their Kullback-Liebler divergence 

  

𝐶(𝑌) = 𝐾𝐿(𝑃||𝑄) =[ [ 𝑝(𝑖, 𝑗) log
𝑝(𝑖, 𝑗)
𝑞(𝑖, 𝑗)

+

/_',/D.

,
+

._'

 

 

(6) 

 
using a Barnes-Hut algorithm. 

2.5 Comparison of Filtering Methods 

  

Figure 1: A visual of the HFO detection and comparison pipeline. 

To understand the influence of filtering methods on the STE detector, we filtered raw EEG with two 
different filters (IIR and FIR) to create two preprocessed EEG files. We detected events with the STE 
detector, then identified and compared common detections. We measured the degree of agreement between 
the two filters with Cohen’s Kappa coefficient, κ. This statistic ranges from 0 (agreement purely by chance) 
to 1 (perfect agreement) and is more effective at measuring the percentage agreement between two detectors 
because it adjusts for agreement due to chance (McHugh 2012). 

To understand the influence of filtering methods on subsequent unsupervised classification, we analyzed 
and compared the t-SNE maps constructed from HFO detections obtained after the application of the two 
different filters. We examined similarities in terms of phase, cluster organization and number of detected 
events and waveforms. In addition, we evaluated if shifting the FIR-filtered detections to make the two 
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filters in phase improves the similarity level. A MATLAB script was written to first automatically shift 
each FIR-filtered waveform to match its corresponding IIR-detection’s phase, then compute the t-SNE 
embedding of the shifted FIR-filtered dataset. Indicated in the visual pipeline, three t-SNE embeddings will 
be computed. 

3 RESULTS 

3.1 FIR vs. IIR Filtering Effects 

5,730 events were detected by the FIR filter, and 5,789 events were detected by the IIR filter. 2,428 
waveforms were detected by both filters. The resulting Cohen’s Kappa coefficient was κ=0.4185, reflecting 
a “minimal” to “weak” level of agreement far below the minimum value of κ>0.8 (Mchugh 2012). 

Shifting the detections markedly improved interdetector agreement. When we extended our classification 
of similar detections to include all waveforms pairs detected within 10 ms of each other—the STE detector’s 
minimum distance needed to separate events—the number of commonly detected pairs rose to 5,157. The 
new Cohen’s Kappa coefficient was κ=0.8962, bordering “almost perfect” agreement and far above κ=0.8 
and the average human reviewer agreement of κ=0.403 (Spring et al. 2017). The mean time displacement 
of the 2,729 newly included (52.92% of the new dataset) pairs was 1.135±1.706 ms. Figure 1 compares one 
waveform as it was detected by the two filtering methods. After realignment, there is almost no difference 
between the two versions of the waveform. Also, the Euclidean distance used in the t-SNE algorithm was 
found to be highly dependent on small shifts in phase. 

 

 

Figure 2: Feature vectors from FIR and IIR filtered detections plotted in the same window as they were 
detected (top) and after realignment (middle). (Bottom) the Euclidean distance between detections as a 
function of how far they are shifted. Since the detections are almost identical, their distance should be close 
to zero, which is reached by shifting 1.5 ms to be in phase. 
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3.2 Understanding How to Compare t-SNE on the Same Input Data 

One major implication of minimizing the Kullback-Liebler divergence, a nonconvex objective function, is 
that t-SNE will produce different results when run on the same dataset. However, t-SNE remains able to 
preserve the local geometry between similar detections, keeping its ability to separate data into groups very 
consistent. These facts can be seen when t-SNE is run twice on the dataset composed of IIR-filtered 
detections in Figure 3. On the left, clusters are formed, and each is a assigned a different color. t-SNE is 
then run again on the same dataset t-SNE is applied to the same dataset, but the resultant embeddings differ. 
However, overall geometry differs, every cluster that can be identified in the first trial appears in the second 
trial.  

 

Figure 3: t-SNE embeddings when run on IIR-filtered detections twice. In trial 1 (left), clusters are identified 
and intracluster detections are assigned the same color. In trial 2 (right), t-SNE is run again and the 
detections retain the color they were previously assigned. Note that the axes, t-SNE_1 and t-SNE_2, do not 
have individual interpretations. Rather, t-SNE focuses on the relative location of points, embedding similar 
detections to the same cluster and embedding different detections relatively far away.  
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3.3 Comparing t-SNE on Differently Filtered Input Data 

Figure 3 shows the similarities between the embeddings when computed after applying different types of 
preprocessing. 

 

Figure 4: (Top) t-SNE embedding when applied to IIR-filtered detections. The detections are associated 
with the naturally occurring cluster that they appear in and colored accordingly. (Bottom right) t-SNE 
embedding when applied to FIR-filtered detections. The detections have the same color as their 
corresponding detections in the top t-SNE plot. (Bottom left) t-SNE embedding when applied to FIR-
filtered detections that are shifted to be in phase with their corresponding IIR-filtered detections prior to 
running t-SNE. The detections have the same color as their corresponding detections in the top t-SNE plot. 

Each embedding was computed from the 5,157 detections in its category that were detected throughout the 
6 hour and 5 minute file. Based on the datasets used in van der Maaten et al. 2008 that range from 400 to 
6,000 observations, we can be sure that enough data was inputted into the t-SNE algorithm. Although their 
common waveform morphologies were almost identical, the IIR-filtered (top) and FIR-filtered (left) t-SNE 
embeddings show drastically different results with little correspondence on global or local scales. In 
contrast, the IIR-filtered (top) and shifted FIR-filtered (right) t-SNE embeddings produced highly similar 
results. While the global structure of the embeddings is different, every cluster that can be identified in the 
embedding on the top has a corresponding location in the embedding on the right. In addition, uniformly 
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colored clusters in both embeddings show that points embedded to the same cluster in one embedding are 
also embedded to the same cluster in the other embedding. Even though two different types of filters were 
used, their post-shifting t-SNE embeddings were very similar. 

4 DISCUSSION AND CONCLUSIONS 

This study contains three main contributions: identification of a problem, examples of its clinical relevance, 
and proposed solutions. 

4.1 The Effects of Filtering on HFO Classification 

This study’s preliminary results point out the prominence of relative phase on automated HFO classification. 
Two commonly used filters, RippleLab’s IIR filter and EEGLAB’s FIR filter, as preprocessing tools for 
the STE detector were studied. The waveforms detected using each method showed a high level of 
agreement. Further examination of corresponding waveforms from each method revealed almost identical 
post-filtering morphology and differed most noticeably by their respective phases, yet their corresponding 
t-SNE embeddings clustered different groups of HFOs together with little agreement between the 
embeddings. As shifting the FIR-filtered data to match the phases of their IIR-filtered counterparts resolved 
this issue, we can conclude that phase, not the changes in morphology due to filtering, are responsible for 
the clustering discrepancy. Thus, we can conclude that IIR and FIR filters can be equally reliable if the 
problem of phase discrepancies is resolved.  

4.2 Relevance 

The problem of phase discrepancies is highly relevant to machine learning (ML) research aimed at 
classifying HFOs. Recently, researchers have looked to ML methods to automatically classify these 
detections (Pearce et al. 2013, Zuo et al. 2019), drastically reducing the time needed to find HFOs and 
removing human bias. However, our results show that the Euclidean distance is extremely sensitive to phase  
when comparing rapidly oscillating data. This is important since the Euclidean distance function is used in 
many machine learning methods: k-means, k-medoids, principal component analysis, t-SNE, Sammon 
maps, diffusion maps, isomaps, and support vector machines.  The relatively new introduction of ML 
methods to automatic HFO classification combined with the fast-oscillatory behavior unique to HFOs may 
explain why this concern has not previously been studied. By demonstrating that t-SNE, a popular machine 
learning algorithm, is highly susceptible phase discrepancies to when applied to HFOs, the preliminary 
results of this study elucidate a major standardization problem that should be considered when constructing 
new HFO classification tools. 

Additionally, our study’s simple design, following a standard preprocessing, detection, and classification 
pipeline, allows its results to apply to all HFO classification studies. This study also analyzed clinical data, 
and thus its concerns regarding phase discrepancies are more easily translated to clinical studies than basic 
science studies, which are conducted on relatively clean rodent EEG. 

5 SOLUTIONS AND FUTURE WORK 

One option for standardizing HFO classification pipelines is to standardize every step of the HFO detection 
pipeline from data collection to machine learning. However, this is infeasible due to the large number of 
different HFO researchers. Standardized required equipment will limit application in many hospitals, 
especially hospitals in less wealthy neighborhoods that cannot afford new, likely high-end equipment. 
Finally, the proposed method will remain heavily influenced by the relative phase of detections within the 
dataset. 
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Another solution is for future HFO classifiers to use ML algorithms that are not heavily affected by the 
detection’s phase. Although this may also seem infeasible, convolutional neural networks are mostly shift-
invariant and have seen even more overall success at classifying data than t-SNE. In addition, ML 
algorithms that use a Euclidean distance metric may incorporate a cross-correlation-based metric that is 
equivalent to the Euclidean distance when detections are identical. Based on the preliminary results of 
shifting data and applying the t-SNE algorithm, both options are found to be promising and warrant further 
investigation. 
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